Exploitation of Underused Streptomyces Through a Combined Metabolomics-Genomics Workflow to Enhance Natural Product Diversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
341388717-Oa
ORIGINAL RESEARCH published: 16 May 2017 doi: 10.3389/fmicb.2017.00877 Streptomyces colonosanans sp. nov., A Novel Actinobacterium Isolated from Malaysia Mangrove Soil Exhibiting Antioxidative Activity and Cytotoxic Potential against Human Colon Cancer Cell Lines Jodi Woan-Fei Law 1, Hooi-Leng Ser 1, Acharaporn Duangjai 2, 3, Surasak Saokaew 1, 3, 4, Sarah I. Bukhari 5, Tahir M. Khan 1, 6, Nurul-Syakima Ab Mutalib 7, Kok-Gan Chan 8, Edited by: Bey-Hing Goh 1, 3* and Learn-Han Lee 1, 3* Dongsheng Zhou, Beijing Institute of Microbiology and 1 Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Epidemiology, China Malaysia, 2 Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand, 3 Center of Health Reviewed by: Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand, 4 Andrei A. Zimin, Faculty of Pharmaceutical Sciences, Pharmaceutical Outcomes Research Center, Naresuan University, Phitsanulok, 5 6 Institute of Biochemistry and Thailand, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of 7 Physiology of Microorganisms (RAS), Pharmacy, Absyn University Peshawar, Peshawar, Pakistan, UKM Medical Molecular Biology Institute, UKM Medical Centre, 8 Russia University Kebangsaan Malaysia, Kuala Lumpur, Malaysia, Division of Genetics and Molecular Biology, Faculty of Science, Antoine Danchin, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia Institut de Cardiométabolisme et Nutrition (ICAN), France Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest *Correspondence: Bey-Hing Goh soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and [email protected] to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. -
Kaistella Soli Sp. Nov., Isolated from Oil-Contaminated Soil
A001 Kaistella soli sp. nov., Isolated from Oil-contaminated Soil Dhiraj Kumar Chaudhary1, Ram Hari Dahal2, Dong-Uk Kim3, and Yongseok Hong1* 1Department of Environmental Engineering, Korea University Sejong Campus, 2Department of Microbiology, School of Medicine, Kyungpook National University, 3Department of Biological Science, College of Science and Engineering, Sangji University A light yellow-colored, rod-shaped bacterial strain DKR-2T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–35°C, at pH 6.0– 9.0, and at 0–1.5% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-2T was affiliated to the genus Kaistella, with the closest species being Kaistella haifensis H38T (97.6% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine as the principal polar lipids;iso-C15:0, antiso-C15:0, and summed feature 9 (iso-C17:1 9c and/or C16:0 10-methyl) as the main fatty acids; and menaquinone-6 as a major menaquinone. The DNA G + C content was 39.5%. In addition, the average nucleotide identity (ANIu) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain DKR-2T and phylogenically closest members were below the threshold values for species delineation. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-2T represents a novel species in the genus Kaistella, for which the name Kaistella soli sp. nov. is proposed with the type strain DKR-2T (= KACC 22070T = NBRC 114725T). [This study was supported by Creative Challenge Research Foundation Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1I1A1A01071920).] A002 Chitinibacter bivalviorum sp. -
DAFTAR PUSTAKA Abidin, Z. A. Z., A. J. K. Chowdhury
160 DAFTAR PUSTAKA AKTINOMISETES PENGHASIL ANTIBIOTIK DARI HUTAN BAKAU TOROSIAJE GORONTALO YULIANA RETNOWATI, PROF. DR. A. ENDANG SUTARININGSIH SOETARTO, M.SC; PROF. DR. SUKARTI MOELJOPAWIRO, M.APP.SC; PROF. DR. TJUT SUGANDAWATY DJOHAN, M.SC Universitas Gadjah Mada, 2019 | Diunduh dari http://etd.repository.ugm.ac.id/ Abidin, Z. A. Z., A. J. K. Chowdhury, N. A. Malek, and Z. Zainuddin. 2018. Diversity, antimicrobial capabilities, and biosynthetic potential of mangrove actinomycetes from coastal waters in Pahang, Malaysia. J. Coast. Res., 82:174–179 Adegboye, M. F., and O. O. Babalola. 2012. Taxonomy and ecology of antibiotic producing actinomycetes. Afr. J. Agric. Res., 7(15):2255-2261 Adegboye, M.,F., and O. O. Babalola. 2013. Actinomycetes: a yet inexhausative source of bioactive secondary metabolites. Microbial pathogen and strategies for combating them: science, technology and eductaion, (A.Mendez-Vila, Ed.). Pp. 786 – 795. Adegboye, M. F., and O. O. Babalola. 2015. Evaluation of biosynthesis antibiotic potential of actinomycete isolates to produces antimicrobial agents. Br. Microbiol. Res. J., 7(5):243-254. Accoceberry, I., and T. Noel. 2006. Antifungal cellular target and mechanisms of resistance. Therapie., 61(3): 195-199. Abstract. Alongi, D. M. 2009. The energetics of mangrove forests. Springer, New Delhi. India Alongi, D. M. 2012. Carbon sequestration in mangrove forests. Carbon Management, 3(3):313-322 Amrita, K., J. Nitin, and C. S. Devi. 2012. Novel bioactive compounds from mangrove dirived Actinomycetes. Int. Res. J. Pharm., 3(2):25-29 Ara, I., M. A Bakir, W. N. Hozzein, and T. Kudo. 2013. Population, morphological and chemotaxonomical characterization of diverse rare actinomycetes in the mangrove and medicinal plant rhizozphere. -
Estimation of Antimicrobial Activities and Fatty Acid Composition Of
Estimation of antimicrobial activities and fatty acid composition of actinobacteria isolated from water surface of underground lakes from Badzheyskaya and Okhotnichya caves in Siberia Irina V. Voytsekhovskaya1,*, Denis V. Axenov-Gribanov1,2,*, Svetlana A. Murzina3, Svetlana N. Pekkoeva3, Eugeniy S. Protasov1, Stanislav V. Gamaiunov2 and Maxim A. Timofeyev1 1 Irkutsk State University, Irkutsk, Russia 2 Baikal Research Centre, Irkutsk, Russia 3 Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Karelia, Russia * These authors contributed equally to this work. ABSTRACT Extreme and unusual ecosystems such as isolated ancient caves are considered as potential tools for the discovery of novel natural products with biological activities. Acti- nobacteria that inhabit these unusual ecosystems are examined as a promising source for the development of new drugs. In this study we focused on the preliminary estimation of fatty acid composition and antibacterial properties of culturable actinobacteria isolated from water surface of underground lakes located in Badzheyskaya and Okhotnichya caves in Siberia. Here we present isolation of 17 strains of actinobacteria that belong to the Streptomyces, Nocardia and Nocardiopsis genera. Using assays for antibacterial and antifungal activities, we found that a number of strains belonging to the genus Streptomyces isolated from Badzheyskaya cave demonstrated inhibition activity against Submitted 23 May 2018 bacteria and fungi. It was shown that representatives of the genera Nocardia and Accepted 24 September 2018 Nocardiopsis isolated from Okhotnichya cave did not demonstrate any tested antibiotic Published 25 October 2018 properties. However, despite the lack of antimicrobial and fungicidal activity of Corresponding author Nocardia extracts, those strains are specific in terms of their fatty acid spectrum. -
0041085-15082018101610.Pdf
Cronfa - Swansea University Open Access Repository _____________________________________________________________ This is an author produced version of a paper published in: The Journal of Antibiotics Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa41085 _____________________________________________________________ Paper: Zhang, B., Tang, S., Chen, X., Zhang, G., Zhang, W., Chen, T., Liu, G., Li, S., Dos Santos, L., et. al. (2018). Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China. The Journal of Antibiotics http://dx.doi.org/10.1038/s41429-018-0080-9 _____________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. http://www.swansea.ac.uk/library/researchsupport/ris-support/ Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China Binglin Zhang1,2,3, Shukun Tang4, Ximing Chen1,3, Gaoseng Zhang1,3, Wei Zhang1,3, Tuo Chen2,3, Guangxiu Liu1,3, Shiweng Li3,5, Luciana Terra Dos Santos6, Helena Carla Castro6, Paul Facey7, Matthew Hitchings7 and Paul Dyson7 1 Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. -
Genome-Based Classification of The
Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-021-01564-0 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune Ali B. Kusuma . Imen Nouioui . Michael Goodfellow Received: 26 January 2021 / Accepted: 18 March 2021 Ó The Author(s) 2021 Abstract A polyphasic study was designed to fatty acids. Whole-genome sequences generated for determine the taxonomic provenance of a strain, the isolate and Streptomyces albiflaviniger DSM isolate PRKS01-29T, recovered from an Indonesian 41598T and Streptomyces javensis DSM 41764T were sand dune and provisionally assigned to the Strepto- compared with phylogenetically closely related myces violaceusniger clade. Genomic, genotypic and strains, the isolate formed a branch within the S. phenotypic data confirmed this classification. The violaceusniger clade in the resultant phylogenomic isolate formed an extensively branched substrate tree. Whole-genome sequences data showed that mycelium which carried aerial hyphae that differen- isolate PRKS01-29T was most closely related to the tiated into spiral chains of rugose ornamented spores, S. albiflaviniger strain but was distinguished from the contained LL-as the wall diaminopimelic acid, MK-9 latter and from other members of the clade using (H6,H8) as predominant isoprenologues, phos- combinations of phenotypic properties and average phatidylethanolamine as the diagnostic phospholipid nucleotide identity and digital DNA:DNA hybridiza- and major proportions of saturated, iso- and anteiso- tion scores. Consequently, it is proposed that isolate PRKS01-29T (= CCMM B1303T = ICEBB-02T- = NCIMB 15210T) should be classified in the genus Supplementary Information The online version contains Streptomyces as Streptomyces sabulosicollis sp. -
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Thiazoline-Specific Amidohydrolase Purah Is the Gatekeeper of Bottromycin Biosynthesis
\ Sikandar, A., Franz, L., Melse, O., Antes, I. and Koehnke, J. (2019) Thiazoline-specific amidohydrolase PurAH is the gatekeeper of bottromycin biosynthesis. Journal of the American Chemical Society, 141(25), pp. 9748-9752. (doi: 10.1021/jacs.8b12231) The material cannot be used for any other purpose without further permission of the publisher and is for private use only. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/224167/ Deposited on 16 November 2020 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk The Thiazoline-Specific Amidohydrolase PurAH is the Gatekeeper of Bottromycin Biosynthesis Asfandyar Sikandar,†,‡ Laura Franz,†,‡ Okke Melse,§ Iris Antes,§ and Jesko Koehnke†,* †Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Cen- tre for Infection Research, Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany §Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Emil-Erlen- meyer-Forum 8, 85354 Freising, Germany Supporting Information Placeholder ABSTRACT: The ribosomally synthesized and post-transla- the a/b-hydrolase BotH, successive oxidative decarboxylation of tionally modified peptide (RiPP) bottromycin A2 possesses the thiazoline to a thiazole (BotCYP) and O-methylation of an potent antimicrobial activity. Its biosynthesis involves the en- aspartate (BotOMT) complete bottromycin biosynthesis. zymatic formation of a macroamidine, a process previously Scheme 1. (a) A gene cluster highly homologous in se- suggested to require the concerted efforts of a YcaO enzyme quence and organization to those of confirmed bottromy- (PurCD) and an amidohydrolase (PurAH) in vivo. -
Improved Taxonomy of the Genus Streptomyces
UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR. -
Diversity of Free-Living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Bacteriology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Dahal, Bibha, "Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota" (2016). Theses and Dissertations. 688. http://openprairie.sdstate.edu/etd/688 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DIVERSITY OF FREE-LIVING NITROGEN FIXING BACTERIA IN THE BADLANDS OF SOUTH DAKOTA BY BIBHA DAHAL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2016 iii ACKNOWLEDGEMENTS “Always aim for the moon, even if you miss, you’ll land among the stars”.- W. Clement Stone I would like to express my profuse gratitude and heartfelt appreciation to my advisor Dr. Volker Brӧzel for providing me a rewarding place to foster my career as a scientist. I am thankful for his implicit encouragement, guidance, and support throughout my research. This research would not be successful without his guidance and inspiration. -
Total Synthesis of (+)-Malbrancheamide B Utilizing a Stereoselective Domino Reaction Sequence to Establish the Bicyclo[2.2]Diazaoctane Core
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2013 Total Synthesis of (+)-Malbrancheamide B Utilizing a Stereoselective Domino Reaction Sequence to Establish the Bicyclo[2.2]diazaoctane Core Stephen William Laws College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Laws, Stephen William, "Total Synthesis of (+)-Malbrancheamide B Utilizing a Stereoselective Domino Reaction Sequence to Establish the Bicyclo[2.2]diazaoctane Core" (2013). Dissertations, Theses, and Masters Projects. Paper 1539626719. https://dx.doi.org/doi:10.21220/s2-rk6n-w245 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Total synthesis of (+)-malbrancheamide B utilizing a stereoselective domino reaction sequence to establish the bicyclo[2.2.2]diazaoctane core Stephen William Laws Richmond, VA Bachelor of Science, College of William and Mary, 2011 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Chemistry Department The College of William and Mary August, 2013 APPROVAL PAGE This Thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science Stephen William Laws Approved by thei^qmmittee, 07/2013 Committee Chair Assistant Professor Jonathan Scheerer, Chemistry The College of William and Mary ^ e S iA ^ G O K g y---- Professor Deborah Bebout, Chemistry The College of William and Mary / jProfessor Robert Hinkle, Chernrstry ' TheTho CollegePrkllono nfof \A/flliamWilliam anrland Mary Marx/ ABSTRACT The total enantioselective and formal racemic syntheses of malbrancheamide B, a bicyclo[2.2.2]diazaoctane-containing fungal metabolite are described. -
Microparticles Enhance the Formation of Seven Major Classes of Natural
Received: 4 March 2021 | Revised: 17 April 2021 | Accepted: 30 April 2021 DOI: 10.1002/bit.27818 ARTICLE Microparticles enhance the formation of seven major classes of natural products in native and metabolically engineered actinobacteria through accelerated morphological development Martin Kuhl1 | Christian Rückert3 | Lars Gläser1 | Selma Beganovic1 | Andriy Luzhetskyy2 | Jörn Kalinowski3 | Christoph Wittmann1 1Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany Abstract 2Department of Pharmaceutical Actinobacteria provide a rich spectrum of bioactive natural products and therefore Biotechnology, Saarland University, display an invaluable source towards commercially valuable pharmaceuticals and Saarbrücken, Germany 3Center for Biotechnology, Bielefeld agrochemicals. Here, we studied the use of inorganic talc microparticles (hydrous University, Bielefeld, Germany magnesium silicate, 3MgO·4SiO2·H2O, 10 µm) as a general supplement to enhance natural product formation in this important class of bacteria. Added to cultures of Correspondence Christoph Wittmann, Institute of Systems recombinant Streptomyces lividans, talc enhanced production of the macrocyclic Biotechnology, Saarland University, peptide antibiotic bottromycin A2 and its methylated derivative Met‐bottromycin Saarbrücken, Germany. −1 Email: [email protected] A2 up to 109 mg L , the highest titer reported so far. Hereby, the microparticles fundamentally affected metabolism. With 10 g L−1 talc, S. lividans grew to 40% Funding information