https://doi.org/10.1595/205651318X696639 Johnson Matthey Technol. Rev., 2018, 62, (2), 211–230 www.technology.matthey.com Inter-Diffusion of Iridium, Platinum, Palladium and Rhodium with Germanium Improved materials for the next generation of electronic devices Adrian Habanyama* platinum, palladium and rhodium. Our approach Department of Physics, Copperbelt University, was essentially twofold. Firstly, conventional thin PO Box 21692, Jambo Drive, Riverside, Kitwe film couples were used to study the sequence 10101, Zambia; Department of Physics, of phase formation in the germanide systems. University of Cape Town, Rondebosch 7700, Conventional thin film couples were also used to South Africa identify and monitor the dominant diffusing species during the formation of some of the germanides *Email:
[email protected] as these can influence the thermal stability of a device. Secondly, we observed and analysed Craig M. Comrie several aspects of the lateral diffusion reactions in iThemba LABS, National Research Foundation, these four systems, including activation energies PO Box 722, Somerset West 7129 South and diffusion mechanisms. Lateral diffusion Africa; Department of Physics, University of couples were prepared by the deposition of thick Cape Town, Rondebosch 7700, South Africa rectangular islands of one material on to thin films of another material. Rutherford backscattering spectrometry (RBS) and microprobe-Rutherford The down-scaling of nanoelectronic devices to backscattering spectrometry (µRBS) were ever smaller dimensions and greater performance used to analyse several aspects of the thin film has pushed silicon-based devices to their physical and lateral diffusion interactions respectively. limits. Much effort is currently being invested in X-ray diffraction (XRD) and scanning electron research to examine the feasibility of replacing microscopy (SEM) were also employed.