Blackbrush (Coleogyne Ramosissima Torr.) 145

Total Page:16

File Type:pdf, Size:1020Kb

Blackbrush (Coleogyne Ramosissima Torr.) 145 This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. BLACKBRUSH (COLEOGYNE RAMOS/SSJMATORR.) State of Our Knowledge and Future Challenges Rosemw)i L. Pendleton, Burton K. Pendleton, Susan E. Meye1; B1yce Richardson, Todd Esque) and Stanley G. Kitchen ABSTRACT its current distribution would be unlikely to Blackbrush (Co!eogyne ramosissimaTorr.) is succeed. Common garden experiments under a regionally dominant shrub species found in multiple climate conditions will give us a the transition zone between North American better understanding of climatic tolerances. warm and cold deserts where it occupies Further research is needed to develop new millions of hectares on National Park Service, and better restoration techniques. Bureau of Land Management, and National Forest lands. Blackbrush habitat is under INTRODUCTION severe threat of loss from the combined effects of exotic annual grasses, increased fire Blackbrush (Coleogyne ramosissima -Torr.) frequency, and rapid climate change. Attempts occurs in an ecotonal band between warm to restore blackbrush habitat have met with and cold desert regions extending from limited success. This research synthesizes California through Utah and Arizona (Meyer existing information on blackbrush biology and Pendleton 2005). It is an iconic landscape and ecology. Our goal is to guide successful dominant in many of the national parks restoration efforts. Recent genetic work has and monuments. In the Colorado Plateau, revealed the existence of two metapopulations blackbrush is found throughout much of corresponding to the Mojave and Colorado southeastern Utah primarily in upland areas Plateau regions. This work, along with ger­ along the Colorado and San Juan River mination and reciprocal transplant studies, drainages and into the desert canyon areas of demonstrates the need to use appropriate northern Arizona. Blackbrush communities seed sources. Blackbrush plants produce of the Colorado Plateau are bounded by salt large seed crops infrequently; however, seed deset1 shrub (Atriplex sp.), sand sagebrush can be stored for 10--12 _years with minimal (Artemisiafi!ifolia), and grass communities at loss of viability. Establishment success may lower elevations and by pinyon-juniper (Pinus be enhanced by planting seeds in the fall edulis-Juniperus sp.) and sagebrush-grass at to meet chilling requirements, and in small higher elevations. Blackbrush communities groups at 2.5--4.0 em in depth to mimic rodent also occur in the Mojave, where they are caches. Cunent observations and projected bounded by the creosote-bursage (Larrea changes in climate suggest that attempts to tridenlata-Ambrosia dumosa) community restore blackbrush at lower elevations than at lower elevations and by pinyon-juniper- Blackbrush (Co/eogyne ramosissima Torr.) 143 sagebrush at upper elevations (Lei and dissertation was subsequently published Walker 1995). Blackbrush is found in some as a research report (Bowns and West of the most scenic areas of the Southwest, 1976), which incJuded a distribution map and it provides cover and food for a number for blackbrush compiled from a number of wildlife species, most notably heteromyid of sources. More recently, Richardson and rodents (Auger 2005), nongame birds, deer, Meyer (20 12) developed a map of predicted and desert bighom (Bradley 1965; Brown and distribution based on bioclimatic profiles Smith 2000). (figure 10.1). Unlike the map ofBowns and The blackbrush community is currently West (1976), the newer map shows a distinct under threat from the combined effects of break between Colorado Plateau and Mojave exotic species, large-scale fires, and climate Desert populations. change. Predicted effects of climate change This break in distribution is reinforced on recruitment ofblackbrush make it unlikely by genetic analysis (Richardson and Meyer that blackbrush will persist in place. Black­ 20 12), which revealed the existence of two brush has little resistance to invasion by exotic metapopulations corresponding to Colorado species and very little resilience to subsequent Plateau and Mojave Desert regions. This same large-scale fires. Blackbrush itself is not fire study also refuted the long-held assumption adapted and does not resprout when burned that olackbrush was a paleoendemic species, (Brooks 2009). Large areas of the blackbrush generally lacking in genetic variation (Steb­ community have burned in the last decade, bins 1972; Stebbins and Major 1965). The although primarily in the Mojave. Natural assumption was based primarily on the fact recove1y from these and other large-scale that the genus is monotypic with few close disturbance events is apparently not possible, relatives (see Potter et al. 2007). Current dis­ and the resulting vegetation then becomes tribution was thought to represent a restriction dominated primarily by exotic weed species from a much wider distribution during the (Brooks 2009). Cretaceous period to xeric "islands" during In this chapter, we summarize the current the onset of more mesic Tertiary· conditions state of knowledge of blackbrush biology, during which the gene pool became depauper­ including reproductive biology, establish­ ate (Stebbins 1972). In contrast, studies have ment ecology, interaction with herbivores, now revealed a relatively high level of genetic response to disturbance, and genetic stmc­ diversity within blackbrush populations, as ture. We report on current studies of inter­ well as significant population differentiation population variation and potential response (Richardson and Meyer 2012; Schuster to climate change. Finally, we assess current et al. 1994). The existence of two metapop­ efforts at restoration and identify needs for ulations also provides context for prior work additional research. demonstrating that the two population groups differ in other important ways related to their germination characte1istics and establishment DISTRIBUTION AND GENETIC strategies (Meyer and Pendleton 2005; Pend­ STRUCTURE leton and Meyer 2004 ). Prior to the early 1970s, very little was known about blackbrush, despite its occurrence as SOILS AND SOIL MICROORGANISMS a landscape dominant on over three million hectares (Pendleton and Meyer 2004). The Blackbrush stands typically occur on upland first intensive study of blackbrush biology terraces, ridges, open plains, and alluvial was done by Jim Bowns as part of his PhD slopes (Bowns 1973; Bowns and West 1976; research (Bowns 1973). Most of Bowns' Turner 1994). Edaphic conditions largely 144 Pendleton et al. Figure 10. 1. Predicted distribution of blackbrush based on a bioclimatic profile from Richardson and Meyer (2012). control the amount of blackbrush present Romney 1972) and does not occur on soils within a vegetative community (Thatcher with high salt content (Bowns and West 1975). Soils are generally described as 1976; Shreve 1942). A more comprehensive coarse, shallow, poorly developed, and description of blackbrush soil relationships calcareous (Anderson 200 l; Kearney and across the geographic range is sorely needed, Peebles 1960; Shreve 1942). However, more as available soils data are somewhat limited. specific descriptions are needed. Parent In the Colorado Plateau, blackbmsh sites materials in the Colorado Plateau frequently characteristically exhibit well-developed consist of sandstone or siltstone, whereas biotic crusts, which help to stabilize sandy mixed alluvium and basalts are more com­ soils in the relatively large perennial plant mon on Mojave sites, and often they have a canopy interspaces (Belnap and Lange pronounced petrocalcic layer (Bowns 1973). 2003; Munson, Belnap, and Okin 2011). Blackbrush is saline sensitive (Wallace and Soil crusts in the Mojave are less developed Blackbrush (Coleogyne ramosissima Torr.) 145 Figure 10.2. Photograph of a pedestalled blackbrush plant showing the high degree of soil erosion that often follows destruction of biological soil crusts on the Colorado Plateau. and are dominated by cyanobacteria with mycorrhizal and dark septate fungal associa­ occasional patches of lichen and moss. Soil tions (Green, Porras-Alfaro and Sinsabaugh organic matter, nitrogen, and phosphorus are 2008; Hawkes 2003). This mechanism may reportedly higher under blackbrush plants well be operating in the well-defined soil than in interspaces, which is consistent with crusts of the Colorado Plateau and, to a more the fertile island effect common to shrub lands limited extent, in the Mojave. In greenhouse (Bowns and West 1976; Thompson et al. studies, blackbrush seedlings exhibited a 2005). Wallace and Romney (1972) attributed positive growth response to the presence of the increase in nitrogen to symbiotic nitro­ arbuscular mycorrhizae and biological soil gen fixation within the shrub rhizosphere. crusts (Pendleton, Pendleton, and Howard However, biological soil crusts are the 1999). Large-scale hot fires can disrupt these predominant source of nitrogen in many arid soil relationships, and loss of soil crust from ecosystems (Evans and Ehleringer 1993), and any kind of disturbance can lead to significant nitrogen fixed by soil crust cyanobacteria erosion (figure 10.2; Belnap and Lange 2003; can be translocated to plant roots through Munson et al. 2011 ). 146 Pendleton et al. REPRODUCTIVE BIOLOGY production (Pendleton 2008; Pendleton, Meyer, and Pendleton 1995). Flowering in blackbrush typically occurs Blackbrush fruits ripen between late May during April and early May and
Recommended publications
  • Appendix F3 Rare Plant Survey Report
    Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5
    [Show full text]
  • Plant and Rodent Communities of Organ Pipe Cactus National Monument
    Plant and rodent communities of Organ Pipe Cactus National Monument Item Type text; Thesis-Reproduction (electronic) Authors Warren, Peter Lynd Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 16:51:51 Link to Item http://hdl.handle.net/10150/566520 PLANT AND RODENT COMMUNITIES OF ORGAN PIPE CACTUS NATIONAL.MONUMENT by Peter Lynd Warren A Thesis Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 9 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Ecological Site R030XD040CA Hyperthermic Steep North Slopes
    Natural Resources Conservation Service Ecological site R030XD040CA Hyperthermic Steep North Slopes Accessed: 09/27/2021 General information Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. Figure 1. Mapped extent Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated. MLRA notes Major Land Resource Area (MLRA): 030X–Mojave Desert MLRA Description: Major Land Resource Area (MLRA) 30, Mojave Desert, is found in southern California, southern Nevada, the extreme southwest corner of Utah and northwestern Arizona within the Basin and Range Province of the Intermontane Plateaus. The climate of the area is hot (primarily hyperthermic and thermic; however at higher elevations, generally above 5000 feet, mesic, cryic and frigid) and dry (aridic). Elevations range from below sea level to over 12,000 feet in the higher mountain areas found within the MLRA. Due to the extreme elevational range found within this MLRA, Land Resource Units (LRUs) were designated to group the MLRA into similar land units. LRU Description: This Land Resource Unit (designated by ‘XD’) is found on the eastern side of California. Elevations range from 400 to 2200 feet on average, but may be found up to 3600 feet on southern exposures. Precipitation ranges from 1 to 6 inches per year, but averages between 2-4 inches.
    [Show full text]
  • Lake Havasu City Recommended Landscaping Plant List
    Lake Havasu City Recommended Landscaping Plant List Lake Havasu City Recommended Landscaping Plant List Disclaimer Lake Havasu City has revised the recommended landscaping plant list. This new list consists of plants that can be adapted to desert environments in the Southwestern United States. This list only contains water conscious species classified as having very low, low, and low-medium water use requirements. Species that are classified as having medium or higher water use requirements were not permitted on this list. Such water use classification is determined by the type of plant, its average size, and its water requirements compared to other plants. For example, a large tree may be classified as having low water use requirements if it requires a low amount of water compared to most other large trees. This list is not intended to restrict what plants residents choose to plant in their yards, and this list may include plant species that may not survive or prosper in certain desert microclimates such as those with lower elevations or higher temperatures. In addition, this list is not intended to be a list of the only plants allowed in the region, nor is it intended to be an exhaustive list of all desert-appropriate plants capable of surviving in the region. This list was created with the intention to help residents, businesses, and landscapers make informed decisions on which plants to landscape that are water conscious and appropriate for specific environmental conditions. Lake Havasu City does not require the use of any or all plants found on this list. List Characteristics This list is divided between trees, shrubs, groundcovers, vines, succulents and perennials.
    [Show full text]
  • Biogenic Volatile Organic Compound Emissions from Desert Vegetation of the Southwestern US
    ARTICLE IN PRESS Atmospheric Environment 40 (2006) 1645–1660 www.elsevier.com/locate/atmosenv Biogenic volatile organic compound emissions from desert vegetation of the southwestern US Chris Gerona,Ã, Alex Guentherb, Jim Greenbergb, Thomas Karlb, Rei Rasmussenc aUnited States Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, USA bNational Center for Atmospheric Research, Boulder, CO 80303, USA cOregon Graduate Institute, Portland, OR 97291, USA Received 27 July 2005; received in revised form 25 October 2005; accepted 25 October 2005 Abstract Thirteen common plant species in the Mojave and Sonoran Desert regions of the western US were tested for emissions of biogenic non-methane volatile organic compounds (BVOCs). Only two of the species examined emitted isoprene at rates of 10 mgCgÀ1 hÀ1or greater. These species accounted for o10% of the estimated vegetative biomass in these arid regions of low biomass density, indicating that these ecosystems are not likely a strong source of isoprene. However, isoprene emissions from these species continued to increase at much higher leaf temperatures than is observed from species in other ecosystems. Five species, including members of the Ambrosia genus, emitted monoterpenes at rates exceeding 2 mgCgÀ1 hÀ1. Emissions of oxygenated compounds, such as methanol, ethanol, acetone/propanal, and hexanol, from cut branches of several species exceeded 10 mgCgÀ1 hÀ1, warranting further investigation in these ecosystems. Model extrapolation of isoprene emission measurements verifies recently published observations that desert vegetation is a small source of isoprene relative to forests. Annual and daily total model isoprene emission estimates from an eastern US mixed forest landscape were 10–30 times greater than isoprene emissions estimated from the Mojave site.
    [Show full text]
  • ASTERACEAE Christine Pang, Darla Chenin, and Amber M
    Comparative Seed Manual: ASTERACEAE Christine Pang, Darla Chenin, and Amber M. VanDerwarker (Completed, April 17, 2019) This seed manual consists of photos and relevant information on plant species housed in the Integrative Subsistence Laboratory at the Anthropology Department, University of California, Santa Barbara. The impetus for the creation of this manual was to enable UCSB graduate students to have access to comparative materials when making in-field identifications. Most of the plant species included in the manual come from New World locales with an emphasis on Eastern North America, California, Mexico, Central America, and the South American Andes. Published references consulted1: 1998. Moerman, Daniel E. Native American ethnobotany. Vol. 879. Portland, OR: Timber press. 2009. Moerman, Daniel E. Native American medicinal plants: an ethnobotanical dictionary. OR: Timber Press. 2010. Moerman, Daniel E. Native American food plants: an ethnobotanical dictionary. OR: Timber Press. Species included herein: Achillea lanulosa Achillea millefolium Ambrosia chamissonis Ambrosia deltoidea Ambrosia dumosa Ambrosia eriocentra Ambrosia salsola Artemisia californica Artemisia douglasiana Baccharis pilularis Baccharis spp. Bidens aurea Coreopsis lanceolata Helianthus annuus 1 Disclaimer: Information on relevant edible and medicinal uses comes from a variety of sources, both published and internet-based; this manual does NOT recommend using any plants as food or medicine without first consulting a medical professional. Achillea lanulosa Family: Asteraceae Common Names: Yarrow, California Native Yarrow, Common Yarrow, Western Yarrow, Mifoil Habitat and Growth Habit: This plant is distributed throughout the Northern Hemisphere. It is native in temperate areas of North America. There are both native and introduced species in areas creating hybrids. Human Uses: This plant has a positive fragrance making it desired in gardens.
    [Show full text]
  • List of Approved Plants
    APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var.
    [Show full text]
  • Experimental Manipulations of Fertile Islands and Nurse Plant Effects in the Mojave Desert, USA
    Western North American Naturalist Volume 61 Number 1 Article 4 1-29-2001 Experimental manipulations of fertile islands and nurse plant effects in the Mojave Desert, USA Lawrence R. Walker University of Nevada, Las Vegas Daniel B. Thompson University of Nevada, Las Vegas Fredrick H. Landau University of Nevada, Las Vegas Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Walker, Lawrence R.; Thompson, Daniel B.; and Landau, Fredrick H. (2001) "Experimental manipulations of fertile islands and nurse plant effects in the Mojave Desert, USA," Western North American Naturalist: Vol. 61 : No. 1 , Article 4. Available at: https://scholarsarchive.byu.edu/wnan/vol61/iss1/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 61(1), © 2001, pp. 25–35 EXPERIMENTAL MANIPULATIONS OF FERTILE ISLANDS AND NURSE PLANT EFFECTS IN THE MOJAVE DESERT, USA Lawrence R. Walker1, Daniel B. Thompson1, and Frederick H. Landau1 ABSTRACT.—In a mixed desert shrub community we removed and added shrub canopies to examine above- and belowground influences of 3 species of shrubs on islands of soil fertility and the survival of transplanted Ambrosia dumosa seedlings. Soils sampled under shrubs in the wet season had higher pH, water content, organic matter, and both total and mineralizable nitrogen than soils in adjacent open areas, confirming a widely established pattern in arid lands.
    [Show full text]
  • Sweet Vernal
    Wingscale Genus/species Atriplex canescens Family Chenopodiaceae Distribution Western US SW California northward to SE Washington SE Washington eastward to central North Dakota Central North Dakota southward to S Texas S Texas northwestward to SW California Comments This species, also known as Fourwing Saltbush, is a very common grayish-white shrub found throughout most of the Southwest and northward, occurring from 2000’ up to 8000’ on a variety of sites, often sandy, ranging from hot creosote bush desert up to ponderosa pine forest. It typically grows to be four feet tall, but may reach twice that height. The narrow simple leaves, which may be up to two inches in length, appear smoky because of the dense covering of tiny hairs on both sides. Blooming usually occurs during July and August. The female flowers, pollinated by wind from male flowers on separate plants, give rise to the seeds; the latter are enclosed in a fruit having four papery bracts (giving the species its common names) and about a half inch in size. This and other species of saltbush are useful as food for both wild animals and livestock. 1-800-438-0088 www.greerlabs.com 2 September 2004 Sheep/Red Sorrel Genus/species Rumex acetosella Family Polygonaceae Distribution Throughout US; naturalized from Eurasia Comments This small plant makes its appearance in early spring, and is seldom much more than a foot in height. Its small leaves (generally less than 2 inches long except for those at the base of the plant) typically have a pair of distinct lobes at the base.
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volume 9, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991), Bridson (2004), and Bridson and D. W. Brown (http://fmhibd.library.cmu.edu/fmi/iwp/cgi?-db=BPH_Online&-loadframes). When those forms are abbreviated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and Stafleu et al. (1992–2009). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”.
    [Show full text]
  • Coleogyne Ramosissima) Shrublands in the Mojave Desert
    Plant Community Patterns in Unburned and Burned Blackbrush (Coleogyne ramosissima) Shrublands in the Mojave Desert Prepared by Matthew L. Brooks & John R. Matchett United States Geological Survey Western Ecological Research Center, Las Vegas Field Station 6770 South Paradise Rd., Las Vegas, Nevada 89119-3721 voice: 702-914-2206 x225; fax: 702-914-2045; email: [email protected] Report prepared for National Park Service, Pacific West Region, Fire Management 1111 Jackson St. Suite 700 Oakland, CA 94607 12/20/01 2 Executive Summary This report is the first product of a larger research project titled “fire behavior and ecological effects in blackbrush (Coleogyne ramosissima) shrublands and invasive annual grasslands of the Mojave Desert.” The results contained herein are baseline comparisons of unburned and burned blackbrush vegetation sampled in spring 2001, prior to the application of experimental fire and herbicide treatments that will begin in spring 2002. The significant findings from these baseline comparisons are that: • species richness in blackbrush vegetation is not low as is generally believed, and is comparable to other vegetation types • patterns of species richness can vary significantly between 1- and 1000-m2 spatial scales, indicating that vegetation monitoring for species diversity in blackbrush should incorporate multi-scale sampling • total cover 6-14 years postfire recovered to levels in unburned blackbrush, but cover was still reduced for woody perennials and increased for annual forbs, annual grasses, herbaceous perennials, and perennial grasses • postfire composition of plant communities can vary widely after blackbrush is burned, but fire generally increases species evenness and decreases species richness • alien annual grasses do not always dominate postfire landscapes, especially when previous years of low rainfall may have reduced their population densities At the time this report was prepared, a similar manuscript was submitted by the authors for review in the scientific journal Western North American Naturalist.
    [Show full text]
  • Biological Resources Study for the Burrtec Waste and Recycling Services Yucca Valley Facility
    BIOLOGICAL RESOURCES STUDY FOR THE BURRTEC WASTE AND RECYCLING SERVICES YUCCA VALLEY FACILITY YUCCA VALLEY, SAN BERNARDINO COUNTY, CALIFORNIA Prepared By: Hernandez Environmental Services 29376 North Lake Drive Lake Elsinore, California 92530 (909) 772-9009 Prepared for: Burrtec Waste and Recycling Services Waste & Recycling Services 9890 Cherry Avenue Fontana, CA 92235 July 2015 Burrtec Waste and Recycling Services Yucca Valley Facility Biological Resources Study TABLE OF CONTENTS TABLE OF CONTENTS............................................................................................................................i EXECUTIVE SUMMARY........................................................................................................................1 1.0 INTRODUCTION........................................................................................................................2 1.1 Project Location......................................................................................................................2 1.2 Project Description..................................................................................................................2 1.3 Purpose of Biological Resources Study......................................................................................2 2.0 METHODOLOGY..........................................................................................................................3 2.1 Biological Resources Study Scope of Work............................................................................3
    [Show full text]