Spectral Linewidth in Microcavity Surface-Emitting Lasers

Total Page:16

File Type:pdf, Size:1020Kb

Spectral Linewidth in Microcavity Surface-Emitting Lasers Spectral linewidth in microcavity surface-emitting lasers lgor Vurgaftman and Jasprit Singh Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, The Unitiersity of Michigan, Ann Arbor; Michigan 48109-2122 (Received13 May 1994; acceptedfor publication 29 July 1994) The Schawlow-Townes expressionfor the laser linewidth predicts a substantial cw linewidth enhancementin microcavity lasers, in which a large fraction of spontaneousemission is directed into the lasing mode, in contrastwith conventionalsemiconductor lasers, in which the lasing mode acceptsonly a tiny fraction of spontaneouslyemitted photons.By performing a theoreticalanalysis of rigorous solutions of the wave equationin the surface-emittingcavity and of the band structure in the active region, it is shown that the increasein the linewidth is much slower than the increase in the spontaneous-emissionfactor p becauseof reductionsin the total spontaneousemission rate, the threshold carrier density, and the linewidth enhancementfactor and an increasedslope of the light-current characteristicobtained for the microcavity laser in steady state. Also much smaller driving currentsin a microcavity laser are requiredto achievethe samepower output comparedwith conventionalsemiconductor lasers, resulting in a linewidth of the order of severalhundred MHz at moderate driving currents for the former. We also discuss the various factors influencing the linewidth in microcavity and strainedquantum well lasersand the relation betweenlasing threshold and spectral linewidth in both macroscopicand microscopic cavity lasers. INTRODUCTION laser geometry.The efficiency of microcavity lasers is owed to the fact that a large fraction (>O.l) of spontaneouslyemit- The availability of single-mode semiconductor lasers ted photonsis directedinto the lasing mode comparedwith a made initial precise measurementsof the cw spectral width tiny fraction (-lo-‘) in conventional cavity laser diodes. of single-modeemission in laser diodes possible.’ Interest- When the fraction reachesunity the lasing threshold transi- ingly, the results indicated a factor-of-SOdiscrepancy with tion disappearsas the distinction between spontaneousand theoretical predictions based on the standard Schawlow- stimulatedemission becomes less relevant.The enhancement Townesexpression.2 In order to explain the experimentalre- of the spontaneousemission factor may be explainedby the sults, the theory of the linewidth in semiconductorlasers was formation of a resonancein the photon density of statesclose reexamined.3It was shown that additional linewidth broad- to the interbandtransitions in the active medium dictated by ening arisesfrom retardedamplitude fluctuations causedby the boundary conditions in the cavity. Although both static spontaneousemission induced refractive index variations. and dynamic characteristicsof microcavity surface-emitting Thesewere quantified in terms of the linewidth enhancement lasers with practically realizable dimensions have been factor CYequal to the ratio of the real and imaginary parts of studied,r5the issue of the linewidth in microcavity lasershas the differential susceptibility,4measurements of which5 pro- received relatively little attention. In this paper, a compara- duceda theoretically expectedvalue close to 5. Calculations tive study of microcavity surface-emitting lasers with of the linewidth enhancementfactor in quantumwell lasers strained quantumwell active regions and quantumwell and indicated a factor of 2-3 reduction6due to the decreased bulk DFB lasers is presentedusing a modification of the asymmetry of the differential gain aroundthe lasing energy. Schawlow-Townesformula with the linewidth enhancement Many refinementsof the original formalism have been pro- factor basedon the Langevm approach.r6 posed in order to account for the power-independent contribution7 and deviations from the inverse power proportionality.* Recently, the semiconductorlaser linewidth has beencalculated using a nonequilibrium Green’s-function FORMALISM formalism.’ The amountof linewidth broadeningin excessof The modified Schawlow-Townesformula as it is usually that predictedby the Schawlow-Townesexpression has been applied in theoretical fits of the linewidth measurementsis attributedto the effects of gain saturation,” currently thought couched in terms of the linewidth of the passive resonator to contribute only a small broadening.” Successfulapplica- and contains two parameterswhose precise values are not tion of the currently acceptedformalism to new types of directly measurable:the inversion factor (ratio of spontane- semiconductorlasers with quantum confinementof carriers ous emission rate per mode to the stimulated emission rate and photons is likely to serve as a test of its validity. per photon) and the linewidth enhancementfactor. From a Microcavity lasershave attractedconsiderable interest of theoretical perspective, the spontaneousemission rate per semiconductorlaser researchersof late that has been fueled mode can be readily calculated,and the presenceof the in- by the possibility of drastic thresholdreduction by meansof version factor is unnecessary.A modification of the linewidth modifying the optical-modedensity using a laser cavity with formula yields the following simple expression? all dimensionsof the order of the photon wavelength.r2The extent of spontaneousemission factor increaser3and thresh- --P&p old reduction14715has been examinedfor the surface-emitting 6Wsr4&cl+ a, 5636 J. Appl. Phys. 76 (IO), 15 November 1994 0021-6979/94/76(10)/5636/4/$6.00 Q 1994 American Institute of Physics where R,, is the total spontaneousemission rate, p the frac- internal reflection at the boundary between the semiconduc- tion of spontaneousemission coupled into the lasing mode, S tor and air.r3 The solutions in the longitudinal direction are the photon density in the lasing mode, and obtained via a transfer-matrix approach separatelyfor s- and p-polarized modes. Three classesof modes are recovered: (i) dXdn)ldn 0) resonant modes resulting from a quarter-wavelength phase a= dxr(n)ldn ’ slip in the center of the center of the cavity, (ii) leaky modes where the real and imaginary parts of the differential suscep- with wave vectors beyond the optical band gap induced by tibilities are functions of the carrier density and given by:4*6 the quasi-periodic mirror stacks, and (iii) horizontally propa- gating modes similar to the usual longitudinal modes in the dxrCn> d&E) WTZ edge-emitting laser cavity. Only the first class of modes is -= dE (3) dn I dn CE-EI)~-W/T~)~’ capable of lasing owing to the large outcoupling losses asso- ciated with the other two classes. The modes of the full dX&) = dE dgin,E) E-E, three-dimensional cavity are obtained as crosspoints of the (4) dn- I dn (E-E#+ (fil~,)~’ longitudinal and transversemodes, the derivation of which is outlined above. The leaky modes are essentially unconfined where dgldn is the differential gain, El the lasing energy, by the cavity and contribute a normalized 1D density of and T2 the collisional broadening time due to carrier-carrier and carrier-phonon interactions, taken to be 0.2 ps. If states for each transverse eigenmode. The resonant and propagating modes contribute a discrete mode each for each T a--@, Eq. (3) contains a delta function, and Eq. (4) is a representation of the fact that XR is the Kramers-Kronig transverse eigenvalue. A Lorentzian line shape is assumed (Hilbert) transform of xI . for discrete modes with the linewidth determined by the re- This formulation of the Schawlow-Townes expression flectivity associatedwith each mode class.‘4T’5The calcula- does not usually represent significant progress since one pa- tion of the band structure and optical transition-matrix ele- ments in strained quantum wells using the Kohn-Luttinger rameter nSp is replaced by another, p. The latter is difficult to compute exactly in a macroscopic cavity laser, primarily ow- Hamiltonian has also been discussed at length.17The spon- ing to its small magnitude. In strongly index-guided lasers, p taneous emission rate into a given mode can then be found has been estimatedI to equal 10e5. Nevertheless, p is ex- by restricting the integral of Eq. (5) over the appropriate pected to be approximately inversely proportional to the cav- wave-vector spread, inversely related to the cavity quality ity length since the number of allowed longitudinal modes is factor. The latter is determined from the reflectivities for the doubled when the cavity length is doubled. By an extension propagating and confined modes as discussedextensively in of the direct calculations of the electronic band structure in Ref. 13. The linewidth enhancementfactor can be readily the strained quantum well active region17and of the photon computed for a given carrier density in the quantum well density of states13-15in the surface-emitting microcavity, it is using Eqs. (2)-(4) and extending the numerical approach of possible, however, to determine p accurately.‘4*15The total Ref. 17. The laser rate equations16can be used to find the spontaneousemission rate is given by (in cgs units): output photon density versus the injected current density. The results for a microcavity surface-emitting laser with lat- 4rr2e2fi 1 eral widths of 0.5 and 1 ,um and a mirror reflectivity of 0.991 c j- dKc 12 -P:,n(k)12 for normal incidence~~areshown in Fig. 1. For comparison, ?ym;fio ii7 * m v,,i the light-current characteristic of a conventional surface- X~Xfiw) S[EW -E;(k) -~~lW-E;W)lI
Recommended publications
  • Amplified Spontaneous Emission and Lasing in Lead Halide
    applied sciences Review Amplified Spontaneous Emission and Lasing in Lead Halide Perovskites: State of the Art and Perspectives Maria Luisa De Giorgi and Marco Anni * Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0832-297540 Received: 9 October 2019; Accepted: 24 October 2019; Published: 29 October 2019 Abstract: Lead halide perovskites are currently receiving increasing attention due to their potential to combine easy active layers fabrication, tunable electronic and optical properties with promising performance of optoelectronic and photonic device prototypes. In this paper, we review the main development steps and the current state of the art of the research on lead halide perovskites amplified spontaneous emission and on optically pumped lasers exploiting them as active materials. Keywords: lead halide perovskite; thin film; nanocrystal; optical gain; amplified spontaneous emission; laser 1. Introduction In the frame of developing novel active materials for electronic, optoelectronic and photonic devices, lead halide perovskites are currently receiving great attention due to their capability to combine an easy realization procedure, widely tunable electronic properties and promising performance as active materials for a wide range of devices. In particular, perovskite-based solar cells demonstrated an impressively fast power conversion efficiency increase, from 3.8% in TiO2 sensitized photoelectrochemical cells [1], to the recent record value of 25.2% [2] in thin film solar cells. Lead halide perovskites also showed interesting photoluminescence (PL) and electroluminescence properties, which stimulated the research in light emitting devices, such as light emitting diodes (LEDs) [3].
    [Show full text]
  • Frontiers in Optics 2010/Laser Science XXVI
    Frontiers in Optics 2010/Laser Science XXVI FiO/LS 2010 wrapped up in Rochester after a week of cutting- edge optics and photonics research presentations, powerful networking opportunities, quality educational programming and an exhibit hall featuring leading companies in the field. Headlining the popular Plenary Session and Awards Ceremony were Alain Aspect, speaking on quantum optics; Steven Block, who discussed single molecule biophysics; and award winners Joseph Eberly, Henry Kapteyn and Margaret Murnane. Led by general co-chairs Karl Koch of Corning Inc. and Lukas Novotny of the University of Rochester, FiO/LS 2010 showcased the highest quality optics and photonics research—in many cases merging multiple disciplines, including chemistry, biology, quantum mechanics and materials science, to name a few. This year, highlighted research included using LEDs to treat skin cancer, examining energy trends of communications equipment, quantum encryption over longer distances, and improvements to biological and chemical sensors. Select recorded sessions are now available to all OSA members. Members should log in and go to “Recorded Programs” to view available presentations. FiO 2010 also drew together leading laser scientists for one final celebration of LaserFest – the 50th anniversary of the first laser. In honor of the anniversary, the conference’s Industrial Physics Forum brought together speakers to discuss Applications in Laser Technology in areas like biomedicine, environmental technology and metrology. Other special events included the Arthur Ashkin Symposium, commemorating Ashkin's contributions to the understanding and use of light pressure forces on the 40th anniversary of his seminal paper “Acceleration and trapping of particles by radiation pressure,” and the Symposium on Optical Communications, where speakers reviewed the history and physics of optical fiber communication systems, in honor of 2009 Nobel Prize Winner and “Father of Fiber Optics” Charles Kao.
    [Show full text]
  • Fundamental Science CLEO
    Executive Ballroom Executive Ballroom Executive Ballroom Executive Ballroom 210A 210B 210C 210D CLEO: Science CLEO: QELS- CLEO: QELS-Fundamental Science & Innovations Fundamental Science 08:00–10:00 08:00–10:00 08:00–10:00 08:00–10:00 QTh1A • Novel Phenomena in QTh1B • Active Plasmonics & CTh1C • Microresonators III QTh1D • Strong-field Complex Media Graphene Presider: Hiroshi Yasaka; Tohoku Interactions Presider: Vera Smolyaninova; Presider: Timothy Davis, University, Japan Presider: John NEES, University of Towson University, United States CSIRO Materials Science and Michigan, USA Engineering, Australia QTh1A.1 • 08:00 QTh1B.1 • 08:00 Invited CTh1C.1 • 08:00 QTh1D.1 • 08:00 1 Photonic Floquet Topological Insulators, Graphene Nano-optoelectronics, Frank Kop- Linearized Silicon Modulator, Jaime Cardenas , Probing Sub-Cycle Dynamics of Virtual States 1 2 2 3 1 Yonatan Plotnik , Julia Zeuner , Mikael C. pens1; 1ICFO - The Institute of Photonic Sci- Paul A. Morton , Jacob Khurgin , Austin Griffith , with Attosecond Transient Absorption, Michael 1 1 1 1 1,4 1 1 1,2 1 1 Rechtsman , Yaakov Lumer , Mordechai Segev , ences, Spain. In this talk I will review the new Carl B. Poitras , Michal Lipson ; Cornell Univer- Chini , Xiaowei Wang , Yan Cheng , Yi Wu , Di 2 1 2 3 3,4 3,5 3 Alexander Szameit ; Technion Israel Institute of and strongly emerging field of graphene nano- sity, USA; Morton Photonics, USA; Johns Hopkins Zhao , Dmitry Telnov , Shih-I Chu , Zenghu 2 4 1 1 Technology, Israel; Friedrich-Schiller-Universität, photonics. In particular, we use the remarkable University, USA; Kavli Institute at Cornell, USA. Chang ; CREOL and Dept. of Physics, University 2 Germany.
    [Show full text]
  • 1 Superfluorescent Emission in Electrically Pumped Semiconductor
    Superfluorescent emission in electrically pumped semiconductor laser D. L. Boiko1, X. Zeng1, T. Stadelmann1, S. Grossmann1, A. Hoogerwerf1, T. Weig2, U. T. Schwarz2, L. Sulmoni3, J.-M. Lamy3, N Grandjean3 1Centre Suisse d’Électronique et de Microtechnique SA (CSEM), CH-2002 Neuchâtel, Switzerland 2 Fraunhofer Institut für Angewandte Festkörperphysik IAF, 79108 Freiburg, Germany 3 Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland Abstract: We report superfluorescent (SF) emission in electrically pumped InGaN/InGaN QW lasers with saturable absorber. In particular, we observe a superlinear growth of the peak power of SF pulses with increasing amplitude of injected current pulses and attribute it to cooperative pairing of electron–hole (e-h) radiative recombinations. The phase transitions from amplified spontaneous emission to superfluorescence and then to lasing regime is confirmed by observing (i) abrupt peak power growth accompanied by spectral broadening, (ii) spectral shape with hyperbolic secant envelope and (iii) red shift of central wavelength of SF emission pulse. The observed red shift of SF emission is shown to be caused by the pairing of e-h pairs in an indirect cooperative X-transition. Key words: superfluorescence, superradiance, Cooper pairs Corresponding author: Dmitri Boiko , [email protected] 1 Dicke superradiance [1] or superfluorescence (SF) [2] with optical pulse peak power 2 proportional to the square of the number of inverted atoms ( I peak N ) is widely studied in atomic (and molecular) gases [3], offering homogeneous line broadening and long dephasing time T2. SF in solids is more challenging because of the short dephasing time.
    [Show full text]
  • 6-Kw/Cm2 UVC Laser Threshold in Optically Pumped Lasers
    Applied Physics Express LETTERS Related content - Improved carrier injection and confinement 2 in InGaN light-emitting diodes containing 6 kW/cm UVC laser threshold in optically pumped GaN/AlGaN/GaN triangular barriers Li-Wen Cheng, Jian Ma, Chang-Rui Cao et lasers achieved by controlling point defect al. - Optoelectronic device physics and formation technology of nitride semiconductors from the UV to the terahertz Theodore D Moustakas and Roberto To cite this article: Ronny Kirste et al 2018 Appl. Phys. Express 11 082101 Paiella - AlGaN-based laser diodes for the short- wavelength ultraviolet region Harumasa Yoshida, Masakazu Kuwabara, Yoji Yamashita et al. View the article online for updates and enhancements. This content was downloaded from IP address 152.7.255.201 on 15/03/2019 at 14:34 Applied Physics Express 11, 082101 (2018) https://doi.org/10.7567/APEX.11.082101 6kW/cm2 UVC laser threshold in optically pumped lasers achieved by controlling point defect formation Ronny Kirste1,2, Qiang Guo1, J. Houston Dycus1, Alexander Franke1, Seiji Mita1,2, Biplab Sarkar1, Pramod Reddy1,2, James M. LeBeau1, Ramon Collazo1, and Zlatko Sitar1,2 1Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7919, U.S.A. 2Adroit Materials, 2054 Kildaire Farm Road, Suite 205, Cary, NC 27518, U.S.A. Received June 22, 2018; accepted July 10, 2018; published online July 27, 2018 Optically pumped lasing from AlGaN/AlN multiple quantum wells grown on single-crystalline AlN substrates with lasing thresholds as low as 6kW/cm2 is demonstrated via the reduction of unintentional point defects in the active region and waveguide, which reduces the non-radiative recombination by 2 orders of magnitude.
    [Show full text]
  • Carrier Pinning by Mode Fluctuations in Laser Diodes J
    Carrier pinning by mode fluctuations in laser diodes J. O’Gorman AT&T Bell Laboratories, Murray Hill, New Jersey 07974 S. L. Chuang Department of Computer and Electrical Engineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801 A. F. J. Levi AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (Received 27 August 1992; accepted for publication 28 January 1993) We show that fluctuations into cavity modes give rise to substantial subthreshold carrier pinning in laser diodes. These fluctuations, which extract a current Ifl from the device, play an increasingly important role with increasing temperature. Recently we reported that photons fluctuating into trical contact to the back of the n-type InP substrate allows cavity modes of a laser diode at subthreshold drive current collection of nonguided light generated in the active region. contribute to the temperature dependence of the device.’ As-cleaved devices lase at wavelength A= 1.31 pm with We also demonstrated that, contrary to popular belief, Au- room temperature threshold currents in the range 9 mA ger recombination does not play a dominant role in deter- <Ith < 10 mA. In the temperature range 298 < T < 328 K mining the temperature dependence of threshold current in the temperature dependence of threshold current is well long wavelength (/2= 1.3 pm) laser diodes.” This assertion characterized by an activation temperature TO=42 K. has been independently confirmed.3 In this letter we report Figure 1 shows the measured window spontaneous the results of experiments in which we systematically ex- emission spectrum L W of an edge emitting LED.
    [Show full text]
  • Transient Dynamics of a CW-Pumped Nd:YAG Laser
    Transient dynamics of a CW-pumped Nd:YAG laser Edwin Ng∗;1 Department of 1Applied Physics, Stanford University ∗Report author: [email protected] Compiled March 19, 2015 We investigate the dynamics of a diode-pumped Nd:YAG laser at 1:06 µm under perturbation while operating in continuous-wave (CW) mode. We characterize the laser output and obtain a slope efficiency of 9% in single-mode operation. Various perturbations to the cavity are considered: optical chopping of the pump, noise-induced relaxation oscillations (RO), and perturbation by an acousto-optic modulator at both small and large amplitudes. With increasing perturbation, the laser undergoes a transition from linear response to spiking behavior and eventually Q-switching. The small-signal, linear RO response is used to estimate the upper-state lifetime of the Nd3+ ions in YAG to be 230 µs. c 2015 Optical Society of America OCIS codes: (140.3580) Lasers, solid state; (14.3530) Lasers, neodymium; (140.3540) Lasers, Q-switched 1. Introduction 2. Description of laser Solid-state lasers|with a gain medium consisting of a The pump is a 10 W Lightwave diode bar laser, liquid- dopant embedded in a crystalline or glass matrix|are a cooled, tuned by a Thorlabs LDC 3065 current con- highly versatile class of lasers with particular importance troller, and mounted on an optical rail and 3-axis stage. for applications requiring fast pulses or high power, in- A series of lenses brings the pump beam to a focus onto cluding nonlinear optics. Historically, one disadvantage a 20 mm Nd:YAG crystal rod ∼20 cm away, after which of solid-state lasers was the lack of an efficient pump the pump diverges and scatters.
    [Show full text]
  • Evolution of the Onset of Coherence in a Family of Photonic Crystal Nanolasers ͒ ͒ ͒ ͒ ͒ ͒ ͒ ͒ Y.-S
    APPLIED PHYSICS LETTERS 91, 031108 ͑2007͒ Evolution of the onset of coherence in a family of photonic crystal nanolasers ͒ ͒ ͒ ͒ ͒ ͒ ͒ ͒ Y.-S. Choi,a ,b M. T. Rakher,c K. Hennessy,a S. Strauf,c A. Badolato,a P. M. Petroff,a ,d ͒ ͒ ͒ D. Bouwmeester,c and E. L. Hua ,d University of California, Santa Barbara, California 93106 ͑Received 25 April 2007; accepted 31 May 2007; published online 19 July 2007͒ The authors report on the systematic variation of the onset of lasing in high-␤ photonic crystal nanolasers. A series of nanocavities has been designed to systematically approach the high-␤ devices by controlling the number of modes in the s-shell spectrum of InAs quantum dots at 4 K. The lasing action is confirmed by the observation of coherent-state transition to Poissonian photon statistics. The quantitative analysis reveals the high ␤ of 0.69, 0.44, and 0.19 for the nanocavities with one, two, and three modes, respectively. By mapping the observed lasing transitions to ␤ factors, the authors demonstrate the interplay of ␤ and lasing performance. © 2007 American Institute of Physics. ͓DOI: 10.1063/1.2751131͔ Recent advances in the ability to design and fabricate ergy, high-Q even ͑e#͒ modes, we specified a lattice con- active nanocavities with tailored modal characteristics1–3 stant of ϳ260 nm, a hole radius of ϳ65 nm, and a thickness have enabled the nanolasers with very high-␤ factors, mean- of ϳ126 nm. Microphotoluminescence ͑␮-PL͒ measure- ing virtually all spontaneous emission is directed into the ments were carried out at 4 K using a He cryostat and a lasing mode.
    [Show full text]
  • Whispering-Gallery-Mode Lasing in Polymeric Microcavities Whispering-Gallery-Mode Lasing in Polymeric Microcavities
    Tobias Großmann Whispering-Gallery-Mode Lasing in Polymeric Microcavities Whispering-Gallery-Mode Lasing in Polymeric Microcavities Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN von der Fakult¨at fur¨ Physik des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Dipl.-Phys. Tobias Großmann aus Chang-Hua/Taiwan Tag der mundlichen¨ Prufung¨ : 23.11.2012 Referent : Prof. Dr. Heinz Kalt Korreferent : Priv.-Doz. Dr.-Ing. Timo Mappes Prufungskommission:¨ Prof. Dr. W. Wulfhekel Prof. Dr. H. Kalt Priv.-Doz. Dr.-Ing. T. Mappes Prof. Dr. A. Mirlin Prof. Dr. W. de Boer Prof. Dr. J. Kuhn¨ Karlsruher Institut fur¨ Technologie (KIT) Institut fur¨ Angewandte Physik Wolfgang-Gaede-Straße 1 76131 Karlsruhe http://www.aph.kit.edu/kalt Tobias Großmann [email protected] This work was performed in close collaboration between the Institut fur¨ Angewandte Physik and the Institut fur¨ Mikrostrukturtechnik at the Karlsruher Institut fur¨ Tech- nologie (KIT). Financial support was provided by the Deutsche Telekom Stiftung, the Karlsruhe School of Optics and Photonics (KSOP), the Karlsruhe House of Young Scientists (KHYS), and the DFG Research Center for Functional Nanostruc- tures (CFN), by a grant from the Ministry of Science, Research, and the Arts of Baden-Wurttemberg¨ (Grant No. Az:7713.14-300) and by the German Federal Min- istry for Education and Research BMBF (Grant No. FKZ 13N8168A). Contents 1 Introduction1 2 Microgoblets as whispering galleries 5 2.1 Whispering-gallery modes in optical microcavities ........... 5 2.1.1 Classification of WGMs ..................... 8 2.1.2 Optical properties of microcavities ............... 8 2.2 Passive high-Q microgoblet resonators ................. 14 2.2.1 Lithographic fabrication of microgoblets ...........
    [Show full text]
  • Adaptive Pumping for Spectral Control of Random Lasers Nicolas Bachelard1, Sylvain Gigan1, Xavier Noblin2, Patrick Sebbah1*
    Adaptive pumping for spectral control of random lasers Nicolas Bachelard1, Sylvain Gigan1, Xavier Noblin2, Patrick Sebbah1* 1Institut Langevin, ESPCI ParisTech, CNRS UMR7587, 1 rue Jussieu, 75238 Paris cedex 05, France 2Laboratoire de Physique de la Matière Condensée, Université de Nice-Sophia Antipolis, CNRS UMR 7336, Parc Valrose, 06108 Nice Cedex 02, France *Correspondence to: [email protected] A laser is not necessarily a sophisticated device: Pumping energy into an amplifying medium randomly filled with scatterers, a powder for instance, makes a perfect "random laser." In such a laser, the absence of mirrors greatly simplifies laser design, but control over emission directionality or frequency tunability is lost, seriously hindering prospects1-4 for this otherwise simple laser. Lately, we proposed a novel approach to harness random lasers5, inspired by spatial shaping methods recently employed for coherent light control in complex media6. Here, we experimentally implement this method in an optofluidic random laser7 where scattering is weak and modes extend spatially and strongly overlap, making individual selection a priori impossible. We show that control over laser emission can indeed be regained even in this extreme case by actively shaping the spatial profile of the optical pump. This unique degree of freedom, which has never been exploited, allows selection of any desired wavelength and shaping of lasing modes, without prior knowledge of their spatial distribution. Mode selection is achieved with spectral selectivity down to 0.06nm and more than 10dB side-lobe rejection. This experimental method paves the way towards fully tunable and controlled random lasers and can be transferred to other class of lasers.
    [Show full text]
  • Transition from Amplified Spontaneous Emission to Laser Action in Strongly
    PHYSICAL REVIEW E VOLUME 61, NUMBER 2 FEBRUARY 2000 Transition from amplified spontaneous emission to laser action in strongly scattering media H. Cao and J. Y. Xu Department of Physics and Astronomy, Materials Research Center, Northwestern University, Evanston, Illinois 60208-3112 S.-H. Chang and S. T. Ho Department of Electrical and Computer Engineering, Materials Research Center, Northwestern University, Evanston, Illinois 60208-3118 ͑Received 12 July 1999͒ In an active random medium, the combination of multiple scattering with light amplification may lead to random laser action. However, it is crucial but sometimes difficult to distinguish between amplified spontane- ous emission and lasing. By varying the amount of scattering in an amplifying random medium, we have observed the transition from amplified spontaneous emission to lasing with coherent feedback. We have found out when the transition occurs through the measurement of the scattering mean free path. Our numerical simulation based on the direct solution to Maxwell equations clearly illustrates the transition from light amplification to laser oscillation due to an increase of the amount of scattering in active random medium. PACS number͑s͒: 42.25.Fx, 71.55.Jv Since the first observation of laserlike emission from laser from clustering, the solution, contained in a flask, is shaken dye solution containing microparticles ͓1͔, there has been in an ultrasonic cleaner for 20 min right before the photolu- considerable debate on whether it is amplified spontaneous minescence experiment. The frequency-doubled output (␭ emission ͑ASE͒ or true laser emission ͓2͔. Although a dra- ϭ532 nm) of a mode-locked Nd:YAG laser ͑10 Hz repeti- matic spectral narrowing occurs above a pump threshold, tion rate, 25 ps pulse width͒ is used as pump light.
    [Show full text]
  • Pump Spot Size Dependent Lasing Threshold in Organic Semiconductor DFB Lasers Fabricated Via Nanograting Transfer
    Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer Xin Liu,1,2,3 Sönke Klinkhammer,1,2,3 Ziyao Wang,1,3,4 Tobias Wienhold,3 Christoph Vannahme,1,3,5 Peter-Jürgen Jakobs,3 Andreas Bacher,3 Alban Muslija,3 Timo Mappes,3,6 and Uli Lemmer1,2,3,* 1Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany 2DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany 3Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany 4Currently with Philips Technologie GmbH, Aachen, Germany 5Currently with DTU Nanotech, Lyngby, Denmark 6Currently with Carl Zeiss AG, Jena, Germany *[email protected] Abstract: Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different excitation areas. ©2013 Optical Society of America OCIS codes: (140.3490) Lasers, distributed-feedback; (140.7300) Visible lasers; (140.3430) Laser theory.
    [Show full text]