Challenge of Ethernet Use in the Automobile Flexible Interfaces and Software Tools Simplify ECU Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Emerging Technologies Multi/Parallel Processing
Emerging Technologies Multi/Parallel Processing Mary C. Kulas New Computing Structures Strategic Relations Group December 1987 For Internal Use Only Copyright @ 1987 by Digital Equipment Corporation. Printed in U.S.A. The information contained herein is confidential and proprietary. It is the property of Digital Equipment Corporation and shall not be reproduced or' copied in whole or in part without written permission. This is an unpublished work protected under the Federal copyright laws. The following are trademarks of Digital Equipment Corporation, Maynard, MA 01754. DECpage LN03 This report was produced by Educational Services with DECpage and the LN03 laser printer. Contents Acknowledgments. 1 Abstract. .. 3 Executive Summary. .. 5 I. Analysis . .. 7 A. The Players . .. 9 1. Number and Status . .. 9 2. Funding. .. 10 3. Strategic Alliances. .. 11 4. Sales. .. 13 a. Revenue/Units Installed . .. 13 h. European Sales. .. 14 B. The Product. .. 15 1. CPUs. .. 15 2. Chip . .. 15 3. Bus. .. 15 4. Vector Processing . .. 16 5. Operating System . .. 16 6. Languages. .. 17 7. Third-Party Applications . .. 18 8. Pricing. .. 18 C. ~BM and Other Major Computer Companies. .. 19 D. Why Success? Why Failure? . .. 21 E. Future Directions. .. 25 II. Company/Product Profiles. .. 27 A. Multi/Parallel Processors . .. 29 1. Alliant . .. 31 2. Astronautics. .. 35 3. Concurrent . .. 37 4. Cydrome. .. 41 5. Eastman Kodak. .. 45 6. Elxsi . .. 47 Contents iii 7. Encore ............... 51 8. Flexible . ... 55 9. Floating Point Systems - M64line ................... 59 10. International Parallel ........................... 61 11. Loral .................................... 63 12. Masscomp ................................. 65 13. Meiko .................................... 67 14. Multiflow. ~ ................................ 69 15. Sequent................................... 71 B. Massively Parallel . 75 1. Ametek.................................... 77 2. Bolt Beranek & Newman Advanced Computers ........... -
Non-Profit Alliance Reached a New Milestone: Over 300 Members
Non-Profit Alliance reached a new milestone: over 300 members Inauguration of eleventh and twelfth technical committee, to define switch requirements and to create test specifications for the compliance testing of future IEEE 1000BASE-T1 Physical Interface devices Eindhoven - March 22, 2016 - The OPEN Alliance (One-Pair Ether-Net) Special Interest Group (SIG), a non-profit industry alliance established to drive wide scale adoption of Ethernet-based automotive connectivity, today announced that membership has grown to more than 300 partnering companies. In the beginning, especially car OEMs, tier 1 suppliers and semiconductor companies joined the OPEN Alliance SIG. Now also companies from other sectors, like industrial, off-highway and agricultural sector have joined. Membership in the OPEN Alliance SIG has grown significantly since its inception in the fall of 2011 with representation from more than 300 of the world’s leading automakers, tier 1 suppliers and technology companies today. The nine publically released specifications are the result of the work conducted by numerous technical committees focused on driving interoperability, compliance and testing requirements. In December, 2015 the creation of the eleventh technical committee (TC11) to create Ethernet switch requirements and qualification was announced to the Members of OPEN. The planned documents will cover the following switch features: - Generic, Interfacing, Configuration - Switching, Addressing, VLAN - Diagnostics, Monitoring - QoS, Queueing, Timestamping, Policing, AVB, TSN - Filtering, Security The OPEN Alliance began working on IEEE 1000BASE-T1 when it was created, anticipating that 100 Mbps would not be sufficient for the Automotive Industry. OPEN Member companies were instrumental in creating the Call For Interest (CFI) to IEEE in January, 2012. -
Publication Title 1-1962
publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013 -
N94-13338 1.1.1 3Rd NASA Symposium on VLSI Design 1991
N94-13338 1.1.1 3rd NASA Symposium on VLSI Design 1991 Experience with Custom Processors in Space Flight Applications M. E. Fraeman, J. R. Hayes, D. A. Lohr, B. W. Ballard, R. L. Williams, and R. M. Henshaw Johns Hopkins University Applied Physics Laboratory Laurel, Maryland 20723 Abstract- APL has developed a magnetometer instrument for a Swedish satel- lite named Freja with launch scheduled for August 1992 on a Chinese Long March rocket. The magnetometer controller utilized a custom microprocessor designed at APL with the Genesil silicon compiler. The processor evolved from our experience with an older bit-slice design and two prior single chip efforts. The architecture of our microprocessor greatly lowered software development costs because it was optimized to provide an interactive and extensible pro- gramming environment hosted by the target hardware. Radiation tolerance of the microprocessor was also tested and was adequate for Freja's mission-- 20 kRad(Si) total dose and very infrequent latch-up and single event upset events. 1 Introduction The Johns Hopkins University Applied Physics Laboratory (APL) has developed a micro- processor that is well suited to one-of-a-kind embedded applications especially in satellite instrument control. The chip has been qualified for use in a magnetometer instrument for the Swedish Freja satellite. The processor's language directed architecture reduced Freja software costs because the flight hardware served as its own development system. Thus, unlike traditional interpreted programming languages like Basic, Lisp, or Smalltalk, our Forth language development system was fully supported on the embedded flight proces- sor. Performance was also equivalent or better than that obtained by other microprocessors programmed in languages like C with traditional cross-compilers and development systems. -
Space Station Freedom Data Management System Growth and Evolution Report
NASA Technical Memorandum 103869 Space Station Freedom Data Management System Growth and Evolution Report R. Bartlett, G. Davis, T. L. Grant, J. Gibson, R. Hedges, M. J. Johnson, Y. K. Liu, A. Patterson-Hine, N. Sliwa, H. Sowizral, and J. Yan N93-15k77 (NASA-TM- I03869) SPACE STATION FREEDOM DATA MANAGEMENT SYSTEM GROWTH ANO EVOLU TIr}N REPORT (NASA) Uncl as September 1992 66 P G3/17 0178407 National Aeronautics and Space Administration Z NASA Technical Memorandum 103869 Space Station Freedom Data Management System Growth and Evolution Report T. L. Grant and J. Yan, Ames Research Center, Moffett Field, California September 1992 RIASA National Aeronauticsand Space Administration Ames Research Center MoffettField, CaJifomia94035-1000 The Study Team The Data Management System (DMS) analysis team Digital Equipment Corporation, Moffett Field, CA consists of civil servants and contractors at NASA Ames Roger Bartlett Research Center, Information Sciences Division. Prof. Joanne Bechta Dugan provided the reliability Intelligent Systems Technology Branch, Ames analysis of the DMS network reported in appendix B; she Research Center, Moffett Field, CA used the HARP code and the work was sponsored by Gloria Davis Langley Research Center (LaRC). Members of the Failure Terry Grant Tolerance/Redundancy Management Working Group Bob Hedges provided network failure information and preliminary Y. K. Liu models that aided our study of the failure tolerance of the Dr. Ann Patterson-Hine DMS network. Nancy Sliwa We also acknowledge the following individuals for Sterling Federal Systems, Inc., Palo Alto, CA reviewing early versions of the manuscripts: Dr. Jerry Yah Gregg Swietek (NASA Headquarters), Mike Pasciuto (NASA), Donald Woods (McDonnell Douglas Space Research Institute for Advanced Computational Systems Company (MDSSC)) and George Ganoe Science, Moffett Field, CA (NASA LaRC). -
1 組織名称 ( 略称 ) OPEN Alliance Special Interest Group (OPEN
1 組織名称( 略称) OPEN Alliance Special Interest Group (OPEN Alliance SIG) http://opensig.org/ 2 分類 活動目的 フォーラム標準化 対象分野 情報技術(LAN 関 連) 技術MAP 活動エリア(注1) -2 活動技術(注2) 0 3 目 的 イーサネットベースでの車載接続普及を推進する ・イーサネットベースの車載用ネットワークの大規模導入を実現 ・アンシールドのシングルペアケーブルによる100Mbps イーサネット接続の業界標準 を規定 ・クローズドなアプリケーションから、オープンで拡張性の高いイーサネットベースのネ ットワークへの移行を実現 BroadcomのBroadR-Reach®規格の普及推進が主な目的。 4 組織構成 Technical Comittees TC1: Interoperability & Compliance Tests 相互接続とコンフォーマンス試験 TC2:Ebabling Technologies for IEEE 100BASE-T1 100Mbpsの性能を実現するための技術を検討する TC3:Higher Data Rate Ethernet for Autimotive (IEEE Requirement) さらに高速のデータレートを実現することを目標にする TC4:Tools 製品開発のためのツールを検討する。2013年9月に作業は終了した。 TC5:Gap Identification プロトコルを実装する上で問題点がないか検討する TC6:Common xMII Interface Definition 既存のxMII標準への適用性を向上させる TC7:1 Gbps Ethernet on POF ギガビットイーサの車内LAN向け要求条件整理とIEEE 802.3 GEPOFへの働きかけ TC8:ECU Conformance Testing 全てのECU(車の電子制御ユニット)が車内イーサネットに接続するための要求仕様の 制定とネットワークへの接続試験 TC9:IEEE802.3bp 1000BASE-T1 Ethernet Channel & Components ギガビットイーサの車内LANへの適用のためのレイヤ1の仕様検討 TC10:Automotive Ethernet Sleep/Wake-Up スリープモードとwake upメカニズムの検討 TC11: Ethernet switch requirements and qualification 車載イーサネットスイッチの要求条件の検討 TC12: Test specifications for the compliance testing of future IEEE 1000BASE- T1 (IEEE802.3bp) Physical Interface (PHY) devices 将来の1000BASE-T物理インタフェースを持ったデバイスの適合性試験のための試験 仕様の検討 5 参加資格 現時点では会費無料 会費 車載LANとしてBroadR-Reach®を選択すること。 6 主要メンバ 主要メンバー: (2017年10月現在) Promoters:合計 16社 (日系 2社) 投票権を持ち、方針の決定に関与することができるメンバー。 (注3) Broadcom, BMW, Continental, Daimler AG, General Moters Co., HARMAN, Hyundai Motor Company, Jaguar Land Rover (JLR), -
Inter-Processor and Inter-Computer Communications
Inter-processor and Inter-computer Communications David Rye :: MTRX3700 Communications :: Slide 1 of 87 Classification . Close-coupled . Loose-coupled . On-board busses . Serial . Backplanes . RS-232 . RS-422 . RS-485 . CAN . Ethernet David Rye :: MTRX3700 Communications :: Slide 2 of 87 Classification . Interface standard: . Software protocol: physical definition of definition of . Connectors . Order and encoding of . Pin assignments the data words being . Voltage levels transmitted (logic encoding) . Flow control . Timing and handshaking . Error detection and correction David Rye :: MTRX3700 Communications :: Slide 3 of 87 Parallel Busses . Single processor . Multi-processor . Bus mastering . Always short – less than 5m, and often much less David Rye :: MTRX3700 Communications :: Slide 4 of 87 Some Parallel Bus Standards . IEEE-488 (HP-IB, GPIB) . S-100 bus (Altair) . Intel Multibus (Intel, Sun). Adopted as IEEE-765 bus . VMEbus (Motorola 68000). Adopted as IEEE-1014 bus . ISA . PCI . PCIe . etc, etc, etc… David Rye :: MTRX3700 Communications :: Slide 5 of 87 Backplanes, sub-racks and enclosures . Backplanes provide electronic connection for bus signals between processor, memory and I/O boards CAMAC VME Bus All are passive backplanes PCIe David Rye :: MTRX3700 Communications :: Slide 6 of 87 Backplanes, sub-racks and enclosures . Sub-racks provide physical mounting and restraint for backplanes and plug-in cards Eurocard subrack and cards 19” subrack David Rye :: MTRX3700 Communications :: Slide 7 of 87 Backplanes, sub-racks and enclosures . Enclosures and cases provide mounting and environmental protection 19” Rack Case Enclosures Floor-standing 19” rack enclosure 19” Desktop case (exploded view) David Rye :: MTRX3700 Communications :: Slide 8 of 87 IEEE-488 Standard (HP-IB1 or GPIB) . -
Testing Automotive Ethernet PHY Critical New Test Challenges Facing Developers of Connected Vehicles
White Paper Testing Automotive Ethernet PHY Critical New Test Challenges Facing Developers of Connected Vehicles 1000BASE-T1 PHY 2-Wire Automotive Ethernet Introduction There is little doubt that the next few years will see significant sustained growth in the extent and importance of Ethernet networking in vehicles. Ethernet has long been The industry is converging upon 100BASE-T1/1000BASE-T1 as its preferred the standard for data communication across local PHYsical standard, and the benefits of 2-wire Ethernet cabling over area networks (LANs), with conventional technologies are simply too great to ignore. (See page 3.) the result that today’s IT and telecommunications However, the arrival of new systems and protocols requires new testing professionals are well versed in approaches, and will increase demands upon automotive research and the unique challenges of testing development engineers in terms of network expertise. (See pages 3-4.) Ethernet/IP performance. What’s more, Ethernet also presents the automotive industry with an entirely But Ethernet is a relatively new new challenge that, unless taken seriously, could prove catastrophic for proposition for automotive safety, reliability and brand reputation: network security. OEMs. Offering significant cost and performance benefits over Potentially, making Ethernet the backbone of a car’s network exposes critical legacy in-vehicle networking performance and safety systems to the risk of attack—bringing automotive technologies, it is set to play a into the frontline of the rapidly evolving world of IT security. (See page 5.) growing role in future in-vehicle networks—and it now has a viable This white paper aims to give managers, team leaders—indeed anyone with PHYsical layer standard for the a responsibility for ensuring the quality of the next-generation of vehicles—a automotive industry, in the form of OPEN Alliance 100BASE-T1/ high-level, functional overview of the key issues involved. -
Ats.T UNIX® SYSTEM V/386 RELEASE4 MULTIBUS® Reference
ATs.T UNIX® SYSTEM V/386 RELEASE4 MULTIBUS® Reference Manual ·::::\ .. '''\~:::t::. ::· UNIX Software Operation Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T All Rights Reserved Printed in USA Published by Prentice-Hall, Inc. A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632 No part of this publication may be reproduced or transmitted in any form or by any means-graphic, electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap ing, by any computer or information storage and retrieval systems, etc., without prior permissions in writing from AT&T. ACKNOWLEDGEMENT Portions of this book have been provided by Intel Corporation. IMPORTANT NOTE TO USERS While every effort has been made to ensure the accuracy of all information in this document, AT &T assumes no liability to any party for any loss or damage caused by errors or omissions or by state ments of any kind in this document, its updates, supplements, or special editions, whether such er rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth er assumes no liability arising out of the application or use of any product or system described herein; nor any liability for incidental or consequential damages arising from the use of this docu ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed, implied or statutory, including implied warranties of merchantability or fitness for a particular purpose. AT&T makes no representation that the interconnection of products in the manner described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting or license to make, use or sell equipment constructed in accordance with this description. -
Irmx Installation and Startup
iRMX® Installation and Startup RadiSys Corporation 5445 NE Dawson Creek Drive Hillsboro, OR 97124 (503) 615-1100 FAX: (503) 615-1150 www.radisys.com 07-0683-01 December 1999 EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of RadiSys Corporation. Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of RadiSys Corporation. Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and Windows 95 is a trademark of Microsoft Corporation. IBM and PC/AT are registered trademarks of International Business Machines Corporation. Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corporation. Intel is a registered trademark of Intel Corporation. All other trademarks, registered trademarks, service marks, and trade names are property of their respective owners. December 1999 Copyright 1999 by RadiSys Corporation All rights reserved. ii Quick Contents Section I. Choosing Your Installation Chapter 1. Introduction Section II. iRMX Installation Procedures Chapter 2. Installing on iRMX development/target systems that are PC-compatible Platforms with no DOS Chapter 3. Installing on iRMX development/target systems that are PC-compatible Platforms with DOS Chapter 4. Installing on iRMX Development/Target Systems that are Multibus II Platforms Chapter 5. Installing the iRMX III OS on Multibus I Systems Chapter 6. Installing on Windows NT systems used as iRMX development systems Section III. iRMX Getting Started Chapters Chapter 7. DOSRMX Specifics Chapter 8. iRMX for PCs Specifics Chapter 9. Getting Acquainted with the Operating System Chapter 10. Where To Go From Here Section IV. Appendices Appendix A. Installed Directories Appendix B. Limitations Appendix C. Configuration Requirements for PC Platforms Appendix D. -
Graphics Workstation Standards Standards Writers Play a Game of Catch-Up in an Ever Changing Industry
= -~ -= --- ~ .-.. = --- -.-. -----~---------- - IIITUi'ii1Jfi IIUIJ----- November 1988 niCDI DU - ---- --- - -- .._- Vol. 4, No. 11 -----._ --- -------._.._._--- -- Engineering Workstations Workstation markets Non-Profit Organ ization Workstation displays U.S. Postage PAID Graphics standards Phillipsburg, N. J. Permit No. 187 =Official Monthly Publication of the Society for Information Display IIITUni•Jn I lUll NOVEMBER 1988 niCDI DU VOL. 4, NO. 11 ~ =---==- =-:::::-- --=~== = --=-~ Cover: Engineering workstations are powerful design tools that can also pro 5 Editorial vide compelling design environments-as shown in this prize-winning photograph 8 Workstations-new environment, new market by Ken Gatherum of Boeing Computer The engineering workstation-possibly the most influential new Services Richland, fn c. Cheri Scott design tool of the decade-is still evolving in response to (in photo) worked with colleagues market needs and technical advances. Rick Gerald and Jennie DeVine a1 the Weslinghouse Hanford Company to Paul T. Breen design the displayed 3D graphics model of 11 Displays for workstations the Hanford 100-N nuclear reactor's graphite core stack so the reactor's chain Will the color shadow-mask CRT serve for the workstation of reaction can be optimally moderated when tomorrow? Or will some other technology supplant it? operating conditions change. Hugh C. Masterman 15 Graphics workstation standards Standards writers play a game of catch-up in an ever changing industry. Charles Hafemann 18 Sustaining Members 18 Index to Advertisers 19 Software Notes 20 ID Classified Photo: Ken Gatherum Next Month in Information Display 1988 Technology Roundup • CRTs • Flat displays: plasma, EL, LCD • Large displays • Printers Information Display II 188 J : Ollictal Monthly Publtcatton of the Soctely lor Informal ton Otsplay iDrunl•ln 1 iuil ntc;p1 11'1 Editor: Kenneth I. -
Vector Supports OPEN Alliance SIG in Introducing Broadr-Reach As a Network in the Automobile 1/3 Press Release
Press Release Vector supports OPEN Alliance SIG in introducing BroadR-Reach as a network in the automobile Stuttgart, GERMANY, 2012-08-24 – Vector is a new member of the OPEN Alliance SIG (One Pair EtherNet Alliance Special Interest Group). This interest group is promoting the introduction of BroadR-Reach – an Ethernet-based communications technology for motor vehicles. Vector is supporting this consortium with its many years of experience in creating development tools for automotive networking. In the OPEN Alliance SIG, OEMs, suppliers and tool producers coordinate specifications and examine practical applications of the new technology. One beneficial result is that the requirements of the software tools are worked out early on. In this way, Vector customers will already have practical tools available for developing, testing and calibrating BroadR-Reach networks and ECUs during the introduction of BroadR-Reach. In addition, Vector is currently developing a bus interface that supports BroadR-Reach as well as Ethernet and CAN. The interface will be available in 4th quarter 2012 and can be used as both a media converter and an interface. Carmakers want to use Ethernet in the automobile to enable new potential applications and simplify current applications. The first practical application will be a camera-based driver assistance system (Surround View System). Ethernet can be used for data exchange between ECUs at speeds of up to 100 MBit second. The Ethernet derivative BroadR-Reach, which was specially developed for the automotive industry, is used for this purpose. It is based on an unshielded twisted pair cable that makes it cost-effective, and it is easy to install in the vehicle.