Abstract Characterization of Rhizospheric

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Characterization of Rhizospheric ABSTRACT CHARACTERIZATION OF RHIZOSPHERIC ACTINOMYCETES OF MAJOR CROP PLANTS AND THEIR PLANT GROWTH PROMOTING PROPERTIES UNDER JHUM FIELDS OF MIZORAM A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY MARCY D. MOMIN MZU REGISTRATION NO: 5005 of 2011 PH.D REGISTRATION NO: MZU/PH.D/1021 OF 31.05.2017 DEPARTMENT OF FORESTRY SCHOOL OF EARTH SCIENCES AND NATURAL RESOURCES MANAGEMENT 2020 CHARACTERIZATION OF RHIZOSPHERIC ACTINOMYCETES OF MAJOR CROP PLANTS AND THEIR PLANT GROWTH PROMOTING PROPERTIES UNDER JHUM FIELDS OF MIZORAM BY MARCY D. MOMIN DEPARTMENT OF FORESTRY SUPERVISOR Dr. S. K. TRIPATHI SUBMITTED IN PARTIAL FULLFILMENT OF THE DEGREE OF PHILOSOPHY IN FORESTRY OF MIZORAM UNIVERSITY MIZORAM i DECLARATION I Miss Marcy D. Momin, hereby declare that the subject matter of this thesis is the record of work done by me, that the contents of this thesis did not form basis of the award of any previous degree to me or to do the best of my knowledge to anybody else, and that the thesis has not been submitted by me for any research degree in any other University/Institute. This is being submitted to the Mizoram University for the degree of Doctor of Philosophy in the Department of Forestry. (Marcy D. Momin) (Head) (Supervisor) ii MIZORAM UNIVERSITY Department of Forestry Aizawl – 796004 Prof. S.K. Tripathi Fax: 0389-2330394 Email: [email protected] Mob:09436353773 CERTIFICATE This is to certify that the thesis entitled “Characterization of rhizospheric actinomycetes from major crop plants and their plant growth promoting properties under jhum fields of Mizoram” submitted to the Mizoram University, Aizawl for the award of the degree of Doctor of Philosophy in Forestry is the original work carried out by Miss Marcy D. Momin (Reg. No. MZU/Ph.D./1021 of 31.05.2017) under my supervision. I further certified that the thesis is the result of his own investigation and neither the thesis as a whole nor any part of it was submitted earlier to any University or Institute for the award of any degree. The candidate has fulfilled all the requirements laid down in the Ph.D. regulations of the Mizoram University. His passion oriented hard work for the completion of the research is to be duly appreciated. Date: Prof. S.K. Tripathi Place: (Supervisor) iii TO WHOM IT MAY COMCERN This is to certify that Miss Marcy D. Momin, a Ph.D Scholar, Registration No. MZU/Ph.D./1021 of 31.05.2017 has worked on the thesis entitled “Characterization of rhizospheric actinomycetes from major crop plants and their plant growth promoting properties under jhum fields of Mizoram”. He has fulfilled all criteria the mandatory publication. It is also certified that the scholar has been admitted in the department through an entrance test followed by an interview as per the regulation 2016. Head iv Acknowledgements I owe my deepest thanks and heartfelt gratitude to Dr. S. K. Tripathi Supervisor, Department of Forestry, Mizoram University, Aizawl, Mizoram, for his excellent guidance, assistance and sharing his precious treasure of knowledge throughout my Ph. D research. I express my heartiest gratefulness to Dr. Abhrajyoti Ghosh and his laboratory team, Dept. of Biochemistry, Bose Institute, Kolkata. I also extend my heartfelt thanks to Dr. Awadhesh Kumar and his laboratory team, Dept. of Horticulture and Dept. of Botany, Mizoram University. I am equally thankful to my parents and family who strongly encouraged and supports in my research. At last I am very thankful to Dr. Ngangbam Somen and Dr. Keshav Upadhyay, Miss Shreyosee Ghosh, Department of Forestry, Mizoram University and Mr. Abhijeet Mohanto, Dept. of Botany, Mizoram University and the other faculty members and my laboratory mates, who have shown great co-operation and helping all necessary things during my research, spared their valuable time and gave me constant support and necessary help. Place: Aizawl, Mizoram Marcy D. Momin Date: 02.11.2020 v List of abbreviations and symbols % Percent ºC Degree Celsius g Gram ml Millilitre m Metre mm Millimeter µm Micrometer µl Microlitre µg/ml Microgram per millilitre µg Microgram mM Millilimeters cm2 Centimeter Square w/v Weight/Volume rpm Revolutions per minute O.D. Optical Density nm Nanometer Mins Minutes CFU Colony Forming Unit CAS Chrome Azurol S P Phosphorus K Potassium vi N Nitrogen SOC Soil Organic Carbon NaCl Sodium Chloride DMSO Dimethyl sulfoxide ISP2 International StreptomycesProject 2 ISP1 International Streptomyces Project 1 IAA Indole-3-acetic acid SCA Starch Casein Agar CSM Cross Streak Media L-Tryptophan Levorotatory form of tryptophan KNO3 Potassium nitrate KH2PO4 Potassium dihydrogen phosphate MgSO4.7H2O Magnesium sulphate CaCO3 Calcium Carbonate FeSO4.7H2O Ferrous sulfate heptahydrate K2HPO4 Dipotassium phosphate FeCl3 Iron(III) chloride HClO4 Perchloric acid Ca3 (PO4)2 Calcium phosphate Fe Iron Zn Zinc FePO4 Iron(III) phosphate K-solubilizing bacteria Potassium solubilizing bacteria vii T Treatment C Control ANOVA Analysis of Variance LSD Least Significant Difference SA Surface Area AD Average Diameter AL Average Length FW Fresh Weight DW Dry Weight SE Standard Error AM Aerial Mycelium SM Substrate Mycelium PGP Plant growth-promoting PGPR Plant growth-promoting rhgizobacteria KVK Krishi Vigyan Kendra DNA Deoxyribonucleic acid 16S rRNA 16S ribosomal RNA PCR Polymerase Chain Reaction Tag-polymerase Thermus aquaticus Polymerase MEGA Molecular Evolutionary Genetics Analysis Blast N Basic Local Alignment Search Tool for Nucleotides viii NCBI National Center for Biotechnology Information ix CONTENTS Page numbers Inner cover page i Declaration ii Supervisor’s Certificate iii HOD Certificate iv Acknowledgements v List of abbreviations and vi-ix symbols Contents CHAPTER 1: INTRODUCTION 1-18 1.1.The rhizosphere: structure and function 1-2 1.2.Characteristics of actinomycetes 3-5 1.3.Functions of actinomycetes in the rhizosphere 5-6 1.4.Rhizospheric soil characteristics 7 1.5.Soil fertility in shifting cultivation and actinomycetes 8 1.6.North-Eastern (NE) region 8-9 1.7.Objectives of the study 9 References 10-18 CHAPTER 2: REVIEW OF LITERATURE 19-46 2.1.Microorganisms and their applications 19 i 2.2.General characteristics of actinomycetes 19-20 2.3.Isolation of actinomycetes from soil 20-21 2.4.Identification of actinomycetes 21 2.5. Plant growth promoters 22 2.5.1. Indole acetic acid (IAA) 22-23 2.5.2. Phosphate solubilization 23-24 2.5.3. Siderophores 24-25 2.5.4. Nitrogen fixation 25-26 2.5.5. Enzyme production 26 2.6. Rhizosphere actinomycetes 26-27 2.7. Plant-microbe-interaction 27-28 2.8.Physico-chemical soil characteristics 28-31 2.9. Significance of study 31 References 32-46 CHAPTER 3: MATERIALS AND METHODS 47-55 3.1. Study sites and the collection of samples 47 3.2. Isolation of rhizosphere actinomycetes from soil samples 48-49 3.3. Morphological and Microscopic characterization 49 3.4. In-vitro screening of rhizosphere actinomycetes isolates 49 for plant-growth promoting properties ii 3.4.1. Screening for phosphate solubilization 49 3.4.2. Indole-3-acetic acid (IAA) production 49-50 3.4.3. Siderophore production 50 3.4.4. Ammonia production 50 3.4.5. Nitrogen fixation 50 3.4.6. Amylase production 50 3.4.7. Catalase production 51 3.5. In-vivo screening of actinomycetes for PGP potential 51 3.5.1. Preparation of culture (AB832) 51 3.5.2. Pot experiment 51 3.5.3. Rhizospheric soil characteristics 52 3.6. Genomic DNA extraction, amplification of 16S r RNA gene and sequencing 52 3.7. Phylogenetic analysis 53 References 54-55 CHAPTER 4: RESULTS 56-82 4.1. Isolation of rhizopsheric actinomycetes 56 4.2. Characterization and identification of rhizospheric actinomycetal isolates 57-58 4.3. In-vitro screening of the isolated rhizospheric actinomycetes for plant-growth promoting potential 69 4.3.1. Phosphate solubilization 69 iii 4.3.2. Ammonia production 69 4.3.3. Siderophore production 70 4.3.4. Indole-3-acetic acid (IAA) production 70 4.3.5. Nitrogen fixation 72 4.3.6. Catalase test 71 4.3.7. Amylase production 72 4.4. In-vivo assessment of the selected rhizospheric actinomycetes 73 4.4.1. Seed germination assay 74 4.4.2. Effect of AB832 on plant growth promotion of beans 74-76 4.4.3. Effect of AB832 on plant growth promotion of maize 76-78 4.4.4. Effect of AB832 on rhizospheric soil properties 78-79 4.4.5. Analysis of rhizospheric soil properties of the study area 79-80 4.5. Identification of PGP potential actinomycetes strains by 16S rRNA gene sequencing 80-81 4.6. Phylogenetic analysis of PGP potential actinomycetes strains 81-82 CHAPTER 5: DISCUSSION 83-116 5.1. Problems of soil fertility in shifting cultivation and the role of actinomycetes 83 5.2. Actinomycetes association with plant rhizosphere and their ecological importance 83-84 5.3. Isolation of rhizospheric actinomycetes from crop plants of shifting cultivation 84-85 5.4. In-vitro screening of plant growth-promoting properties of the isolates 86 iv 5.4.1. Phosphate solubilization 87 5.4.2. Ammonia production 87-88 5.4.3. Siderophore production 88 5.4.4. IAA production 88 5.4.5. Nitrogen fixation 89 5.4.6. Amylase and catalase production 89-90 5.5. In-vivo assessment of the selected rhizospheric actinomycetes 90-91 5.5.1. Seed germination assay 91 5.5.2. Effect of root and shoot development 91-93 5.5.3. Effect on rhizospheric soil properties 93-95 5.6. Rhizospheric soil properties analysis of the study area 95 5.6.1. Nitrogen (N) 95-96 5.6.2. Phosphorus (N) 96-97 5.6.3. Potassium (K) 97-98 5.6.4.
Recommended publications
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Streptomyces Siamensis Sp. Nov., and Streptomyces Similanensis Sp. Nov., Isolated from Thai Soils
    The Journal of Antibiotics (2013) 66, 633–640 & 2013 Japan Antibiotics Research Association All rights reserved 0021-8820/13 www.nature.com/ja ORIGINAL ARTICLE Streptomyces siamensis sp. nov., and Streptomyces similanensis sp. nov., isolated from Thai soils Paranee Sripreechasak1, Atsuko Matsumoto2, Khanit Suwanborirux3, Yuki Inahashi2, Kazuro Shiomi2,4, Somboon Tanasupawat1 and Yoko Takahashi2,4 Three actinomycete strains, KC-038T, KC-031 and KC-106T, were isolated from soil samples collected in the southern Thailand. The morphological and chemotaxonomic properties of strains KC-038T, KC-031 and KC-106T were consistent with the characteristics of members of the genus Streptomyces, that is, the formation of aerial mycelia bearing spiral spore chains; the presence of LL-diaminopimelic acid in the cell wall, MK-9 (H6), MK-9 (H4) and MK-9 (H8) as the predominant menaquinones; and C16:0, iso-C16:0 and anteiso-C15:0 as the major cellular fatty acids. 16S rRNA gene sequence analyses indicated that strains KC-038T and KC-031 were highly similar (99.9%), and they were closely related to S. olivochromogenes NBRC 3178T (98.1%) and S. psammoticus NBRC 13971T (98.1%). Strain KC-106T was closely related to S. seoulensis NBRC 16668T (98.9%), S. recifensis NBRC 12813T (98.9%), S. chartreusis NBRC 12753T (98.7%) and S. griseoluteus NBRC 13375T (98.4%). The values of DNA–DNA relatedness between the isolates and the type strains of the related species were below 70%. On the basis of the polyphasic evidence, the isolates should be classified as two novel species, namely Streptomyces siamensis sp.
    [Show full text]
  • The Genome Analysis of the Human Lung-Associated Streptomyces Sp
    microorganisms Article The Genome Analysis of the Human Lung-Associated Streptomyces sp. TR1341 Revealed the Presence of Beneficial Genes for Opportunistic Colonization of Human Tissues Ana Catalina Lara 1,† , Erika Corretto 1,†,‡ , Lucie Kotrbová 1, František Lorenc 1 , KateˇrinaPetˇríˇcková 2,3 , Roman Grabic 4 and Alica Chro ˇnáková 1,* 1 Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 Ceskˇ é Budˇejovice,Czech Republic; [email protected] (A.C.L.); [email protected] (E.C.); [email protected] (L.K.); [email protected] (F.L.) 2 Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studniˇckova7, 12800 Prague 2, Czech Republic; [email protected] 3 Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 37005 Ceskˇ é Budˇejovice, Czech Republic 4 Faculty of Fisheries and Protection of Waters, University of South Bohemia, Zátiší 728/II, 38925 Vodˇnany, Czech Republic; [email protected] * Correspondence: [email protected] † Both authors contributed equally. ‡ Current address: Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5—piazza Università 5, 39100 Bozen-Bolzano, Italy. Citation: Lara, A.C.; Corretto, E.; Abstract: Streptomyces sp. TR1341 was isolated from the sputum of a man with a history of lung and Kotrbová, L.; Lorenc, F.; Petˇríˇcková, kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites K.; Grabic, R.; Chroˇnáková,A. associated with cytotoxicity and immune response modulation. In this study, we complement The Genome Analysis of the Human our previous results by identifying the genetic features associated with the production of these Lung-Associated Streptomyces sp.
    [Show full text]
  • Thèse Présentée Par : KITOUNI Mahmoud En Vue De L'obtention Du Diplôme De : DOCTORAT D'etat En : MICROBIOLOGIE APPLIQUEE
    République Algérienne Démocratique et Populaire Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Université Mentouri-Constantine Faculté des Sciences de la Nature et de la Vie Département des Sciences de la Nature et de la Vie N ° d’ordreN° : 84 IT.E / 2007 SERIE : 05 ISN / 2007 Thèse présentée par : KITOUNI Mahmoud En vue de l’obtention du Diplôme de : DOCTORAT D’ETAT en : MICROBIOLOGIE APPLIQUEE Intitulée : Isolement de bactéries actinomycétales productrices d’antibiotiques à partir d’écosystèmes extrêmes. Identification moléculaire des souches actives et caractérisation préliminapréliminaireire des substances élaborées Membres du jury : Mr BENGUEDOUAR A. Professeur Président Univ. Mentouri-Constantine Mr BOULAHROUF A. Professeur Directeur de thèse Univ. Mentouri-Constantine Mr BOIRON P. Professeur Examinateur Univ. Lyon 1 Mr KARAM N. Professeur Examinateur Univ. Essania-Oran Mr BELLAHCENE M. Maître de Examinateur Univ. Mostaganem Conférences Mr HADDI M.L. Maître de Examinateur Univ. Mentouri-Constantine Conférences Session 2007 REMERCIEMENTS Ce travail a été réalisé au laboratoire de génie microbiologique et applications de l’Université Mentouri de Constantine. Que Monsieur Abderrahmane Boulahrouf (Professeur à l’Université Mentouri de Constantine) trouve ici l’expression de ma très vive reconnaissance pour avoir accepter la responsabilité de ce travail. Je remercie Monsieur Amar Benguedouar (Professeur à l’Université Mentouri de Constantine) de m’avoir fait l’honneur de présider mon jury de thèse. Mes remerciements vont également à Monsieur Patrick Boiron (Professeur à l’Université Claude Bernard Lyon 1) pour la confiance et l’accueil chaleureux qui ma réservé à Lyon, ses précieux conseils et d’avoir accepté de se déplacer à Constantine pour participer à ce jury.
    [Show full text]
  • Redalyc.Antibacterial and Cytotoxic Bioactivity of Marine Actinobacteria
    Hidrobiológica ISSN: 0188-8897 [email protected] Universidad Autónoma Metropolitana Unidad Iztapalapa México Cardoso-Martínez, Faviola; Becerril-Espinosa, Amayaly; Barrila-Ortíz, Celso; Torres- Beltrán, Mónica; Ocampo-Alvarez, Héctor; Iñiguez-Martínez, Ana M.; Soria-Mercado, Irma E. Antibacterial and cytotoxic bioactivity of marine Actinobacteria from Loreto Bay National Park, Mexico Hidrobiológica, vol. 25, núm. 2, agosto, 2015, pp. 223-229 Universidad Autónoma Metropolitana Unidad Iztapalapa Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57844304008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Hidrobiológica 2015, 25 (2): 223-229 Antibacterial and cytotoxic bioactivity of marine Actinobacteria from Loreto Bay National Park, Mexico Bioactividad antibacterial y citotóxica de actinobacterias marinas del Parque Nacional Bahía de Loreto, México Faviola Cardoso-Martínez1, Amayaly Becerril-Espinosa1, Celso Barrila-Ortíz1, Mónica Torres-Beltrán2, Héctor Ocampo-Alvarez3, Ana M. Iñiguez-Martínez1 and Irma E. Soria-Mercado1 1 Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, km 103 Carretera Tijuana- Ensenada, Baja California, 22830, México 2 Department of Microbiology & Immunology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 Canada 3 Departamento de Hidrobiología, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, D.F. México 09340, México e-mail: [email protected] Cardoso-Martínez F., A. Becerril-Espinosa, C. Barrila-Ortíz, M. Torres-Beltrán, H. Ocampo-Álvarez, A.
    [Show full text]
  • Actinobacterial Diversity in Atacama Desert Habitats As a Road Map to Biodiscovery
    Actinobacterial Diversity in Atacama Desert Habitats as a Road Map to Biodiscovery A thesis submitted by Hamidah Idris for the award of Doctor of Philosophy July 2016 School of Biology, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom Abstract The Atacama Desert of Northern Chile, the oldest and driest nonpolar desert on the planet, is known to harbour previously undiscovered actinobacterial taxa with the capacity to synthesize novel natural products. In the present study, culture-dependent and culture- independent methods were used to further our understanding of the extent of actinobacterial diversity in Atacama Desert habitats. The culture-dependent studies focused on the selective isolation, screening and dereplication of actinobacteria from high altitude soils from Cerro Chajnantor. Several strains, notably isolates designated H9 and H45, were found to produce new specialized metabolites. Isolate H45 synthesized six novel metabolites, lentzeosides A-F, some of which inhibited HIV-1 integrase activity. Polyphasic taxonomic studies on isolates H45 and H9 showed that they represented new species of the genera Lentzea and Streptomyces, respectively; it is proposed that these strains be designated as Lentzea chajnantorensis sp. nov. and Streptomyces aridus sp. nov.. Additional isolates from sampling sites on Cerro Chajnantor were considered to be nuclei of novel species of Actinomadura, Amycolatopsis, Cryptosporangium and Pseudonocardia. A majority of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of six wild type microorganisms while those screened against Bacillus subtilis reporter strains inhibited sporulation and cell envelope, cell wall, DNA and fatty acid synthesis.
    [Show full text]
  • Genome-Based Taxonomic Classification of the Phylum
    ORIGINAL RESEARCH published: 22 August 2018 doi: 10.3389/fmicb.2018.02007 Genome-Based Taxonomic Classification of the Phylum Actinobacteria Imen Nouioui 1†, Lorena Carro 1†, Marina García-López 2†, Jan P. Meier-Kolthoff 2, Tanja Woyke 3, Nikos C. Kyrpides 3, Rüdiger Pukall 2, Hans-Peter Klenk 1, Michael Goodfellow 1 and Markus Göker 2* 1 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, 2 Department Edited by: of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Martin G. Klotz, Germany, 3 Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States Washington State University Tri-Cities, United States The application of phylogenetic taxonomic procedures led to improvements in the Reviewed by: Nicola Segata, classification of bacteria assigned to the phylum Actinobacteria but even so there remains University of Trento, Italy a need to further clarify relationships within a taxon that encompasses organisms of Antonio Ventosa, agricultural, biotechnological, clinical, and ecological importance. Classification of the Universidad de Sevilla, Spain David Moreira, morphologically diverse bacteria belonging to this large phylum based on a limited Centre National de la Recherche number of features has proved to be difficult, not least when taxonomic decisions Scientifique (CNRS), France rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft *Correspondence: Markus Göker genome sequences
    [Show full text]
  • Laccases from Actinomycetes for Lignocellulose Degradation
    Laccases from actinomycetes for lignocellulose degradation by Tshifhiwa Paris Mamphogoro A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae (M.Sc.) in the Department of Biotechnology, University of the Western Cape Supervisor: Prof. D.A. Cowan Co-Supervisor: Prof. I. M. Tuffin May 2012 Declaration I declare that “Laccases from actinomycetes for lignocellulose degradation” is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. ------------------------------------------------- Tshifhiwa Paris Mamphogoro i Abstract Lignocellulose has a complex structure composed mainly of lignin, hemicellulose and cellulose. Several enzymes are needed for the degradation of lignocellulose into simple sugars. Actinomycetes are known to produce laccases which are able to degrade lignin. Laccase activities were detected in actinomycete strains MS26 isolated from soil collected from the Zambian Copperbelt and DFNR17 isolated from soil collected from a New Zealand farm. Morphological studies showed that the strains produced extensively branched substrate mycelia and aerial hyphae. Micromorphological characteristics were consistent with the assignment of these strains to the genus Streptomyces. Isolates were found to be mesophiles, with growth occurring in a temperature range of 16 and 45°C. Optimal growth occurred at temperatures between 30 and 37oC. Analysis of the 16S rRNA gene sequences of the strains showed that strain MS26 had the highest sequence similarity (99%) to Streptomyces atrovirens strain NRRL B-16357 and Streptomyces viridodiastaticus strain IFO 13106. Strain DFNR17 had the highest 16S rRNA gene sequence similarity (99%) to Streptomyces althioticus strain KCTC 9752.
    [Show full text]
  • Streptomycetes As Biological Control Agents and Plant Growth-Promoting Bacteria
    UNIVERSITÀ DEGLI STUDI DI MILANO Department of food, environmental and nutritional sciences Corso di dottorato in Chimica, biochimica ed ecologia degli antiparassitari Philosophy Doctorate course in Chemistry, biochemistry and ecology of pesticides MARIA BONALDI PhD thesis Streptomycetes as Biological Control Agents and Plant Growth-Promoting Bacteria Settore scientifico disciplinare AGR/12 SUPERVISOR: Prof. Paolo Cortesi CO-SUPERVISOR: Prof. Marco Saracchi COORDINATOR: Prof. Daniele Daffonchio A.A. 2013/2014 ii Non basta guardare, occorre guardare con occhi che vogliono vedere, che credono in quello che vedono Galileo Galilei iii Abstract Developing no-chemical strategies for the control of soil borne pathogens is one of the major issues for the cultivation of leafy vegetables. The application of Biological Control Agents (BCAs) represents a valuable approach and nowadays some biocontrol products are available on the market for greenhouse and field applications. However, these products often show lack of consistency and variable results mainly due to the poor knowledge about their biology and modes of applications and how the agroecosystem components modulate their efficacy. Streptomycetes are soil inhabitants and have an important ecological role in the turn-over of organic matter; they can also establish beneficial relationships with plant roots enhancing host growth and protection against pathogens through the production of bioactive compounds, lytic enzymes, phytohormones and siderophores. This PhD project aimed to study streptomycetes as BCA and Plant Growth Promoting Bacteria for their use to manage soil borne fungal epidemics in horticulture. A collection of 200 endophytic streptomycete strains isolated from roots was used in this work. To be able to compare the activity of every strain against the pathogens, the dual culture assay was optimized for some representative fungal pathogens based on mycelium radial growth rate in vitro.
    [Show full text]
  • Antibiotic Resistance Genes in the Actinobacteria Phylum
    European Journal of Clinical Microbiology & Infectious Diseases (2019) 38:1599–1624 https://doi.org/10.1007/s10096-019-03580-5 REVIEW Antibiotic resistance genes in the Actinobacteria phylum Mehdi Fatahi-Bafghi1 Received: 4 March 2019 /Accepted: 1 May 2019 /Published online: 27 June 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum. Keywords Actinobacteria . Antibiotics . Antibiotics resistance . Antibiotic resistance genes . Phylum Brief introduction about the taxonomy chemical taxonomy: in this method, analysis of cell wall and of Actinobacteria whole cell compositions such as various sugars, amino acids, lipids, menaquinones, proteins, and etc., are studied [5]. (ii) One of the oldest phyla in the bacteria domain that have a Phenotypic classification: there are various phenotypic tests significant role in medicine and biotechnology is the phylum such as the use of conventional and specific staining such as Actinobacteria [1, 2]. In this phylum, DNA contains G + C Gram stain, partially acid-fast, acid-fast (Ziehl-Neelsen stain rich about 50–70%, non-motile (Actinosynnema pretiosum or Kinyoun stain), and methenamine silver staining; morphol- subsp.
    [Show full text]
  • Antimicrobial Agents Produced by Streptomyces
    Understanding microbial pathogens: current knowledge and educational ideas on antimicrobial research (Enrique Torres-Hergueta and A. Méndez-Vilas, Eds.) Antimicrobial agents produced by Streptomyces Naeima M.H. Yousef* Department of Botany & Microbiology, Faculty of Science, Assiut University, 71516 Assiut, Egypt * Corresponding author: email: [email protected] Streptomyces is a genus of Gram-positive, aerobic, filamentous and non-acid-fast actinobacteria that belongs to the family streptomycetaceae and represents the largest genus of actinobacteria. It is common in various environments; soil, composts, water (rivers and marine) and plants. The genus comprises more than 600 species with validated names. The most interesting features of Streptomyces is its ability to produce bioactive secondary metabolites, such as antifungal, antibacterial, antiviral, antitumor, anti-hypertensives, immunosuppressant, and several others. The genus produces over two-thirds of the clinically useful antibiotics of natural origin related to aminoglycosides, β-lactams, macrolides and tetracyclines. The production of most antibiotics is species specific, and the species produce them to compete with other microorganisms in the same habitats. In addition, these antibiotics protect the plant against microbial pathogens. The objectives of the current review are to shed light on the genus Streptomyces; diversity, general features and the role of this genus in production of highly valuable antimicrobial agents that commonly used in treatment of some virulent pathogens. Keywords: Streptomyces; Soil; Antibiotics; Plants; Antimicrobial agents 1. Streptomyces The name Streptomyces is derived from the Greek strepto- meaning twisted, alluding to this genus' chain- like spore production; myces means filament. The genus Streptomyces belongs to the family Streptomycetaceae and it represents the largest genus of Actinomycetes [1].
    [Show full text]