Streptomyces Siamensis Sp. Nov., and Streptomyces Similanensis Sp. Nov., Isolated from Thai Soils

Total Page:16

File Type:pdf, Size:1020Kb

Streptomyces Siamensis Sp. Nov., and Streptomyces Similanensis Sp. Nov., Isolated from Thai Soils The Journal of Antibiotics (2013) 66, 633–640 & 2013 Japan Antibiotics Research Association All rights reserved 0021-8820/13 www.nature.com/ja ORIGINAL ARTICLE Streptomyces siamensis sp. nov., and Streptomyces similanensis sp. nov., isolated from Thai soils Paranee Sripreechasak1, Atsuko Matsumoto2, Khanit Suwanborirux3, Yuki Inahashi2, Kazuro Shiomi2,4, Somboon Tanasupawat1 and Yoko Takahashi2,4 Three actinomycete strains, KC-038T, KC-031 and KC-106T, were isolated from soil samples collected in the southern Thailand. The morphological and chemotaxonomic properties of strains KC-038T, KC-031 and KC-106T were consistent with the characteristics of members of the genus Streptomyces, that is, the formation of aerial mycelia bearing spiral spore chains; the presence of LL-diaminopimelic acid in the cell wall, MK-9 (H6), MK-9 (H4) and MK-9 (H8) as the predominant menaquinones; and C16:0, iso-C16:0 and anteiso-C15:0 as the major cellular fatty acids. 16S rRNA gene sequence analyses indicated that strains KC-038T and KC-031 were highly similar (99.9%), and they were closely related to S. olivochromogenes NBRC 3178T (98.1%) and S. psammoticus NBRC 13971T (98.1%). Strain KC-106T was closely related to S. seoulensis NBRC 16668T (98.9%), S. recifensis NBRC 12813T (98.9%), S. chartreusis NBRC 12753T (98.7%) and S. griseoluteus NBRC 13375T (98.4%). The values of DNA–DNA relatedness between the isolates and the type strains of the related species were below 70%. On the basis of the polyphasic evidence, the isolates should be classified as two novel species, namely Streptomyces siamensis sp. nov. (type strain, KC-038T ¼ NBRC 108799T ¼ PCU 328T ¼ TISTR 2107T) and Streptomyces similanensis sp. nov. (type strain, KC-106T ¼ NBRC 108798T ¼ PCU 329T ¼ TISTR 2104T). The Journal of Antibiotics (2013) 66, 633–640; doi:10.1038/ja.2013.60; published online 12 June 2013 Keywords: new species; polyphasic taxonomy; Streptomycetaceae; Streptomyces siamensis; Streptomyces similanensis INTRODUCTION KC-038T, KC-031 and KC-106T, which were isolated from soils in the The genus Streptomyces belonging to the family Streptomycetaceae was south of Thailand. proposed by Waksman and Henrici1 to accommodate aerobic, Gram- positive and spore-forming actinomycetes. The Streptomyces strains MATERIALS AND METHODS represent a group of actinomycetes that are widely distributed in Strains KC-038T and KC-031 were isolated from soil samples collected from the nature. At present, the genus comprises more than 550 recognized Krung Ching Waterfall, Khao Luang National Park, Nakhon Si Thammarat species with validly published names, and recently some novel species, Province, Thailand, and strain KC-106T was isolated from the Similan Island 2 3 4 5 including S. cocklensis, S. gramineus, S. nanhaiensis, S. panacagri, National Park (813900900N9713802700E), Phanga Province, Thailand. The soil S. pharmamarensis,6 S. qinglanensis7 and S. staurosporininus,8 have samples were serially diluted with distilled water, heated at 55 1C for 5 min and been described. Strains of the genus Streptomyces are superior to other plated onto potato starch-glycerol agar10 and starch casein nitrate agar11 actinomycete strains in their ability to produce various bioactive containing nystatin (25 mg l À1) and tetracycline (10 mg l À1). The resulting metabolites, especially antibiotics. Well-known antibiotics derived pure isolates were maintained on SYM agar (starch 1.0%, NZ amine 0.3%, from Streptomyces strains include tetracycline, streptomycin, yeast extract 0.1%, meat extract 0.1%, CaCO3 0.3%, agar 1.2%, pH 7.0). chloramphenicol, neomycin, nystatin, amphotericin, kanamycin and Genomic DNA of each isolate was obtained by sonication of a suspension of cells12 grown in YD broth (yeast extract 1.0%, dextrose 1.0%, pH 7.0). The 16S cycloheximide. Streptomyces strains are still a rich source of rRNA gene was amplified using the primers described by Takahashi et al.13 The commercially significant compounds, such as antibiotics, enzymes, PCR products were sequenced on a DNA sequencer (model 3130 Genetic 9 enzyme inhibitors and other pharmacologically active agents. Analyzer; Applied Biosystems, Foster City, CA, USA) using a BigDye Therefore, new species in the genus Streptomyces remains a focus of Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), according to efficient research for the discovery of new bioactive compounds. the manufacturer’s instructions. The closest phylogenetic neighbors were In this paper, we report the taxonomic status of Streptomyces strains identified by BLAST searches using the EzTaxon-e server.14 The clustalw2 1Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; 2Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo, Japan; 3Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand and 4Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan Correspondence: Dr S Tanasupawat, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand. E-mail: [email protected] or Dr Y Takahashi, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108 8641, Japan. E-mail: [email protected] Received 4 January 2013; revised 2 May 2013; accepted 9 May 2013; published online 12 June 2013 Streptomyces siamensis and S. similanensis P Sripreechasak et al 634 program was used for multiple alignments with selected sequences for and maximum-parsimony19 methods. Data were resampled with 1000 calculating evolutionary distances15 with SeaView version 4.2.16 Phylogenetic bootstrap replications.20 Values for sequence similarity among the closely trees were constructed using the neighbour-joining,17 maximum-likelihood18 related strains were determined using the EzTaxon-e server.14 Table 1 Cellular fatty acid compositions (%) of strains KC-038T, KC-031 and closely related type strains Table 2 Cellular fatty acid compositions (%) of strain KC-106T and closely related type strains S. olivochromogenes S. psammoticus T T T Fatty acid KC-038 KC-031 NBRC 3178 NBRC 13971 S. seoulensis S. recifensis S. griseoluteus S. chartreusis Saturated straight chain NBRC NBRC NBRC NBRC C14:0 4.0 3.0 0.7 3.2 Fatty acid KC-106T 16668T 12813T 13375T 12753T C16:0 23.5 19.7 7.6 23.9 C17:0 1.2 1.0 0.5 1.0 Saturated straight chain C18:0 —— — 0.5 C14:0 0.6 0.8 — 0.8 2.0 C17:0cyclo 0.5 0.7 2.9 3.7 C16:0 5.4 4.4 5.7 8.5 9.7 C18:0 1.1 2.1 0.6 — — Unsaturated straight chain C17:0 cyclo 2.0 2.4 3.3 1.8 0.4 C 8c 0.6 0.6 — — 17:1 o Unsaturated straight chain C o9c — 2.2 — — — Saturated branched chain 18:1 iso-C14:0 8.6 8.5 8.0 2.0 Saturated branched chain iso-C15:0 7.7 8.9 13.0 10.8 iso-C14:0 5.8 10.2 6.7 4.2 7.3 iso-C16:0 18.4 22.3 22.1 10.5 iso-C15:0 8.6 8.9 10.6 9.3 11.6 iso-C 23.2 20.1 19.3 17.9 19.8 iso-C17:0 1.7 2.7 4.9 2.9 16:0 iso-C —— 0.9 0.6 iso-C17:0 3.3 1.1 3.6 2.8 2.4 18:0 iso-C 1.5 1.0 1.5 1.1 — anteiso-C 0.5 — — — 18:0 13:0 anteiso-C13:0 ND — — 0.6 1.3 anteiso-C15:0 17.7 16.6 25.2 22.6 anteiso-C15:0 25.0 26.2 29.3 29.9 2.8 anteiso-C17:0 4.2 4.6 6.7 9.8 anteiso-C17:0 10.3 4.2 8.0 13.6 5.8 Unsaturated branched chain Unsaturated branched chain iso-C H 4.4 5.9 2.2 1.3 1.6 iso-C16:1 H 0.6 0.9 1.0 — 16:1 iso-C17:1 o9c 1.6 1.7 2.2 1.7 1.4 iso-C17:1 o9c 0.6 1.0 1.9 0.5 anteiso-C17:1 4.1 4.3 3.2 2.6 1.2 anteiso-C17:1 0.5 0.6 1.2 0.7 o9c o9c Summed 0.9 2.0 1.4 2.2 6.9 Summed 6.0 5.5 1.2 4.4 featurea 3 featurea 3 Abbreviation: ND, not detected. —, the amount of fatty acid less than 0.5% was omitted. —, the amount of fatty acid less than 0.5% was omitted. a a Summed feature 3 comprises C16:1 o7c and/or C16:1 o6c. Summed feature 3 comprises C16:1 o7c and/or C16:1 o6c. Figure 1 Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the relationship between strains KC-038T, KC-031 and closely related type strains of the genus Streptomyces. Only bootstrap values above 50% (percentages of 1000 replications) are indicated. (K), branches were also recovered in the maximum-parsimony tree; (*), branches were also recovered in the maximum-likelihood tree; Bar, 0.005 nucleotide substitutions persite. The Journal of Antibiotics Streptomyces siamensis and S. similanensis P Sripreechasak et al 635 Strains KC-038T,KC-031andKC-106T were cultivated at 27 1C for 2 weeks using a CAPCELL PAK C18 UG120 column (Shiseido, Tokyo, Japan) with on ISP (International Streptomyces Project) 2, 3, 4, 5, 6 and 7 media,21 YS agar methanol/2-propanol (7:3). The N-acyl types of muramic acid were (yeast extract 2.0%, starch 1.0%, agar 1.5%, pH 7.0) and nutrient agar. The determined by using the method of Uchida and Aida.27 Phospholipids were Color Harmony Manual22 was used to determine the color of aerial and extracted and identified by using the method of Minnikin et al.28 The presence substrate mycelia and soluble pigment.
Recommended publications
  • 0041085-15082018101610.Pdf
    Cronfa - Swansea University Open Access Repository _____________________________________________________________ This is an author produced version of a paper published in: The Journal of Antibiotics Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa41085 _____________________________________________________________ Paper: Zhang, B., Tang, S., Chen, X., Zhang, G., Zhang, W., Chen, T., Liu, G., Li, S., Dos Santos, L., et. al. (2018). Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China. The Journal of Antibiotics http://dx.doi.org/10.1038/s41429-018-0080-9 _____________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. http://www.swansea.ac.uk/library/researchsupport/ris-support/ Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China Binglin Zhang1,2,3, Shukun Tang4, Ximing Chen1,3, Gaoseng Zhang1,3, Wei Zhang1,3, Tuo Chen2,3, Guangxiu Liu1,3, Shiweng Li3,5, Luciana Terra Dos Santos6, Helena Carla Castro6, Paul Facey7, Matthew Hitchings7 and Paul Dyson7 1 Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
    [Show full text]
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Bioinformatic Analysis of Streptomyces to Enable Improved Drug Discovery
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2019 BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY Kaitlyn Christina Belknap University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Belknap, Kaitlyn Christina, "BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY" (2019). Master's Theses and Capstones. 1268. https://scholars.unh.edu/thesis/1268 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY BY KAITLYN C. BELKNAP B.S Medical Microbiology, University of New Hampshire, 2017 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Genetics May, 2019 ii BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY BY KAITLYN BELKNAP This thesis was examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Genetics by: Thesis Director, Brian Barth, Assistant Professor of Pharmacology Co-Thesis Director, Cheryl Andam, Assistant Professor of Microbial Ecology Krisztina Varga, Assistant Professor of Biochemistry Colin McGill, Associate Professor of Chemistry (University of Alaska Anchorage) On February 8th, 2019 Approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • A Novel Approach to the Discovery of Natural Products from Actinobacteria Rahmy Tawfik University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-24-2017 A Novel Approach to the Discovery of Natural Products From Actinobacteria Rahmy Tawfik University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Microbiology Commons Scholar Commons Citation Tawfik, Rahmy, "A Novel Approach to the Discovery of Natural Products From Actinobacteria" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6766 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Novel Approach to the Discovery of Natural Products From Actinobacteria by Rahmy Tawfik A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Cell Biology, Microbiology & Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Lindsey N. Shaw, Ph.D. Edward Turos, Ph.D. Bill J. Baker, Ph.D. Date of Approval: March 22, 2017 Keywords: Secondary Metabolism, Soil, HPLC, Mass Spectrometry, Antibiotic Copyright © 2017, Rahmy Tawfik Acknowledgements I would like to express my gratitude to the people who have helped and supported me throughout this degree for both scientific and personal. First, I would like to thank my mentor and advisor, Dr. Lindsey Shaw. Although my academics were lacking prior to entering graduate school, you were willing to look beyond my shortcomings and focus on my strengths.
    [Show full text]
  • The Genome Analysis of the Human Lung-Associated Streptomyces Sp
    microorganisms Article The Genome Analysis of the Human Lung-Associated Streptomyces sp. TR1341 Revealed the Presence of Beneficial Genes for Opportunistic Colonization of Human Tissues Ana Catalina Lara 1,† , Erika Corretto 1,†,‡ , Lucie Kotrbová 1, František Lorenc 1 , KateˇrinaPetˇríˇcková 2,3 , Roman Grabic 4 and Alica Chro ˇnáková 1,* 1 Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 Ceskˇ é Budˇejovice,Czech Republic; [email protected] (A.C.L.); [email protected] (E.C.); [email protected] (L.K.); [email protected] (F.L.) 2 Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studniˇckova7, 12800 Prague 2, Czech Republic; [email protected] 3 Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 37005 Ceskˇ é Budˇejovice, Czech Republic 4 Faculty of Fisheries and Protection of Waters, University of South Bohemia, Zátiší 728/II, 38925 Vodˇnany, Czech Republic; [email protected] * Correspondence: [email protected] † Both authors contributed equally. ‡ Current address: Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5—piazza Università 5, 39100 Bozen-Bolzano, Italy. Citation: Lara, A.C.; Corretto, E.; Abstract: Streptomyces sp. TR1341 was isolated from the sputum of a man with a history of lung and Kotrbová, L.; Lorenc, F.; Petˇríˇcková, kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites K.; Grabic, R.; Chroˇnáková,A. associated with cytotoxicity and immune response modulation. In this study, we complement The Genome Analysis of the Human our previous results by identifying the genetic features associated with the production of these Lung-Associated Streptomyces sp.
    [Show full text]
  • Thèse Présentée Par : KITOUNI Mahmoud En Vue De L'obtention Du Diplôme De : DOCTORAT D'etat En : MICROBIOLOGIE APPLIQUEE
    République Algérienne Démocratique et Populaire Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Université Mentouri-Constantine Faculté des Sciences de la Nature et de la Vie Département des Sciences de la Nature et de la Vie N ° d’ordreN° : 84 IT.E / 2007 SERIE : 05 ISN / 2007 Thèse présentée par : KITOUNI Mahmoud En vue de l’obtention du Diplôme de : DOCTORAT D’ETAT en : MICROBIOLOGIE APPLIQUEE Intitulée : Isolement de bactéries actinomycétales productrices d’antibiotiques à partir d’écosystèmes extrêmes. Identification moléculaire des souches actives et caractérisation préliminapréliminaireire des substances élaborées Membres du jury : Mr BENGUEDOUAR A. Professeur Président Univ. Mentouri-Constantine Mr BOULAHROUF A. Professeur Directeur de thèse Univ. Mentouri-Constantine Mr BOIRON P. Professeur Examinateur Univ. Lyon 1 Mr KARAM N. Professeur Examinateur Univ. Essania-Oran Mr BELLAHCENE M. Maître de Examinateur Univ. Mostaganem Conférences Mr HADDI M.L. Maître de Examinateur Univ. Mentouri-Constantine Conférences Session 2007 REMERCIEMENTS Ce travail a été réalisé au laboratoire de génie microbiologique et applications de l’Université Mentouri de Constantine. Que Monsieur Abderrahmane Boulahrouf (Professeur à l’Université Mentouri de Constantine) trouve ici l’expression de ma très vive reconnaissance pour avoir accepter la responsabilité de ce travail. Je remercie Monsieur Amar Benguedouar (Professeur à l’Université Mentouri de Constantine) de m’avoir fait l’honneur de présider mon jury de thèse. Mes remerciements vont également à Monsieur Patrick Boiron (Professeur à l’Université Claude Bernard Lyon 1) pour la confiance et l’accueil chaleureux qui ma réservé à Lyon, ses précieux conseils et d’avoir accepté de se déplacer à Constantine pour participer à ce jury.
    [Show full text]
  • Download PDF (Inglês)
    http://dx.doi.org/10.21577/0103-5053.20190194 J. Braz. Chem. Soc., Vol. 30, No. 12, 2672-2680, 2019 Printed in Brazil - ©2019 Sociedade Brasileira de Química Article Structure and Absolute Configuration of Secondary Metabolites from Two Strains of Streptomyces chartreusis Associated with Attine Ants Humberto E. Ortega, a João M. Batista Jr., *,b,c Weilan G. P. Melo, a Gabriela T. de Paulaa and Mônica T. Pupo *,a aFaculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), 14040-903 Ribeirão Preto-SP, Brazil bDepartamento de Química, Universidade Federal de São Carlos (UFSCar), 13565-905 São Carlos-SP, Brazil cInstituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), 12231-280 São José dos Campos-SP, Brazil The antibiotic streptazolin (1), its E-isomer (2), along with the stereoisomers strepchazolin A (3) and strepchazolin B (4) and the inorganic compound cyclooctasulfur (5) were produced in solid culture by Streptomyces chartreusis ICBG377, which was isolated from the fungal garden of the leaf-cutter ant Acromyrmex subterraneus brunneus. This is the first time compound 2 is reported as a natural product. Compound 5, which showed antagonist activity against the specialized pathogenic fungus Escovopsis sp., was also produced by Streptomyces chartreusis ICBG323, isolated from the exoskeleton of winged male of Mycocepurus goeldii. The absolute configurations of 3 and 4 were confirmed by the combination of vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT) calculations. These results clearly demostrate the power of VCD to tell apart epimeric natural products. Compounds 1, 3 and 4 were produced by geographically distant but phylogenetically close strains, S.
    [Show full text]
  • Diversity and Antimicrobial Activity of Culturable Endophytic Actinobacteria Associated with Acanthaceae Plants
    R ESEARCH ARTICLE doi: 10.2306/scienceasia1513-1874.2020.036 Diversity and antimicrobial activity of culturable endophytic actinobacteria associated with Acanthaceae plants a,b, c a Wongsakorn Phongsopitanun ∗, Paranee Sripreechasak , Kanokorn Rueangsawang , Rungpech Panyawuta, Pattama Pittayakhajonwutd, Somboon Tanasupawatb a Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 Thailand b Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330 Thailand c Department of Biotechnology, Faculty of Science, Burapha University, Chonburi 20131 Thailand d National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani 12120 Thailand ∗Corresponding author, e-mail: [email protected] Received 20 Oct 2019 Accepted 20 Apr 2020 ABSTRACT: In this study, a total of 52 endophytic actinobacteria were isolated from 6 species of Acanthaceae plants collected in Thailand. Most actinobacteria were obtained from the root part. Based on 16S rRNA gene analysis and phylogenetic tree, these actinobacteria were classified into 4 families (Nocardiaceae, Micromonosporaceae, Streptosporangiaceae and Streptomycetaceae) and 6 genera including Actinomycetospora (1 isolate), Dactylosporangium (1 isolate), Nocardia (3 isolates), Microbispora (5 isolates), Micromonospora (10 isolates) and Streptomyces (32 isolates). The result of antimicrobial activity screening indicated that 8 isolates, including 1 Actinomycetospora and 7 Streptomyces,
    [Show full text]
  • Exploitation of Underused Streptomyces Through a Combined Metabolomics-Genomics Workflow to Enhance Natural Product Diversity
    BURNS, J. 2020. Exploitation of underused Streptomyces through a combined metabolomics-genomics workflow to enhance natural product diversity. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk Exploitation of underused Streptomyces through a combined metabolomics-genomics workflow to enhance natural product diversity. BURNS, J. 2020 The author of this thesis retains the right to be identified as such on any occasion in which content from this thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any original images only – re-use of any third-party content must still be cleared with the original copyright holder. This document was downloaded from https://openair.rgu.ac.uk Exploitation of underused Streptomyces through a combined metabolomics-genomics workflow to enhance natural product diversity Joshua Burns A thesis submitted in partial fulfilment of the requirements of the Robert Gordon University for the degree of Doctor of Philosophy This research programme was carried out in collaboration with NCIMB Ltd. May 2020 ACKNOWLEDGEMENTS IV LIST OF ABBREVIATIONS V ABSTRACT XI 1 INTRODUCTION 3 1.1 An overview of modern microbial antibiotic discovery 3 1.2 Rise of antimicrobial resistance 22 1.3 Streptomyces and specialised metabolism 28 1.4 Antimicrobial discovery using Streptomyces 37 1.5 Thesis aim 45 2 METABOLOMIC SCREENING OF S. COELICOLOR A3(2) 51 2.1 Introduction 51 2.2 Materials and Methods 60 2.3 Results and Discussion 71 2.4 Conclusions 93 3 METABOLOMICS-BASED PROFILING AND SELECTION OF UNEXPLOITED STREPTOMYCES STRAINS 97 3.1 Introduction 97 3.2 Materials and Methods 101 3.3 Results and Discussion 108 3.4 Conclusions 132 4 CHARACTERISATION OF THE S.
    [Show full text]
  • Rathayibacter Toxicus, Other Rathayibacter Species Inducing
    Phytopathology • 2017 • 107:804-815 • http://dx.doi.org/10.1094/PHYTO-02-17-0047-RVW Rathayibacter toxicus,OtherRathayibacter Species Inducing Bacterial Head Blight of Grasses, and the Potential for Livestock Poisonings Timothy D. Murray, Brenda K. Schroeder, William L. Schneider, Douglas G. Luster, Aaron Sechler, Elizabeth E. Rogers, and Sergei A. Subbotin First author: Department of Plant Pathology, Washington State University, Pullman, WA 99164; second author: Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844; third, fourth, fifth, and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702; and seventh author: California Department of Food and Agriculture, 3294, Meadowview Road, Sacramento, CA 95832-1448. Accepted for publication 8 April 2017. ABSTRACT Rathayibacter toxicus, a Select Agent in the United States, is one of six recognized species in the genus Rathayibacter and the best known due to its association with annual ryegrass toxicity, which occurs only in parts of Australia. The Rathayibacter species are unusual among phytopathogenic bacteria in that they are transmitted by anguinid seed gall nematodes and produce extracellular polysaccharides in infected plants resulting in bacteriosis diseases with common names such as yellow slime and bacterial head blight. R. toxicus is distinguished from the other species by producing corynetoxins in infected plants; toxin production is associated with infection by a bacteriophage. These toxins cause grazing animals feeding on infected plants to develop convulsions and abnormal gate, which is referred to as “staggers,” and often results in death of affected animals. R. toxicus is the only recognized Rathayibacter species to produce toxin, although reports of livestock deaths in the United States suggest a closely related toxigenic species may be present.
    [Show full text]
  • Abstract Characterization of Rhizospheric
    ABSTRACT CHARACTERIZATION OF RHIZOSPHERIC ACTINOMYCETES OF MAJOR CROP PLANTS AND THEIR PLANT GROWTH PROMOTING PROPERTIES UNDER JHUM FIELDS OF MIZORAM A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY MARCY D. MOMIN MZU REGISTRATION NO: 5005 of 2011 PH.D REGISTRATION NO: MZU/PH.D/1021 OF 31.05.2017 DEPARTMENT OF FORESTRY SCHOOL OF EARTH SCIENCES AND NATURAL RESOURCES MANAGEMENT 2020 CHARACTERIZATION OF RHIZOSPHERIC ACTINOMYCETES OF MAJOR CROP PLANTS AND THEIR PLANT GROWTH PROMOTING PROPERTIES UNDER JHUM FIELDS OF MIZORAM BY MARCY D. MOMIN DEPARTMENT OF FORESTRY SUPERVISOR Dr. S. K. TRIPATHI SUBMITTED IN PARTIAL FULLFILMENT OF THE DEGREE OF PHILOSOPHY IN FORESTRY OF MIZORAM UNIVERSITY MIZORAM i DECLARATION I Miss Marcy D. Momin, hereby declare that the subject matter of this thesis is the record of work done by me, that the contents of this thesis did not form basis of the award of any previous degree to me or to do the best of my knowledge to anybody else, and that the thesis has not been submitted by me for any research degree in any other University/Institute. This is being submitted to the Mizoram University for the degree of Doctor of Philosophy in the Department of Forestry. (Marcy D. Momin) (Head) (Supervisor) ii MIZORAM UNIVERSITY Department of Forestry Aizawl – 796004 Prof. S.K. Tripathi Fax: 0389-2330394 Email: [email protected] Mob:09436353773 CERTIFICATE This is to certify that the thesis entitled “Characterization of rhizospheric actinomycetes from major crop plants and their plant growth promoting properties under jhum fields of Mizoram” submitted to the Mizoram University, Aizawl for the award of the degree of Doctor of Philosophy in Forestry is the original work carried out by Miss Marcy D.
    [Show full text]