Optimum Suspension Geometry for a Formula SAE Car
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Suspension Geometry and Computation
Suspension Geometry and Computation By the same author: The Shock Absorber Handbook, 2nd edn (Wiley, PEP, SAE) Tires, Suspension and Handling, 2nd edn (SAE, Arnold). The High-Performance Two-Stroke Engine (Haynes) Suspension Geometry and Computation John C. Dixon, PhD, F.I.Mech.E., F.R.Ae.S. Senior Lecturer in Engineering Mechanics The Open University, Great Britain. This edition first published 2009 Ó 2009 John Wiley & Sons Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. -
Supercross Amateur Racing
Supercross Amateur Racing AMATEUR CLASS DESIGNATIONS Class Name Age Displacement Specifications 51cc Limited 4 - 8 0cc-51cc 2-stroke or 4-stroke 51cc Limited 4 - 6 and 51cc Limited 4 – 8 age range minicycles are both approved in this class 51cc Limited 4 - 6 0cc-51cc 2-stroke or 4-stroke Single-speed automatic. Maximum (adjusted length) wheelbase 36 inches. Maximum wheel size 10 inches. Maximum seat height 24 inches. No larger than 14 mm round intake. 51cc Limited 7 - 8 0cc-51cc 2-stroke or 4-stroke Single-speed automatic. Maximum (adjusted length) wheelbase 41 inches. Maximum wheel size 12 inches. Retrofitted 12-inch wheels are permitted on all class 2 minicycles. OEMs part must be used. No larger than 19mm round intake. Ultracross 50’s 4-8 0-51cc 2-stroke or 51cc Limited 4 - 6 and 51cc Limited 4 – 8 age range 4-stroke minicycles are both approved in this class 65cc 7 - 11 59cc-65cc 2-stroke Minimum wheel size 12 inches. Maximum front wheel 14 inches. Maximum (adjusted length) wheelbase 45 inches. Maximum wheelbase must maintain manufacturer specifications. 65cc 7 - 9 59cc-65cc 2-stroke Minimum wheel size 12 inches. Maximum front wheel 14 inches. Maximum (adjusted length) wheelbase 45 inches. Maximum wheelbase must maintain manufacturer specifications. 65cc 10 - 11 59cc-65cc 2-stroke Minimum wheel size 12 inches. Maximum front wheel 14 inches. Maximum (adjusted length) wheelbase 45 inches. Maximum wheelbase must maintain manufacturer specifications. 85cc 9 - 12 79cc-85cc 2-stroke Maximum front wheel 17” Minimum rear wheel 12” Maximum rear wheel 16” Maximum wheel base 51” Mini Senior 12 - 15 79cc-85cc 2-stroke or 75-150cc 4-stroke Maximum front wheel17” Minimum rear wheel 12” Maximum rear wheel 16” Maximum wheel base 51” Supermini 1 9 - 15 79cc-112cc 2-stroke or 75cc-150cc 4-stroke Maximum front wheel 19” Maximum rear wheel 16” Maximum wheel base 52” *Competitors 9 thru 11 yrs of age are only allowed to use a 79cc - 85cc 2-stroke minicycle if competing in this class. -
Types of Divisible Load Overweight Permits – Perm 69 (07/09)
State of New York Department of Transportation Central Permit Office Types of Divisible Load Overweight Permits – Perm 69 (07/09) Statewide Permit Types Type 1 (F1) Max. Axle and Grouping Weights in Lbs. Fee $360.00 Steering axle 22,400 Min. Axles 3 Any other Single axle 25,000 Max. Axles 4 Tandem Group 47,000 Min. Wheelbase 16 Feet Tridem Group 57,000 Max. Gross Vehicle Weight 97,400 Lbs. Max. Trailer Length 48 Feet Permitted Gross weight is based on the F1 formula : (1,250 x Wheelbase* ) + 42,500 * Overall Wheelbase in inches is rounded to the nearest whole foot. Type 1A (F1) - This permit type is Large Through Truck Restricted. Max. Axle and Grouping Weights in Lbs. Fee $750.00 (5 or 6 axles) Steering axle 22,400 $900.00 (7 or more axles) Any other Single axle 25,000 Min. Axles 5 Tandem Group 47,000 Min. Wheelbase 16 Feet Tridem Group 57,000 Max. Gross Vehicle Weight 102,000 Lbs. Quad 62,000 Max. Trailer Length 48 Feet Permitted Gross weight is based on the F1 formula : (1,250 x Wheelbase* ) + 42,500 * Overall Wheelbase in inches is rounded to the nearest whole foot. Type 7 (F2) - This permit type is Large Through Truck Restricted. Max. Axle and Grouping Weights in Lbs. Fee $750.00 (6 axles) Steering axle 22,400 $900.00 (7 or more axles) Any other Single axle 25,000 Min. Axles 6 Tandem Group 48,000 Min. Wheelbase 36 ½ feet Tridem Group 58,000 Max. Gross Vehicle Weight 107,000 Lbs. -
Bendix ABS-6 Advanced with ESP Stability System
Bendix® ABS-6 Advanced with ESP® Stability System Frequently Asked Questions to Help You Make an Intelligent Investment in Stability Contents: Key FAQs (Start here!)………….. Pg. 2 Stability Definitions …………….. Pg. 6 System Comparison ……………. Pg. 7 Function/Performance ………….. Pg. 9 Value ………………………………. Pg. 12 Availability/Applications ……….. Pg. 14 Vehicle System Integration …….. Pg. 16 Safety ………………………………. Pg. 17 Take the Next Step ………………. Pg. 18 Please note: This document is designed to assist you in the stability system decision process, not to serve as a performance guarantee. No system will prevent 100% of the incidents you may experience. This information is subject to change without notice © 2007 Bendix Commercial Vehicle Systems LLC, a member of the Knorr-Bremse Group. All Rights Reserved. 03/07 1 Key FAQs What is roll stability? Roll stability counteracts the tendency of a vehicle, or vehicle combination, to tip over while changing direction (typically while turning). The lateral (side) acceleration creates a force at the center of gravity (CG), “pushing” the truck/tractor-trailer horizontally. The friction between the tires and the road opposes that force. If the lateral force is high enough, one side of the vehicle may begin to lift off the ground potentially causing the vehicle to roll over. Factors influencing the sensitivity of a vehicle to lateral forces include: the load CG height, load offset, road adhesion, suspension stiffness, frame stiffness and track width of vehicle. What is yaw stability? Yaw stability counteracts the tendency of a vehicle to spin about its vertical axis. During operation, if the friction between the road surface and the tractor’s tires is not sufficient to oppose lateral (side) forces, one or more of the tires can slide, causing the truck/tractor to spin. -
2021 Ram 1500 Classic
SEDANS MINIVANS/CROSSOVERS SPORT UTILITY TRUCKS/COMMERCIAL LAW ENFORCEMENT 2021 RAM 1500 CLASSIC SELECT STANDARD FEATURES 3.6L Pentastar® V6 / 850RE 8-speed Automatic Air Conditioning — Manual Alternator — 160-amp Axle — 3.21 ratio Battery — 730-amp Cluster — Instrument, with 3.5-inch display screen for Driver Information Display Fuel Tank — 26-gallon Headlamps — Automatic quad-lens halogen with incandescent taillamps Mirrors — 6 x 9-inch Seats — 40/20/40 split-bench front seat with folding front armrest/cup holder, floor-mounted storage tray on Crew Cab (Quad Cab® and Crew Cab models include folding rear bench seat) Shock Absorbers — Heavy-duty, front and rear Spare Tire — Full-size Stabilizer Bar — Front and rear Steering — Electronic, rack and pinion Storage — Front, behind the seats (Regular Cab only) Properly secure all cargo. — Rear, in-floor bins, two with removable liners (Crew Cab only) — Rear, underseat compartment (Quad Cab and Crew Cab models only) Styled Steel Wheels — 17 x 7-inch Suspension — Front, upper and lower A-arms, coil springs, twin-tube shocks — Rear, five-link, coil springs, twin-tube shocks Tires — P265 / 70R17 BSW A/S Transfer Case — Electronic part-time (4x4 models only) Windows — Manual (Regular Cab only) — Power, front and rear with driver’s one-touch up/down (Quad Cab and Crew Cab models only) SAFETY & SECURITY Air Bags(2) — Advanced multistage front — Supplemental side-curtain — Supplemental front-seat side-mounted Brakes — Power-assisted four-wheel antilock disc Electronic Stability Control(3) — Includes Four-wheel Antilock Brake System, Brake Assist, All-Speed Traction Control, Rain Brake Support, Ready Alert Braking, Electronic Roll Mitigation, Hill Start Assist and Trailer Sway Damping(3) ParkView® Rear Back-Up Camera(22) ENGINES HORSEPOWER(17) TORQUE(17) Properly secure all cargo. -
Road Map for the Future Making the Case for Full-Stability
ROAD MAP FOR THE FUTURE MAKING THE CASE FOR FULL-STABILITY Bendix Commercial Vehicle Systems LLC 901 Cleveland Street • Elyria, Ohio 44035 1-800-247-2725 • www.bendix.com/abs6 road map for the future : making the case for full-stability TABLE OF CONTENTS 1 : Important Terms ............................................... 3-4 2 : Executive Summary ............................................. 5-7 3 : Understanding Stability Systems .................................. 8-12 4 : The Difference Between Roll-Only and Full-Stability Systems ...........13-23 5 : Stability for Straight Trucks/Vocational Vehicles ......................24-26 6 : Why Data Supports Full-Stability Systems ..........................27-30 7 : The Safety ROI of Stability Systems ................................31-33 8 : Recognizing the Limitations of Stability Systems ......................34-37 9 : Stability System Maintenance .....................................38-40 10 : Stability as the Foundation for Future Technologies ...................41-42 11 : Conclusion .................................................. 43-44 12 : Appendix A: Analysis of the “Large Truck Crash Causation Study” ..... 45-46 13 : About the Authors ................................................47 road map for the future : making the case for full-stability 1 : 1 2 IMPORtant teRMS Directional Instability Before delving into information about the The loss of the vehicle’s ability to follow the driver’s steering, technological differences acceleration or braking input. between commercial vehicle -
N-SERIES DIMENSIONS GVWR/GCWR 12,000/18,000 Lbs
GAS N-Series NPR NPR NPR-HD NPR-HD Specifications Gas Gas Crew Cab Gas Gas Crew Cab N-SERIES DIMENSIONS GVWR/GCWR 12,000/18,000 lbs. 12,000/18,000 lbs. 14,500/20,500 lbs. 14,500/20,500 lbs. BODY/PAYLOAD ALLOWANCE 6,782-6,978 lbs. 6,246-6,308 lbs. 8,977-9,174 lbs. 8,442-8,503 lbs. Diesel and Gas Measurements GAWR Front 4,860 lbs. 4,860 lbs. 6,630 lbs. 6,630 lbs. Cab to End of Frame Rear 8,840 lbs. 8,840 lbs. 11,020 lbs. 11,020 lbs. FRONT AXLE CAPACITY 6,830 lbs. 6,830 lbs. 6,830 lbs. 6,830 lbs. Cab to Axle REAR AXLE CAPACITY 11,020 lbs. 11,020 lbs. 11,020 lbs. 11,020 lbs. Back of Cab (in.) Ratio 4.100 4.100 4.300 4.300 SUSPENSION F/R SPRINGS Tapered/Multi-Leaf Tapered/Multi-Leaf Tapered/Multi-Leaf Tapered/Multi-Leaf Overall Width Capacity 8,440/12,900 lbs. 8,440/12,900 lbs. 8,440/12,900 lbs. 8,440/12,900 lbs. FRAME Section Modulus 7.20 in.3 7.20 in.3 7.20 in.3 7.20 in.3 Resistance Bending Moment 316,800 lb.-in. 316,800 lb.-in. 316,800 lb.-in. 316,800 lb.-in. Diesel Cab Chassis Shown SERVICE BRAKES Vacuum/Hydraulic with Vacuum/Hydraulic with Vacuum/Hydraulic with Vacuum/Hydraulic with Front/Rear 4-Channel ABS Disc/Drum 4-Channel ABS Disc/Drum 4-Channel ABS Disc/Drum 4-Channel ABS Disc/Drum Wheelbase Overall Length TRANSMISSION 6L90 6-speed auto. -
Rollover of Heavy Commercial Vehicles
Rollover of Heavy Commercial Vehicles - UMTRI-99- 19 August, 1999 C. B. Winkler R. D. Ervin The University of Michigan Transportation Research Institute 2901 Baxter Road, Ann Arbor, Michigan 48 109 for Volvo Truck Corporation, AB Goteborg, Sweden and the Great Lakes Center for Truck and Transit Research Ann Arbor, Michigan Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Reciplent's Catalog No. 4. Title and Subtitle 5. Report Date August, 1999 Rollover of Heavy Commercial Vehicles 6. Performing Organization Code 8. Performing Organlzatlon Report Nio. 7. Author@) Winkler, C. B.; Ervin, R.D. - 9. Performing Organlzation Name and Address 1 10. work unit NO. (TRAIS) The University of Michigan Transportation Research Institute 11. Contract or Grant NO. 2901 Baxter Road, Ann Arbor, MI 48109-2150 13. Type of Report and Perlod Coverejd - 12. Sponsoring Agency Name and Address Final Report Volvo Truck Corporation, 1B Great lakes Center for Truck and Transit Research 14. Sponsoring Agency Code I 15. Supplementary Notes 16. Abstract The state-of-the-art understanding of rollover of the commercial vehicle is reviewed. Accident statistics are presented which highlight the severity and lethal nature of rollover crashes. Physical and statistical evidlence for the linkage between vehicle roll stability and the actual occurrence of rollover accidents is presented. The fundamentals of static roll stability are described in detail and then enhanced with discussion of dynamilc considerations of the rollover process. The text concludes with a discussion of the evolving use of intelligent electronic systems and active vehicle control for reducing the occurrence of rollover. -
Design and Analysis of Leaf Spring in a Heavy Truck
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Journal of Innovative Technology and Research (IJITR) Godatha Joshua Jacob * et al. (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH Volume No.5, Issue No.4, June – July 2017, 7041-7046. Design And Analysis Of Leaf Spring In A Heavy Truck GODATHA JOSHUA JACOB Mr M.DEEPAK M.Tech (machine design) Student, Dept.of Assistant professor, Dept.of Mechanical Engineering, Mechanical Engineering, Kakinada Institute Of Kakinada Institute Of Engineering And Technology, Engineering And Technology, (Approved by AICTE (Approved by AICTE and Affiliated to Jawaharlal and Affiliated to Jawaharlal Nehru Technological Nehru Technological University , Kakinada) University , Kakinada) Abstract: A leaf spring is a simple form of spring, commonly used for the suspension in wheeled vehicles. Leaf Springs are long and narrow plates attached to the frame of a trailer that rest above or below the trailer's axle. There are monoleaf springs, or single-leaf springs, that consist of simply one plate of spring steel. These are usually thick in the middle and taper out toward the end, and they don't typically offer too much strength and suspension for towed vehicles. Drivers looking to tow heavier loads typically use multileaf springs, which consist of several leaf springs of varying length stacked on top of each other. The shorter the leaf spring, the closer to the bottom it will be, giving it the same semielliptical shape a single leaf spring gets from being thicker in the middle. Springs will fail from fatigue caused by the repeated flexing of the spring. -
Design Vehicles and Turning Radii
Design Vehicles and Turning Radii Brazhuman corp TTE 4824 Dr. Scott Washburn Introduction Design vehicles are selected motor vehicles with the weight, dimensions, and operating characteristics used to establish highway design controls for accommodating vehicles of designated classes. For purposes of geometric design, each design vehicle has larger physical dimensions and a larger minimum turning radius than most vehicles in its class. Introduction The design of an intersection is significantly affected by the type of design vehicle, including horizontal and vertical alignments, lane widths, turning radii, intersection sight distance, storage length of auxiliary lanes, and acceleration and deceleration lengths on auxiliary lanes. Design Vehicle Classes Four general classes of vehicles have been established, namely, passenger cars, buses, trucks, and recreational vehicles. The passenger car class includes compacts, subcompacts, sedans, pick-up trucks, SUVs, minivans, and full-size vans. Design Vehicle Classes Buses include inter-city (motor coaches), city transit, school, and articulated buses. The truck class includes single-unit trucks, truck tractor-semitrailer combinations, and truck tractors with semitrailers in combination with full trailers. Design Vehicle Classes Recreational vehicles include motor homes, cars with camper trailers, cars with boat trailers, motor homes with boat trailers, and motor homes pulling cars. Additionally, the bicycle should also be considered a design vehicle when its use on a roadway is permitted. Dimensions of Design Vehicles The 2001 AASHTO Green Book includes 19 design vehicles. The dimensions of design vehicles take into account dimensional trends in motor vehicle manufacture and represent a composite of the vehicles currently in operation; however, the design vehicle dimensions must represent the values critical to geometric design and are thus greater than nearly all vehicles belonging to the corresponding vehicle classes. -
Transverse Leaf Springs: a Corvette Controversy
Transverse Leaf Springs: A Corvette Controversy By Matt Miller Introduction A lot of people give Corvettes flack because they employ leaf springs. The mere mention of leaf springs conjures up images of suspensions on horse-drawn buggies, old cars and trucks, and Harbor Freight utility trailers. Even magazine reviews of the latest Corvettes talk about how “antiquated” their leaf spring designs are, and many a Corvette enthusiast has converted his car to aftermarket coilovers in the belief that they are inherently better than the composite transverse leaf springs found on the front and rear suspensions of all Corvettes since 1984. But is that true? Does the Corvette’s use of transverse leaf springs mean it has an inferior, outdated suspension design? The short answer is “No!” To find out why, we’ll cover some basics on springs and suspensions and see how the facts add up. Page 1 What is a Spring, Anyway? We all intuitively know what springs are. But technically speaking, a spring is an elastic mechanical device that stores potential energy. When mechanical energy is put into a spring, it deforms and can release that energy back in the opposite direction. We measure a spring’s energy storage by its “spring rate,” which defines its energy storage. The spring rate defines the increase in force required to move the spring a certain amount. For example, if a spring has a rate of 100 lb/in (pounds per inch), it means that 100 lbs of force will move one end of it 1”, an additional 100 lbs will move it another inch, and so on. -
Performance Shock Absorbers
PERFORMANCE SHOCK ABSORBERS SINCE 1857 | koni-na.com SHOCK ABSORBER & SUSPENSION TECH 101 It’s easy to think of a powerful engine to make a car fast “dampers” as their job is to damp or control the car body and but ultimately the car is connected to the ground by the suspension motion as it goes over undulations and bumps small contact patches of the tires. We must optimize tire in the road. In a nutshell, the suspension’s springs carry the grip through the cars suspension to go faster. When the car weight of the car and for a given road input will establish accelerates, brakes, and turns, many forces of physics are how much motion the car will likely have. The shock absorber trying to make the mass of the car go in a different direction or damper serves as a timing device to regulate how long it from where the driver wants and road surface needs it to go. takes for this suspension motion to occur. The car’s suspension is the interface between tires and A good performing shock absorber will be firm enough to the car body in motion. If the suspension can control and slow or eliminate excessive body and suspension motion optimize the body motion and tire grip while smoothing the yet to allow enough motion to provide a good ride quality road impacts and the driver inputs, then the carSINCE goes faster,1857 is | koni-na.comand tire grip. If a suspension is too soft or too firm, the car, safer, and has better ride quality.