Uddeholm Dievar® ®

Total Page:16

File Type:pdf, Size:1020Kb

Uddeholm Dievar® ® Uddeholm Dievar® ® UDDEHOLM DIEVAR UDDEHOLM DIEVAR® Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. The chemical composition and the very latest in production technique make the property profile outstanding. The combination of excellent toughness and very good hot strength gives Uddeholm Dievar a very good heat checking- and gross cracking resistance. The steel is suitable in high demand hot work applications like die casting, forging and extrusion. The property profile makes it also suit- able in other applications, e.g. plastics and High Performance Steel. Uddeholm Dievar offers the potential for significant improvements in die life, thereby improving the tooling economy. © UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose. Classified according to EU Directive 1999/45/EC For further information see our “Material Safety Data Sheets”. Edition 9, 10.2017 2 UDDEHOLM DIEVAR GENERAL The unique properties profile for Uddeholm Dievar makes it the best choice for die cast- Uddeholm Dievar is a high performance ing, forging and extrusion. chromium-molybdenum-vanadium alloyed hot work tool steel which offers a very good resistance to heat checking, gross cracking, hot wear and plastic deformation. Uddeholm HOT WORK Dievar is characterized by: • Excellent toughness and ductility in all APPLICATIONS directions Heat checking is one of the most common • Good temper resistance failure mechanism e.g. in die casting and now • Good high-temperature strength days also in forging applications. Uddeholm • Excellent hardenability Dievar’s superior ductility yields the highest • Good dimensional stability throughout possible level of heat checking resistance. heat treatment and coating operations With Uddeholm Dievar’s outstanding tough- ness and hardenability the resistance to heat Typical C Si Mn Cr Mo V checking can further be improved. If gross analysis % 0.35 0.2 0.5 5.0 2.3 0.6 cracking is not a factor then a higher working Standard hardness can be utilized (+2 HRC). specification None Regardless of the dominant failure mecha- Delivery condition Soft annealed to approx. 160 HB nism; e.g. heat checking, gross cracking, hot Colour code Yellow/grey wear or plastic deformation. Uddeholm Dievar offers the potential for significant improve- ments in die life and then resulting in better tooling economy. IMPROVED TOOLING Uddeholm Dievar is the material of choice PERFORMANCE for the high demand die casting-, forging- and Uddeholm Dievar is a premium hot work tool extrusion industries. steel developed by Uddeholm. Uddeholm Dievar is produced using the Electro-Slag- TOOLS FOR DIE CASTING Refining (ESR) technique. The ESR process gives Dievar a high level of homogeneity and Aluminium, Part magnesium alloys cleanliness which results in a high perfor- Dies 44–50 HRC mance hot work tool steel of the highest quality. The Uddeholm Dievar development has yielded a die steel with the ultimate resist- ance to heat checking, gross cracking, hot TOOLS FOR EXTRUSION wear and plastic deformation. Copper, Aluminium, Part copper alloys magnesium alloys HRC HRC Dies – 46–52 Liners, dummy blocks, stems 46–52 44–52 TOOLS FOR HOT FORGING Part Steel, Aluminium Inserts 44–52 HRC 3 UDDEHOLM DIEVAR PROPERTIES TENSILE PROPERTIES AT ELEVATED TEMPERATURE The reported properties are representative of samples which have been taken from the SHORT TRANSVERSE DIRECTION. centre of a 610 x 203 mm (24" x 8") bar. Rm, Rp0,2 A5, Z Unless otherwise is indicated all specimens ksi MPa % have been hardened at 1025°C (1875°F), 290 2000 100 quenched in oil and tempered twice at 615°C 261 1800 Z 90 232 1600 80 (1140°F) for two hours; yielding a working 203 1400 70 hardness of 44–46 HRC. 174 1200 Rm 60 145 1000 50 116 800 Rp0,2 40 PHYSICAL PROPERTIES 87 600 30 DATA AT ROOM AND ELEVATED 58 400 20 TEMPERATURES 29 200 A5 10 100 200 300 400 500 600 700°C Temperature 20°C 400°C 600°C (68°F) (750°F) (1110°F) 210 390 570 750 930 1110 1290°F Density, Testing temperature kg/m3 7 800 7 700 7 600 lbs/in3 0.281 0.277 0.274 Modulus of elasticity MPa 210 000 180 000 145 000 Minimum average unnotched impact psi 30.5 x 106 26.1 x 106 21.0 x 106 ductility is 300 J (220 ft lbs) in the short trans- Coefficient of verse direction at 44–46 HRC. thermal expansion per °C from 20°C – 12.7 x 10–6 13.3 x 10–6 per °F from 68°F – 7.0 x 10–6 7.3 x 10–6 Thermal conductivity CHARPY V-NOTCH IMPACT TOUGHNESS W/m °C – 31 32 AT ELEVATED TEMPERATURE Btu in/(ft2h°F) – 216 223 SHORT TRANSVERSE DIRECTION. Impact energy ft. lbs J MECHANICAL PROPERTIES 102 140 TENSILE PROPERTIES AT ROOM TEMPERA- 88 120 TURE, SHORT TRANSVERSE DIRECTION 45 HRC 73 100 Hardness 44 HRC 48 HRC 52 HRC 58 80 47 HRC Tensile 44 60 strength 1480 MPa 1640 MPa 1900 MPa Rm 96 tsi 106 tsi 123 tsi 30 40 214 000 psi 237 000 psi 275 000 psi Yield 15 20 50 HRC strength 1210 MPa 1380 MPa 1560 MPa R 0,2 8 tsi 89 tsi 101 tsi p 50 100 150 200 250 300 350 400 450°C 175 000 ps 200 000 psi 226 000 psi 120 210 300 390 480 570 660 750 840°F Elongation Testing temperature A5 13 % 13 % 12,5 % Reduction of area Z 55 % 55 % 52 % 4 UDDEHOLM DIEVAR TEMPER RESISTANCE STRESS RELIEVING The specimens have been hardened and After rough machining the tool should be tempered to 45 HRC and then held at different heated through to 650°C (1200°F), holding temperatures from 1 to 100 hours. time 2 hours. Cool slowly to 500°C (930°F), then freely in air. Hardness, HRC 50 500°C HARDENING (930°F) 45 Preheating temperature: 600–900°C (1110– 550°C 1650°F). Normally a minimum of two preheats, (1020°F) 40 the first in the 600–650°C (1110–1200°F) range, and the second in the 820–850°C 35 (1510–1560°F) range. When three preheats 600°C are used the second is carried out (1110°F) 30 at 820°C (1510°F) and the third at 900°C 650°C (1650°F). (1200°F) 25 Austenitizing temperature: 1000–1030°C 0,1 1 10 100 (1830–1890°F). Time, h Temperature Soaking time* Hardness before °C °F minutes tempering 1000 1830 30 52 ±2 HRC 1025 1875 30 55 ±2 HRC * Soaking time = time at hardening temperature after the HEAT TREATMENT tool is fully heated through – GENERAL Protect the tool against decarburization and RECOMMENDATIONS oxidation during austenitizing. SOFT ANNEALING Protect the steel and heat through to 850°C (1560°F). Then cool in furnace at 10°C (20°F) per hour to 600°C (1110°F), then freely in air. CCT GRAPH Austenitizing temperature 1025°C (1875°F). Holding time 30 minutes. °F °C 1100 2000 Austenitizing temperature 1025°C Holding time 30 min. 1800 1000 Ac 1f 900 = 890 °C 1600 Carbides Ac 1s 800 = 820 1°C 1400 Pearlite 700 1200 Cooling Hard- 600 curve ness T800–500 No. HV 10 (sec) 1000 500 1 681 1,5 800 400 2 627 15 Bainite 3 620 280 Ms 600 300 4 592 1 248 5 566 3 205 400 200 6 488 5 200 Martensite Mf 7 468 10 400 200 100 8 464 20 800 1 2 3 4 5 6 7 8 9 9 405 41 600 1 10 100 1 000 10 000 100 000 Seconds 1 10 100 1 00 0 Minutes 1 10 100 Hours Air cooling of 0.2 1.5 10 90 600 bars, Ø mm 5 UDDEHOLM DIEVAR HARDNESS, GRAIN SIZE AND TEMPERING RETAINED AUSTENITE AS FUNCTIONS OF Choose the tempering temperature accord- AUSTENITIZING TEMPERATURE ing to the hardness required by reference to Grain the tempering graph below. Temper minimum size ASTM Hardness, HRC Retained austenite % three times for die casting dies and minimum 10 60 twice for forging and extrusion tools with Grain size intermediate cooling to room temperature. 8 58 Holding time at temperature minimum 2 hours. Hardness 6 56 Tempering in the range of 500–550°C (930– 1020°F) for the intended final hardness will 4 54 result in a lower toughness. Retained austenite 52 2 TEMPERING GRAPH 50 0 Hardness, HRC Retained austenite, % 990 1000 1010 1020 1030 1040 1050 °C 60 1815 1830 1850 1870 1885 1905 1920 °F Austenitizing temperature 1025°C (1875°F) Austenitizing temperature 55 50 QUENCHING 1000°C (1830°F) 45 Temper As a general rule, quench rates should be as embrittlement rapid as possible. Accelerated quench rates 40 6 are required to optimize tool properties speci- fically with regards to toughness and resist- 35 4 ance to gross cracking. However, risk of Retained austenite excessive distortion and cracking must be 30 2 considered. 25 QUENCHING MEDIA 100 200 300 400 500 600 700°C 210 390 570 750 930 1110 1290°F The quenching media should be capable of Tempering temperature (2 + 2h) creating a fully hardened microstructure. Different quench rates for Uddeholm Dievar Above tempering curves are obtained after heat treat- ment of samples with a size of 15 x 15 x 40 mm, cooling are defined by the CCT graph, page 5.
Recommended publications
  • Download/Pdf/ 71319287.Pdf (Accessed on 13 July 2020)
    metals Article Optimization of PWHT of Simulated HAZ Subzones in P91 Steel with Respect to Hardness and Impact Toughness Gorazd Lojen * and Tomaž Vuherer Faculty of mechanical engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-2-220-7864 Received: 30 July 2020; Accepted: 4 September 2020; Published: 9 September 2020 Abstract: Appropriate post weld heat treatment (PWHT) is usually obligatory when creep resistant steels are welded for thermal power plant components that operate at elevated temperatures for 30-40 years. The influence of different PWHTs on the microstructure, hardness, and impact toughness of simulated heat affected zone (HAZ) subzones was studied. Thereby, coarse grained HAZ, two different fine grained HAZ areas, and intercritical HAZ were subjected to 20 different PWHTs at temperatures 740–800 ◦C and durations 0.5–8 h. It was found that the most commonly recommended PWHT, of 3 h or less at 760 ◦C, is insufficient with respect to the hardness and impact toughness of coarse grained HAZ. To obtain a Vickers hardness 265 HV and impact toughness at least equal to ≤ the impact toughness of the base metal (192 J) in the coarse grained HAZ, it took 8 h at 740 ◦C, 4 h at 760 ◦C, more than 1 h at 780 ◦C, and 0.5 h and 800 ◦C. Even after 8 h at 800 ◦C, mechanical properties were still within the target range. The most recommendable post weld heat treatments at 780 ◦C for 1.2–2 h or at 760 ◦C for 3–4 h were identified.
    [Show full text]
  • Material Modelling for Simulation of Heat Treatment
    2003:07 LICENTIATE THESIS Material Modelling for Simulation of Heat Treatment Henrik Alberg Licentiate Thesis Department of Applied Physics and Mechanical Engineering Division of Computer Aided Design 2003:07 - ISSN: 1402-1757 - ISRN: LTU-LIC--03/07--SE II Preface This research has been carried out at Computer Aided Design at Luleå University of Technology in close cooperation with Volvo Aero in Trollhättan, where my workplace is. I would like to thank my supervisor Professor Lars-Erik Lindgren for all discussions, the critical review of my work and for your great enthusiasm. Thank you Lars-Erik! I would also like to thank Dr. Henrik Runnemalm at Volvo Aero who has made it possible for me to work in Trollhättan and for the discussion and advises. Thank you Henrik! Daniel Berglund, my colleague and co-author for two papers. Thank you Daniel for the encouragement in the beginning of my research, the discussions, advises and nevertheless all the laughs! The financial support has been provided by the MMFSC1-project a European Union funded project within the 5th framework and Luleå University of Technology. All are gratefully acknowledge. My daily work has been carried out at the division of Advanced Manufacturing Technology at Volvo Aero. I would like to thank all persons at the division for a good working environment and for sharing the your knowledge in many different areas. A special thanks to the simulation group for the many good discussions and ideas. Finally but not the less I would like to thank my girlfriend Viktoria Rönnqvist for all encouragement, happiness and for just being you.
    [Show full text]
  • Effect of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Arc Welded Medium Carbon Steel
    Nigerian Journal of Technology (NIJOTECH) Vol. 35, No. 2, April 2016, pp. 337 – 343 Copyright© Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com http://dx.doi.org/10.4314/njt.v35i2.14 EFFECT OF POST-WELD HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ARC WELDED MEDIUM CARBON STEEL M. R. Dodo1,*, T. Ause2, M. A. Adamu3 and Y. M. Ibrahim4 1,2 DEPT. OF METALLURGICAL AND MATERIALS ENGINEERING, AHMADU BELLO UNIV. ZARIA, KADUNA STATE. NIGERIA. 3,4 DEPARTMENT OF MECHANICAL ENGINEERING, AHMADU BELLO UNIVERSITY ZARIA, KADUNA STATE. NIGERIA. E-mail addresses: [email protected], 2 [email protected], 3 [email protected], 4 [email protected] ABSTRACT Effect of post- weld heat treatment on the microstructure and mechanical properties of arc welded medium carbon steel was investigated. Medium carbon steel samples were butt- welded by using the shielded metal arc welding technique and, thereafter, heat treated by annealing, normalising and quench hardening in water. The microstructure of the as- welded and post- weld heated samples was characterised by means of optical microscopy while the hardness, toughness and tensile properties of the samples were determined by using Indentec universal hardness testing machine, Izod impact testing machine and Denison tensile testing machine respectively. The results of the optical microscopic test show that fine grains of pearlite in ferrite were obtained in normalized samples and martensite was also observed in quenched samples. On the other hand, mechanical property tests indicated that normalized welded specimens gave good combination of mechanical properties.
    [Show full text]
  • Efiect of the Addition of Nickel Powder and Post Weld Heat Treatment on the Metallurgical and Mechanical Properties of the Welde
    Soldagem & Inspeção. 2016;21(2):197-208 Technical Papers http://dx.doi.org/10.1590/0104-9224/SI2102.09 Effect of the Addition of Nickel Powder and Post Weld Heat Treatment on the Metallurgical and Mechanical Properties of the Welded UNS S32304 Duplex Stainless Steel Ali Tahaei1, Argelia Fabiola Miranda Perez2, Mattia Merlin1, Felipe Arturo Reyes Valdes2, Gian Luca Garagnani1 1 Università di Ferrara, Dipartimento di Ingegneria – ENDIF, Ferrara, Italia. 2 Corporación Mexicana de Investigación en Materiales S.A. de C.V. - COMIMSA, Saltillo, Mexico. In this research, the effect of the addition of nickel powder and the application of a Received: 25 Jan., 2016 Abstract: Accepted: 10 June, 2016 post weld heat treatment (PWHT) on the welding properties of the UNS S32304 lean duplex stainless steel were investigated in order to improve the microstructure and mechanical E-mail: [email protected] (AT) properties. Nickel powder was directly poured inside the joint gap and mixed with the filler metal during the Gas Tungsten Arc Welding (GTAW) process; moreover, the solution heat treatment was performed at 1100 °C for 10 min. The joints were characterized by optical microscopy (OM) and the evolution of the phase percentages in the different zones was studied by means of the image analysis technique. Tensile and hardness tests were carried out on the joints in order to evaluate the improvement of the mechanical properties. The results showed that both the addition of nickel powder during the welding process and the post weld heat treatment made it possible to improve the mechanical properties of the weld joints.
    [Show full text]
  • Post Weld Heat Treatment for High Strength Steel Welded Connections 2 3 M.S
    1 Post Weld Heat Treatment for High Strength Steel Welded Connections 2 3 M.S. Zhao*, S.P. Chiew^ and C.K. Lee# 4 5 *Research Fellow, School of Civil and Environmental Engineering, Nanyang Technological 6 University, Singapore 7 8 ^Professor of Civil Engineering, Singapore Institute of Technology, Singapore 9 10 #Professor of Civil Engineering, School of Engineering and Information Technology, 11 University of New South Wales Canberra, Australia 12 13 Emails: *[email protected], ^[email protected], #[email protected] 14 15 16 Abstract 17 In this study, experiments were conducted to investigate the effect of post-weld heat treatment 18 (PWHT) on the reheated, quenched and tempered (RQT) grade S690 high strength steel 19 welded connections. Firstly, the effect of PWHT on the mechanical properties after welding is 20 investigated. It is found that the loss of both strength and ductility after welding could be 21 serious but PWHT could be able to improve the ductility of the affected specimens at the 22 expense of strength. Secondly, four Y-shape plate-to-plate (Y-PtP) and nine T-stub RQT- 23 S690 joints are fabricated to study the effect of PWHT on the residual stress level near the 24 weld toe and the tensile behavior of the joints, respectively. The hole drilling tests employed 25 to study the residual stress reveal that PWHT is able to decrease the residual stress level near 26 the weld toe significantly. The tensile test results show that proper PWHT could improve both 27 the ductility and the maximum resistance while the reduction of plastic resistance can be kept 28 in a negligible level.
    [Show full text]
  • Post Weld Heat Treatment of Socket Weld Valves CB 20 Flow Control Division Vogt Valves Post Weld Heat Treatment of Socket Weld Valves
    Vogt Valves The Connection Bulletin for Post Weld Heat Treatment of Socket Weld Valves CB 20 Flow Control Division Vogt Valves Post Weld Heat Treatment of Socket Weld Valves INTRODUCTION POST WELD HEAT TREATMENT stituents have formed, the weld should be Some manufacturing and user construction OF SOCKET WELD VALVES allowed to cool to the recommended mini- codes require that welds connecting valves Many piping and construction codes require mum preheat temperature shown in Table I to pipe runs in process systems be post weld that valves welded into pipe line runs have before starting the post weld heat treatment. heat treated. The Vogt Valve Company is the welds and heat affected zones heat occasionally asked for recommendations treated after welding. Properly done, post and comments on post weld heat treating of weld heat treatment reduces residual weld- POST WELD HEAT TREATING valves. This report contains our current rec- ing stresses and softens hard metallurgical AND VALVE TRIM ommendations. While no single paper can microconstituents that form in both weld Post weld heat treatment of valves is techni- cover all the problems that the post weld metal and base metal heat affected zones. cally difficult because, unlike pipe to pipe or heat treater in the field faces, this short pipe to fitting welds, valves contain internal report describes Vogt experimental heat Post weld heat treatment is, depending on parts whose properties are alterable in post treating that will help in the difficult tasks of the alloy, involve temperatures generally not weld treatment. The most standard valve trim localized field post weld heat treating.
    [Show full text]
  • Optimization Study of Post-Weld Heat Treatment for 12Cr1mov Pipe Welded Joint
    metals Article Optimization Study of Post-Weld Heat Treatment for 12Cr1MoV Pipe Welded Joint Zichen Liu 1, Xiaodong Hu 1, Zhiwei Yang 2, Bin Yang 3,*, Jingkai Chen 3, Yun Luo 3 and Ming Song 3 1 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China; [email protected] (Z.L.); [email protected] (X.H.) 2 Shandong Branch of Guangzhou Zoneteam Architectural Design & Urban Planning Institute Co., Ltd., Jinan 250013, China; [email protected] 3 College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; [email protected] (J.C.); [email protected] (Y.L.); [email protected] (M.S.) * Correspondence: [email protected] or [email protected]; Tel.: +86-532-86983482 Abstract: In order to clarify the role of different post-weld heat treatment processes in the manu- facturing process, welding tests, post-weld heat treatment tests, and finite element analysis (FEA) are carried out for 12C1MoV steel pipes. The simulated temperature field and residual stress field agree well with the measured results, which indicates that the simulation method is available. The influence of post-weld heat treatment process parameters on residual stress reduction results is further analyzed. It is found that the post weld dehydrogenation treatment could not release residual stress obviously. However, the residual stress can be relieved by 65% with tempering treatment. The stress relief effect of “post weld dehydrogenation treatment + temper heat treatment” is same with that of “temper heat treatment”. The higher the temperature, the greater the residual stress reduction, when the peak temperature is at 650–750 ◦C, especially for the stress concentration area.
    [Show full text]
  • Stainless Steel Grade Datasheets Has Been Produced by Atlas Steels Technical Department As a Companion to the Atlas Technical Handbook of Stainless Steels
    Stainless Steel Grade Datasheets Copyright © Atlas Steels Revised : August 2013 Atlas Steels Technical Department www.atlassteels.com.au ATLAS STEELS Stainless Steels Grade Datasheets FOREWORD This compilation of stainless steel Grade Datasheets has been produced by Atlas Steels Technical Department as a companion to the Atlas Technical Handbook of Stainless Steels. Any suggestions for improvements, additions or corrections would be very welcome; these should be directed to: Technical Manager, Atlas Steels Telephone +61 3 8383 9863, email [email protected] Individual grade datasheets are available from the Atlas Steels website. Information from any Atlas publication can be freely copied, but it is requested that the source be acknowledged. Limitation of Liability The information contained in these datasheets is not an exhaustive statement of all relevant information. It is a general guide for customers to the products and services available from Atlas Steels and no representation is made or warranty given in relation to this information or the products or processes it describes. Published by Atlas Steels Technical Department Copyright © Atlas Steels www.atlassteels.com.au Stainless Steel Datasheets Austenitic Stainless Steels 301, 301L, 301LN High strength for roll formed structural components 302HQ Low work hardening rate grade for cold heading fasteners 303, 303Se Free-machining bar grades 304, 304L, 304H Standard 18/8 grades 310, 310S, 310H High temperature resistant grades 316, 316L, 316H Improved resistance to pitting
    [Show full text]
  • Postweld Heat Treatment
    Key Concepts in Welding Engineering by R. Scott Funderburk Postweld Heat Treatment What is PWHT? it cools. After welding has been com- Postweld heat treatment (PWHT), pleted, the steel must not be allowed defined as any heat treatment after to cool to room temperature; instead, it welding, is often used to improve the should be immediately heated from properties of a weldment. In concept, the interpass temperature to the post Figure 1. Criteria for hydrogen PWHT can encompass many different heat temperature and held at this tem- induced cracking (HIC). potential treatments; however, in steel perature for some minimum amount of fabrication, the two most common pro- time. Although various code and ser- cedures used are post heating and required for critical repairs, such as stress relieving. The need for post those defined under the Fracture heating assumes a Control Plan (FCP) for Nonredundant When is it Required? potential hydrogen Members of the AASHTO/AWS D1.5 Bridge Welding Code. The FCP provi- The need for PWHT is driven by code cracking problem sion is 450 to 600°F (230 to 315°C) for and application requirements, as well exists... “not less than one hour for each inch as the service environment. In gener- (25 mm) of weld thickness, or two al, when PWHT is required, the goal is vice requirements can dictate a variety hours, whichever is less.” When it is to increase the resistance to brittle of temperatures and hold times, 450°F essential that nothing go wrong, post fracture and relaxing residual stresses. (230°C) is a common post heating heating can be used as insurance Other desired results from PWHT may temperature to be maintained for 1 against hydrogen cracking.
    [Show full text]
  • Effects of Post Weld Heat Treatments on the Microstructure and Mechanical Properties of Dissimilar Weld of Supermartensític Stainless Steel
    Materials Research. 2014; 17(5): 1336-1343 © 2014 DOI: http://dx.doi.org/10.1590/1516-1439.299314 Effects of Post Weld Heat Treatments on the Microstructure and Mechanical Properties of Dissimilar Weld of Supermartensític Stainless Steel Sérgio Souto Maior Tavaresa*, Clóvis Ribeiro Rodriguesa, Juan Manuel Pardala, Edvan da Silva Barbosaa, Hamilton Ferreira Gomes de Abreub aPGMEC, Escola de Engenharia, Universidade Federal Fluminense – UFF, Rua Passo da Pátria, 156, CEP 24210-240, Niterói, RJ, Brazil bDepartamento de Engenharia Metalúrgica e Materiais, Universidade Federal do Ceará – UFC, Fortaleza, CE, Brazil Received: May 31, 2014; Revised: October 5, 2014 A supermartensitic stainless steel with composition 12.2%Cr-5.8%Ni-1.90%Mo-0.028%C (%wt.) was welded by gas tungsten arc welding (GTAW) with superduplex stainless steel filler metal. Post weld heat treatments (PWHT) at 650 °C for different periods of time were performed in order to decrease the hardness in the heat affected zone (HAZ). This paper deals with the effect of these heat treatments on the microstructure and mechanical properties of the joint. Mechanical strength of the weld joint was slightly inferior to the base metal, but was not affected by heat treatments. Precipitation of intermetallic phases in the weld metal (WM) due to prolonged PWHT was detected by scanning electron microscopy. The impact toughness of the weld metal decreased with the increase of time of heat treatment, due to intermetallic precipitation. However, even in the specimen treated for 1h, the Charpy energy remained above 27J at –46 °C. It was found that optimum mechanical properties can be obtained with heat treatment for 30 minutes at 650 °C.
    [Show full text]
  • Arcelormittal's Range Last Update: 2015-3-17
    A00 ArcelorMittal's range Last update: 2015-3-17 Introduction This section presents ArcelorMittal's wide range of hot rolled steels. Each steel family has properties that have been optimised for specific applications. The choice of the best steel grade for a specific application is usually based on a combination of: Optimum performance of the parts in service Industrial and economic feasibility The graph below compares the different grades of hot rolled steel according to their strength /plasticity ratio (mechanical strength /elongation at fracture). ArcelorMittal's range A10 Steels for cold forming and deep drawing applications (Standard: EN 10111) These steel grades are characterised by a low carbon content and excellent weldability. The higher the grade number, the greater the drawability: DD13 AM FCE is suitable for deep drawing DD14 AM FCE is suitable for very deep drawing DD15 AM FCE is suitable for drawing particularly difficult parts requiring extreme regularity of performance especially at high production rates A14 Structural forming grades These steels, which are specific to the AM FCE range, are stronger than the usual forming grades. A20-A22 High or Ultra High Strength Low Alloy steels -Amstrong™ (Standard: EN 10149-2) These steels are low alloy, fine grain grades. They have a low carbon content and are enriched when needed with niobium, titanium and/or vanadium. Since their carbon equivalent value is low, these steels have improved weldability. A low sulphur content, high internal purity and a fine grain structure guarantee excellent ductility, toughness and fatigue resistance. A30 Structural steels (Standard: EN 10025-2) Structural steels are used primarily in mechanical engineering and building applications.
    [Show full text]
  • Dievar-English.Pdf
    UDDEHOLM DIEVAR® UDDEHOLM DIEVAR Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. The chemical composition and the very latest in production technique make the property profile outstanding. The combination of excellent toughness and very good hot strength gives Uddeholm Dievar a very good heat checking- and gross cracking resistance. The steel is suitable in high demand hot work applications like die casting, forging and extrusion. The property profile makes it also suitable in other applications, e.g. plastics and High Performance Steel. Uddeholm Dievar offers the potential for significant improvements in die life, thereby improving the tooling economy. This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose. Classified according to EU Directive 1999/45/EC For further information see our “Material Safety Data Sheets”. Edition 9, 06.2015 The latest revised edition of this brochure is the English version, which is always published on our web site www.uddeholm.com SS-EN ISO 9001 SS-EN ISO 14001 UDDEHOLM DIEVAR General Hot work applications Uddeholm Dievar is a high performance Heat checking is one of the most common chromium-molybdenum-vanadium alloyed hot failure mechanism e.g. in die casting and now work tool steel which offers a very good days also in forging applications. Uddeholm resistance to heat checking, gross cracking, hot Dievar’s superior ductility yields the highest wear and plastic deformation.
    [Show full text]