<<

Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Taxonomists. All rights reserved. 96 el n uzkr17;Hnie ta.17;Poggio 1977; al. et Hunziker (Sternberg 1976; autopolyploid Hunziker and is Wells bush 1976; creosote American North 1977). South al. et in (Hunziker polyploidy to species of limited occurrence is The dynamic America 2001). temporally al. distribu- and et cytotype complex (Hunter that level geographically suggest ploidy are fossils, infer tions and to which measurements living cell studies, on guard recent of However, use made Utah). (north- southwestern Desert Nevada, southern and Mojave California, the southeastern and Arizona, in western California), occur Baja populations and southeastern hexaploid Mexico, Arizona, north-central (south-central Desert California, Sonoran the occur populations in southeastern tetraploid Mexico, Mexico), northeastern New Arizona, southern Chihuahuan sampling the Texas, Early in (western occur 1969). Desert populations Barbour diploid 1968; that Lowe indicated and Yang 1970; (2 hexaploid and eelta h pce scmoe fmorphologically- of composed is (2 counts species diploid Chromosome similar the 1980). that (Lewis complex reveal polyploid a of tn pce fNrhAeia amdsrs(el and (Wells 1977). deserts al. key- warm many et a Mabry American and 1976; for North Hunziker element resource defining of a species food both stone as a regarded polli- is and and nators, herbivores bush specialist numerous Creosote including animals, 1995). northern Turner al. 1944; and Darrow et and thou- (Benson southwest across kilometers square stands of American monospecific sands in the occurring often in Mexico, shrub spread O 10.1600/036364412X616738 DOI © Botany Systematic Coville). ( cuneifolia species America Larrea South Four of regions. regions xeric desert inhabit World New across widespread ihoeseisi ot mrc ( America North in species one with oyih 02b h mrcnSceyo ln Taxonomists Plant of Society American the by 2012 Copyright yoeei tde n szm nlssidct htthe that indicate analyses isozyme and studies Cytogenetic aratridentata Larrea h The pN ne hrce,sgetn igeoii fttaliyi h pce.Teefnig ugs eetoii fteNorth the of origin recent a suggest through spread findings rapid These its accompanying species. populations a the polyploid by in of cytotypes establishment tetraploidy diploid with from of haplo- dispersal, distinguished pairwise Hemisphere. distance origin consistently Northern of long single the are distribution via a cytotypes bush unimodal polyploid creosote genealogy, suggesting American Nonetheless, star-shaped character, structure. a indel genetic including cpDNA low expansion, and demographic differences, rapid type of signatures genetic exhibit eali ouain nedgtt ln h agn fteSnrnadMjv eet.I hlgntcaaye,NrhAmerican North analyses, and phylogenetic species, tetraploid diploid In but American Deserts. surveys, South Mojave biosystematic the and previous to sister Sonoran in is reported the co-occurrence that limited as of classical grouping with Desert, margins a monophyletic structured, South its Chihuahuan highly a the as from be comprise nuclear the along species touted to plants and the in interdigitate cytotypes and of cpDNA only American origins populations (non-coding populations, the North reside data as hexaploid of hexaploid sequence well Diploids distribution as DNA and geographic populations. races, and the cytotype tetraploid, within cytometry among find diploid, flow relationships We evolutionary use ancestors. of and we American spatial comprised Here evaluate to complex. is DNA) taxonomic species ribosomal autopolyploid The an of deserts. example warm American North Abstract— Keywords— aratridentata Larrea 21) 71:p.153–164 pp. 37(1): (2012), Larrea h ot mrcncest uh( bush creosote American North The eateto ilg,Uiest fRcetr 1 ucio al ie aps Rochester, Campus, River Hall, Hutchison 213 Rochester, of University Biology, of Department hlgn n yoegah fteNrhAeia rooeBush Creosote American North the of Cytogeography and Phylogeny Cav., pN,crmsm vlto,mlclrsseais rN,phylogeography. nrDNA, systematics, molecular evolution, chromosome cpDNA, n sas osdrdt eacasclexample classical a be to considered also is n =6 =2 aranitida Larrea opie oglvdsrb htare that shrubs long-lived comprises .cuneifolia L. x x 8 yoye Yn 97 1968, 1967, (Yang cytotypes 78) = cest uh stems wide- most the is bush) (creosote 6,ttali (2 tetraploid 26), = oetG Laport, G. Robert Cav., uaieallopolyploid putative a , 1 uhrfrcrepnec ([email protected]) correspondence for Author aratridentata Larrea ( araameghinoi Larrea aradivaricata Larrea aratridentata Larrea omnctn dtr hisnGemmill Chrissen Editor: Communicating n aratridentata Larrea e ok16701 .S A. S. U. 14627-0211 York New =4 1 oetL icly n utnRamsey Justin and Minckley, L. Robert x 52), = (DC.) Cav.) Cav., yohlaee sawdsra n clgclydmnn ao of taxon dominant ecologically and widespread a is ) , 153 Zygophyllaceae) , ta.18;Cre n uzkr19) lhuhteehas of “races” there autopolyploid the Although to nomen-clature 1997). subspecies or Hunziker species applying of and discussion little been Cortes 1989; al. et etwt eetdmgahcepninadi situ in and expansion consis- structure demographic formation? populations population recent polyploid American the with North creosote is tent among American (5) and And within North populations? other bush from phylogenetically einlyado ihnppltos 3 steNorth the Is (3) Chihuahuan, populations? the American within distri- to and/or deserts relation geographic regionally Mojave in the and races is Sonoran, cytotype the What of address (1) to bution analyses nrDNA, questions: genetic and cpDNA following population non-coding on and based phylogenetic perform in Lia tributions 2000; 1996, of Chase resolution 2001). creosote and al. or et American (Sheahan support statistical relationships North little species of provides con- monophyly but is bush the cpDNA with non-coding Similarly, sistent (Cortes 1997). relationships Hunziker species and of resolution minimal provide diver- between recent amphi- suggest gence unusual studies Allozyme its distribution. tropical regarding hypotheses genus 2000). to biogeographical the available in Felger boundaries data taxonomic 1981; molecular evaluate limited Darrow are and there Unfortunately, (Benson recognized creosote a been dune Moreover, 1977). the ( al. bush taxon, et (Raven subspecific Hunziker Peru 1974; narrowly-distributed southwestern Porter and 1972; Chile, 1963, Argentina, in occurs ssmtmsrgre scnpcfct h morphologically progenitor, presumed the and to species, conspecific similar as regarded sometimes is itntfo ot American taxon, subspecific South from distinct eew rsn ni-et nlsso yoyedis- cytotype of analysis in-depth an present we Here aratridentata Larrea .tridentata L. .tridentata L. .tridentata L. Ltridentata .divaricata L. var. oohltcadevolutionarily and monophyletic arenaria ae nfo yoer,and cytometry, flow on based n ot mrcntx but taxa American South and ot mrcnpopulations American North . 2 octtpsco-occur cytotypes Do (2) ? var. Larrea .D esn,hsrecently has Benson), D. L. arenaria .tridentata L. pce?()I the Is (4) species? .divaricata L. distinguished , Larrea h species the , rt test to or ,which Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. ouain r eoie tteRnh at n oai Garden Botanic Ana Santa Rancho Ana the 1). Santa (Appendix at California Claremont, (Rancho Herbarium, deposited sampled (Arizona-Sonora Takara for are Devender specimens J. populations Voucher Van California). and Claremont, T. Arizona) Garden, by Botanic Tucson, provided Museum, were Desert which Gray, A. 5 YTMTCBTN Vlm 37 [Volume BOTANY SYSTEMATIC 154 0.2 1.5 included n 0.5 and 2.5 Ohio), 05 07.W efre 25 performed We 2007). 2005, spacer, inbfe (10 buffer tion 0.5 fET,59 C,118gNC,127gscoe LTio X-100, solution Triton 0.5M mL of 2 mL sucrose, g 2 102.7 of HEPES, NaCl, mL g 1 g (3.58 spermine, 1.168 g KCl, buffer 0.101 g of leaves 5.97 mL 10–15 EDTA, sample, 1 of each in For specimens. placed collected were all of ploidy and tent nslc e.Otru apigicue eea ot American indi- South several each ( included stored species sampling thereafter from Outgroup and 2007–2009 gel. harvested silica of seasons were on spring the stems) during plant and vidual individuals (leaves Young recorded. genetic apart. tissues were m elevation vegetative 10 and different least coordinates GPS at individual, were sampling To each that For plants population plants. from of collected were Each marked samples probability (genets), 1). individually the randomly-selected, (Appendix maximize 5–50 California southern of consisted of region narrowly-Dunes The 1). (Appendix dip- populations distributed encompasses Arizona, hexaploid that and Mexico, region tetraploid, geographic loid, New broad a (Texas, Sonora), and Chihuahua, A. California, Coahuila, (Baja Mexico S. northern and Nevada) U. and California, southwestern the throughout 500uism;NwEgadBoas.Temccigpoeddas proceeded Thermocycling Biolabs). 94 England follows: New units/mL; (5,000 asye l (2008). al. et Ramsey 0.125 spacer, xeso f72 of extension ape eecnrfgdfr1mna 10,000 at debris. min remove 1 to for Florida) Lakes, centrifuged Miami were Inc., Parts Samples (Small mesh nylon i 1 Mfnlcnetain,0.8 concentration), final al. mM et 0.5 (10 stock, (Samuel mix mM (100 Q2 primer and each of specimens. Q1 outgroup 25 and and primers ingroup performed 17 (Markos the We of sample Ast-1 using representative a and ITS for 1998), 18S-ETS and external primers 2001), ribosomal the addi- nuclear Baldwin In the using amplified (2008). spacer we al. and regions, et transcribed cpDNA Thermocycling Ramsey the by to Massachusetts). described tion as Ipswich, performed were Biolabs, clean-up England New dard ape 02 go iiapeevdtsu a sd eamplified ( We regions used. (cpDNA) was each tissue For chloroplast (QIAGEN). silica-preserved non-coding kit of five plant mg DNeasy 10–20 QIAGEN sample, the using 40 from specimens plants 2–3 peak of sample DNA the between all ratio of the contents by peak. DNA pg control and 2C 5.2 calculated multiplying We by Software specimens Biosciences). Pro B-D CellQuest sam- determine using each 5.2.1; histogram To of (version frequency (FL2-A) York. a fluorescence as New relative University summarized the the ple, Rochester, analyzed at Medicine, we Facility level, of Sorting ploidy Cell School the Rochester in of California) Jose, San con- ences, containing internal samples filter. second an Stained a as pg). through sample passed 5.2 were each of debris to spicuous content added DNA was (2C with USA) standard CA, Concurrent Valley, California). Grass Valencia, trols, Inc., 2.5 (QIAGEN resuspension, A RNAse 0.1% 490 in ihrSinii,Ptsug,Pnslai)ta a itdwt 48 a with holder, fitted filter was was Swinnex that slurry Millipore resulting Pennsylvania) mm The Pittsburgh, (25 blade. Scientific, filter razor Fisher syringe a a with min through 1 pushed for hand by chopped i,72 min, 1 liyDeterminations— Ploidy Sampling— N xrcin mlfcto,adSequencing— and Amplification, Extraction, DNA eunigratoswr efre na12.5 a in performed were reactions Sequencing l ape eerno ASaiu lwctmtr(- Biosci- (B-D cytometer flow FACSCalibur a on run were samples All m m ia ocnrto) 0.5 concentration), final M NPmx(0m ia ocnrto) 2.5 concentration), final mM (10 mix dNTP L Taq m m fec rmr(0 Msok 0.5 stock, mM (100 primer each of L petN-trnC fbfe ih10 with buffer of l rpl32-trnL .dvrct,L cuneifolia, L. divaricata, L. m o i;cmlto fteecce a olwdb final a by followed was cycles these of completion min; 1 for C m ecinbfe (10 buffer reaction i y vrin31 ple isses.Sequencing Biosystems). Applied 3.1; (version Dye Big L i y ufr(ple isses otrCt,California) City, Foster Biosystems, (Applied buffer Dye Big L o i olwdb 5cce f94 of cycles 35 by followed min 2 for C .tridentata L. m esmldidvdasfo 2ppltosof populations 92 from individuals sampled We uiidPRpout 0.02 product, PCR purified L + n 0.1 and ) o 0mn la-pwspromda ecie by described as performed was Clean-up min. 10 for C negncsae)uiguieslpies(hwe al. et (Shaw primers universal using spacer) intergenic m m negncspacer, intergenic fpeae ru rtrct uli(iSr Con- (BioSure nuclei erythrocyte trout prepared of l C ecin ih2 with reactions PCR L aeil n Methods and Materials var. m m b standard L eue lwctmtyt ne N con- DNA infer to cytometry flow used We .tridentata L. mratehnli . ddH L 1.0 in -mercaptoethanol f5m/lpoiimidd ouinand solution iodide propidium mg/ml 5 of l arenaria + m m C ecin ih2 with reactions PCR L n 0.1 and ) Mutauebtie(S,Cleveland, (USB, betaine ultrapure 5M L and m ia ocnrto) 0.8 concentration), final M .nitida L. a ape rmteAlgodones the from sampled was rpl16 Taq m ouain swl soutgroup as well as populations 5m MgCl mM 25 L m oyeae(,0 units/mL; (5,000 polymerase standard L m intron, m )aswellas fpie 10m stock, mM (100 primer of L eoi N,0.125 DNA, genomic L m ia concentration), final M m

+ psbA o i,64 min, 1 for C rpoB-trnC eioae genomic isolated We standard L n resuspended and g m m eoi DNA, genomic L - uicmcoulteri Guaiacum Taq trnH ouethat volume L 2 2.5 , 2 )adwere and O) polymerase .tridentata L. intergenic intergenic m Taq m dNTP L stan- L Larrea for C reac- m m m L ecin eepromdi owr n ees ietos Products directions. Montage reverse using and purified forward in were performed were reactions hxpod ag .831 g.Seiesof 0.76– Specimens pg range pg). 2.79 var. and (diploid; 2.38–3.17 pg), pg range 1.53–2.14 range 0.93 (hexaploid; (tetraploid; inferred pg were 1.84 The pg), values 1). 1.19 DNA (Fig. series 2C polyploid mean a to for corresponded that expected contents values DNA of distribution trimodal .tridentata L. eie stneso ipesqec eetdtno oetimes can study more this or in ten used 1). (Appendix sequences repeated GenBank DNA in sequence All found be 1993). analysis simple Queller for of and indels (Hughes tandems we retained which as microsatellites, We primary/ contain defined not the pairs. and did used base regions peaks, always inserted/deleted calling secondary when we for with appearance, positions peak their Because pair dominant of base cause polymorphism. of uncertain DNA number the small and/or the artifacts of could peaks beneath sequencing secondary peaks These chromatograms. represent secondary DNA observed the ETS in occasionally For peaks primary we 2002). Maddison sequences, and ITS (Maddison and MacClade using aligned ually tapn ShedradEcfir19) eas siae demo- estimated distribution), also mismatch of We value boot- (modal q 1999). parametric t the parameters with Excoffier expansion compared model graphic and distribution expansion (Schneider we expected population an strapping Arlequin, a to from differences Using 1991; pairwise generated Hudson 1992). of frequency and Harpending observed (Slatkin and expansion line- evolutionary Rogers demographic in undergoing unimodal are ages which distributions, mismatch using Shreve components. by variance of performed analyses significance assess We floristic (1986). to permutations McLaughlin 1,000 and on (1944), Darrow based and ploidy Benson were by (1942), (grouped designations cytotype schemes: Desert of and grouping analysis region) level). population desert perform by to two (grouped 2000) with geographic soft- al. (AMOVA) Arlequin et the variance Schneider used molecular We 2.0; 2000). North (version al. package 40 et ware Clement the 1.21; from (version TCS sequences using 112 on conducted American were analyses genetic (study TreeBASE in found be can trees 1.1b S11545). ETS/ITS and number version the files MrModeltest to Nexus in fit and 2002). 1974) was 1988) (Nylander (Akaike model Felsenstein criterion G (hLRT, evolution + information test of GTR ratio Akaike model a likelihood I and hierarchical runs + data using GTR average parallel cpDNA data A the the two 2010). to Laport when the fit and was (Glor between assessed 0.01 frequencies was than less split Convergence was in 0.2. deviation of and standard generations, genera- factor 1,000 million every heating sampling ten each, a chains with four MrBayes of runs in two Monte tions, implemented Chain were Markov analyses gaps Metropolis-coupled with Carlo of and evaluated runs was addition node Four each stepwise replicates. for 10,000 by support bootstrap generated bases; fifth tree as treated starting tree-bisection-reconnection a addition with random analyses searches, Parsimony 2,000 sets. with data combined conducted the were on based were analyses all so ( PAUP regions and in cpDNA noncoding Ronquist implemented among as 3.1b; dif- tests (version length (incongruence ference tests MrBayes homogeneity Partition with 2003). Huelsenbeck approaches Bayesian and ein nalsmldtx.Sqecswr aulyeie using edited nrDNA manually and were cpDNA Sequences for taxa. sampled obtained Sequencher all were in data regions sequence York). New quality Rochester, (Uni- Center, sequencer High Genomics capillary Functional 3730 Rochester ABI of an versity on sequenced and Massachusetts) xaso) aiasD ttsi eciigtefeunyo lee ta at alleles calculated. of also frequency was the 1989), describing (Tajima locus statistic a D, Tajima’s expansion). eepromdwt ersnaiesml f1 nru and ingroup 17 PAUP with of parsimony maximum of using sample levels ploidy and representative three Coville (DC.) included a which specimens, with outgroup performed were 0 hlgntcAnalyses— Phylogenetic ewr n ouainGntcAnalyses— Genetic Population and Network lwCytometry— Flow eeautdtepplto itr fNrhAmerican North of history population the evaluated We 2ubfr ouainepnin,adq and expansion), population before (2Nu arenaria .tridentata L. TM ma .9p,rne16–.8p) hr was There pg). 1.61–1.98 range pg, 1.79 = (mean vrin41 eeCds n ro,Mcia)adman- and Michigan) Arbor, Ann Codes, Gene 4.1; (version a N otn austpclo tetraploid of typical values content DNA had .tridentata L. ouain.Hpoyentok eeconstructed were networks Haplotype populations. nlssof Analyses hlgntcaaye fcDAadnrDNA and cpDNA of analyses Phylogenetic var. TM Results arenaria aumpae Mlioe Billerica, (Millipore, plates vacuum p .7)o T n T ( ITS and ETS or 0.274) = * * vrin401;Sofr 2003) Swofford 4.0b10; (version i o ugs discordance suggest not did ) eunedt eeanalyzed were data Sequence . .tridentata L. ewr n population and Network 1 2uatrpopulation after (2Nu .tridentata L. eelda revealed .tridentata L. .tridentata L. p 0.412) = Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. aiyi h atr oto ftesuyae (Chihuahuan area study the of portion eastern the in marily tycnuabgosydtrietepod ee fthe of level 1). (Fig. ploidy bush the creosote American determine North tetra- cytom- unambiguously flow diploid, can that between suggesting etry values cytotypes, hexaploid content and DNA ploid, of overlap no 155 BUSH CREOSOTE OF PHYLOGENY AL.: ET LAPORT 2012] onaiso h hhaun(re) ooa bu) n oae(e)dsr ein,a omnydlnae yfoitcstudies. floristic by delineated commonly as regions, desert (red) Mojave and (blue), Sonoran (green), Chihuahuan the of boundaries cytometry. flow yoyeDistribution— Cytotype Fig. Fig. .Gorpi itiuino ili,ttali,adhexaploid and tetraploid, diploid, of distribution Geographic 2. of content DNA 2C 1. ili yoye curdpri- occurred cytotypes Diploid .tridentata L. olcin sifre by inferred as collections .tridentata L. lnswt N otn ausepce o 1inter- F1 for find expected 1). not Fig. pentaploids; values did and triploids content (i.e. We hybrids DNA cytotype 1). (populations with Appendix individuals plants AZ08-AE, sampled single and 25 hexaploid a of single AZ08-AA of out a individuals identified populations, tetraploid was of two popula- entirely In of cytotype. comprised majority vast found were were the tions populations co-occurred, two cytotypes only ( where populations), region 92 study in the mens over sampled plants ploid 3). 2, (Figs. m) south- 10–124 of range m, Dunes 55 Algodones = the (mean California in eastern areas elevation low to ited tridentata L. 5 )(NV,F (ANOVA, m) -54– range 658 m, 234 = (mean -52– populations hexaploid range range and m, m), 1,078 m, 513 (mean 1,045 populations signifi- tetraploid = m), differed (mean floristic658–1,540 elevation populations Desert average diploid Sonoran The between cantly 3). the 2, of (Figs. typical province considered region Arizona, central a in found were populations hexaploid California. Several eastern and Arizona in distributions spa- complex exhibited tially cytotypes hexaploid the and tetraploid between affinities. contrast, floristic boundary In on based defined dip- Deserts, Sonoran traditionally and between Chihuahuan the boundary to portion The closely western tetraploid 3). and the 2, loid in (Figs. Desert) cytotypes (Mojave hexaploid (Sonoran portion and central the Desert), in cytotypes tetraploid Desert), ept h ag ubro ili,ttali,adhexa- and tetraploid, diploid, of number large the Despite sfudi hssuy ooe ra dniyteapproximate the identify areas Colored study. this in found as var. arenaria 3,80 .tridentata L. =58.627, eefudt egorpial lim- geographically be to found were itiuin corresponded distributions p < .0) ouain of Populations 0.001). N 7 speci- 775 = Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. 5 YTMTCBTN Vlm 37 [Volume BOTANY SYSTEMATIC 156 T n T aafo ugoptx de 8parsimony- 78 haplotypes. added of unique Inclusion taxa five and 8). outgroup sites 17, from informative 603, and data ITS, ITS sites, 2; and variable 7, ETS 343, pairs, ETS, base to sites; similar (aligned informative sites dataset sites. informative of cpDNA informative numbers the parsimony had ITS 10 and ETS and The variable 24 including added taxa outgroup haplotypes. unique from five data and sites parsimony-informative cpDNA 107 of Inclusion 4). ure Fig- 1;. (Table diploids from cytotypes polyploid distinguished aindbs ar,vral ie,adifraiesites: informative and sites, 23 variable sites and informative psbA pairs, non-coding of variable base numbers five similar (aligned 56 the relatively of including had regions Most pairs, sites. base parsimony-informative 3,211 totaled n erteRoGad,suhr ea.B erpodpat nteSnrnDsr,ws fTco,Aioai h rnodFrs National Forest Ironwood the in Arizona Tucson, of D. California. west southern Desert, in Sonoran Park National the Tree California. in Joshua southeastern plants in near Dunes Desert, Tetraploid Algodones Mojave the B. of the Texas. flank in west southern plants Hexaploid Grande, C. Rio Monument. the near and n he aepi ne tpsto 4 in 648 position at indel pair base three includ- observed, a also were ing size varying of polymorphisms; indels 21 nucleotide haplo- however, single observed involved common aligned differences most The type 112 1). (Table the individuals 44 from recovered tridentata L. were haplotypes unique 3 7; 13, h T/T aae otie 4 uloiebs pairs, base nucleotide 946 contained dataset ETS/ITS The hlgntcAnalyses— Phylogenetic Fig. - trnH .Poorpsof Photographs 3. rpoB-trnC 4,6 3; 6, 449, , eune,wt w ao altpssae by shared haplotypes major two with sequences, 4,1,4; 14, 841, , rpl32-trnL .tridentata L. h obndcDAdataset cpDNA combined The petN-trnC, 7,2,8; 20, 674, , yoye nrpeettv aia.A ili lnsi h hhaunDsr,es fBgBn ainlPark National Bend Big of east Desert, Chihuahuan the in plants Diploid A. habitat. representative in cytotypes 7,1 ) Fifty-one 1). 1, 374, rpl16 rpoB-trnC nrn 875, intron, that ess hr a oetsaitclspotfrtemono- the American for North support the con- of statistical heuristic phyly modest the was analysis with Bayesian There consistent 0.860); sensus. topology = RI tree 0.936; a = produced CI trees steps; parsimonious 331 most = 184 (length generated of species dataset search ETS/ITS diploid Heuristic characters). the American 3,247 among South differences pair the to divaricata L. sister was which mono- the for support American statistical North strong of phyly was = There RI topology 0.992; 5). tree = identical (Fig. CI an produced steps; analysis 613 Bayesian = 0.974); (length tree parsimonious most ae rmmjrhpoye yoeo e mutational few a or one by (sepa- haplotypes haplotypes major minor (separated 49 from and haplotypes step) rated mutational major single a two by involving relationships tridentata of monophyly the differ- However, pair divaricata base characters). L. and 946 indel among 12 ences = probabilities; divergence posterior sequence 55% 1.27% and support bootstrap 66% with ersi erho h pN aae eeae single a generated dataset cpDNA the of search Heuristic ouainGntcAnalyses— Genetic Population 9 otta upr and support bootstrap 99% pN altpsrvae ope genealogical complex revealed haplotypes cpDNA 033 eunedvrec 0idladbase and indel 10 = divergence sequence (0.313% and .tridentata L. .tridentata L. a togyspotd(i.5). (Fig. supported strongly was .tridentata L. aratridentata Larrea 9 otro probabilities), posterior 99% ewr nlssof analysis Network cnretndswith nodes (congruent cnegn nodes (convergent var. arenaria nthe on L. Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. 02 AOTE L:PYOEYO ROOEBS 157 BUSH CREOSOTE OF PHYLOGENY AL.: ET LAPORT 2012]

Table 1. Chloroplast DNA haplotypes recovered from North American L. tridentata.

psbA- rpl32- rpl16 rpoB- petN-

trnH trnL intron trnC trnC

00112400122444445555666666001134445778812233466678888 0 23012416316233556679122567890542785127721417034562233 4 Haplotype 48293764822049496716756371511923298502339207628456801 9 a - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - GT - GACAA G b - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - G - - GACAA G c - - CACAAT - T TGT AAT T - - ACT - - AGT G - AGT - CT AT ACAA - GC - G - - GACAA G d - - CACAAT - T TGT AAT TT - ACT - - AGT G - AT T - CT AT ACAA - GC - GT - GACAA G e - - CACAATAT TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - GT - GACAA G f - - CGCAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - GT - GACAA G g - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - GT - GCCAA G h - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CGAT ACAA - GC - GT - GACAA G i - - CACAAT - T TGT ACT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - GT - GACAA G j - - CACAAT - T TGT AAT T - - ACT - - AGT - - AT T - CT AT ACAA - GC - GT - GACAA G k - - AACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - G - - GACAA G l - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - G - - AACAA G m - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - GT AT ACAA - GC - G - - GACAA G n - - CACAA - - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - G - - GACAA G o - - CACA - T - T TGT AAT T - - ACT - - ACT G - AT T - CT AT ACCA - GC - G - - GACAA G p - - AACAAT - T TGT AAT T - TACCTTAGT G - AT T - CT AT ACAA - GC - G - - GACAA G q - - CACAAT - T TGT AAT T - - T CT - - AGT G - AT T - CT AT ACAA - GC - G - - GACAA G r - - CACAAT - T TGT AAT T - - ACT - - AGT G - AGG - CT AT ACAA - GC - G - - GACAA G s - - CACAAT - T TAT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - G - - GACAA G t - CCACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - GT - GCCAA G u - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - G - - GCCAA G v - - AACAAT - T TGT AAT T - - ACT - - AGT GTAT T - CT AT ACAA - GC - G - - GACT A G w - - CACAAT - T TGT AAT T - - ACT - - AGT GTAT T - CT AT ACAA - GC - G - - GACAA G x - - CACAAT - T TGT AAT T - - ACT - - AGT G - CT T - CT CT ACAA - GC - G - - GCCAA G y - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T TCT AT ACAA - GC - G - - GACAA G z - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GG - G - - GACAA G a’ - -CACAAT- TTGTAATT- -ACT- -AGTG-ATT-CTATACAA-GC-AT-GACAA G b’ - -CACAAT- TTGTAATT- -ACT- -AGTG-ATT-CTATACAA-GC-GT-GACTA G c’ - -CACAAT- TTGTAATT- -ACT- -AGTG-AGT-CTATACAA-GC-G- - GACAC G d’ - -CACAAT- TTGTAATT- -ACT- -AGTG-ATT-CTATACAA-GC-G- - GCCAA A e’ - - AACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - G - - GAGGA G f’ - - AACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT ACAATGC - G - - GACAA G g’ - - AACAAT - T - GT AAT T - - ACT - - AGT G - AT T - CT AT ACAA - GC - G - - GACAA G h’ - -CACAAT- TTGTAATT- -ACT- -AGTG-ATT-CTATACAA-GC-G- - GACAG G i’ - -CACAAT- TTGTAAGT- -ACT- -AGTG-ATT-CTATACAA-GC-G- - GACAA G j’ - -CACA- T- TTGTAATT- -ACT- - - GTG-ATT-CTAT- CAA-GC-G-AGACAA G k’ - -CACAAT- TTGGAATT- -ACT- -AGTG-ATT-CTATACAA-GC-G- - GACAA G l’ G-CACAAT- TTGTAATT- -ACT- -AGTG-ATT-CTATACAA-GC-G- - ACCAA G m’ A-CATAAT- TTGTCATT- -ACT- -AGTG-ATT-CTATACAA-GCTG- - GACAA G n’ A-CACAAT- TTGTAATT- -ACT- -AGTG-ATT-CTATACAA-GC-G- - GACAA G o’ - -CACAAT- TTGTAATT- -ACT- -AGTG-ATT-CTATACAA-AC-G- - GACAA G p’ G-CACAAT- TTGTAATT- -ACT- -AGGG-ATT-CTATACAA-GC-G- - AACAA G q’ - -CACAAT- TTGTCATT- -ACT- -AGTG-ATT-CTATACAA-GC-G- - GACAA A r’ - -CACAAT- TTGTAAT- - -ACT- -AGTG-ATT-CTATACAA-GC-G- - GACAA G s’ - -CACAAT- TTATAAT- - -ACT- -AGTG-ATT-CTATACAA-GC-G- - GACAA G t’ - -CACAAT- TTGTAATT- -ACT- -AGTG-ATT-CTATACAC-GC-GT-GACAT G u’ - -CACAAT- GTGTAATT- -ACT- -AGTG-ATT-CTAGACAA-GC-GT-GACAA G v’ - -CACA- T- TTGTAATT- -ACT- -AGTG-ATT-CTATACAA-GC-GT-GACAA G w’ - - CACAAT - T TGT AAGT - - ACT - - AGT G - AT T - CT AT CAAA - GC - G - - GACAA G x’ - - CACAAT - T TGT AAT T - - ACT - - AGT G - AT T - CT AT CAAA - GC - G - - GACAA G y’ - -CAC- - T- TTGTAATT- -ATT- -AGTG-ATT-CTATACAA-GC-GT-GACAA G Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. .0] N fe ouainepnin q expansion, population after 2Nu 1.201]; ,9.8] h bevdvleo aiasDws-2.432. was interval confidence 95% D recombi- a had (no size) Tajima’s model population neutral constant of nation, a on value based simulations observed Coalescent The 9,097.188]. altp n soitdmnrhpoye)(al 1; endemic (Table sand-dune the haplotypes) from tridentata minor L. recovered Haplotypes associated 4). (major and Fig. haplotypes a of group haplotype distinct were a haplotypes harbored diploid haplotypes), populations While minor associated populations and 4). hexaploid b haplotype and Fig. (major (i–m), tetraploid 1; 1.8% among (e–h), shared (Table widely 2.7% of (n–y’) d), frequencies 0.9% (c, fre- respectively; and 3.6% at 15.2%, were occurred haplotypes b) and minor (a, 24.1% haplotypes of major quencies The 4). (Fig. steps) 37 [Volume BOTANY SYSTEMATIC 158 h ewr,adsmlro dnia otoeo erpodand tetraploid of of those cytotypes hexaploid to identical or similar and network, the rqec n hddt itnus liylvl;salulblddt ersn nerdmttoa tp mn altps ili lnsare plants Diploid haplotypes. among steps mutational the inferred in represent insertion base-pair dots three unlabeled a of small possession levels; by plants ploidy polyploid distinguish from distinguished to shaded and frequency tpiepplto xaso oe o ali locus haploid a for model from( expansion significantly population differ not stepwise did a that differences) 2.3 distribution = unimodal (mean a exhibited haplotypes cpDNA among prov- 29.7%; desert and or (22.0 ploidy ince significantly by defined 10.9%) associated groupings and nonetheless population with (4.5 was Variance populations 2). among (Table than rather 67.1%) and in variation n ofdneitras( intervals confidence and au,t .8 150279;2ubfr xaso,q expansion, before 2Nu [1.510–2.799]; 2.383 t, value, p Fig. MV niae httemjrt fcDAsequence cpDNA of majority the that indicated AMOVA < .0)(i.6.Etmtso eorpi parameters demographic of Estimates 6). (Fig. 0.001) .Ntokaayi fcDAhpoye eoee rmNrhAmerican North from recovered haplotypes cpDNA of analysis Network 4. var. .tridentata L. arenaria p < .tridentata L. eebodydsrbtdthroughout distributed broadly were a on ihnppltos(65.8 populations within found was .0)(al ) ariedifferences Pairwise 2). (Table 0.001) a .5 eea olw:modal follows: as were 0.05) = Fg 4). (Fig. 1 ,3.0 [32.281– 7,730.000 , 0 [0– 0 , altpsi ot mrcncest uhwsulkl to ( unlikely chance was by bush recovered been creosote cpDNA have American minor North of occurrence in excess haplotypes the Thus, 1.863]. [-1.595, of ariedfeecs=24 aiasDws-.1 ([-1.772, -1.917 was D Tajima’s 2.4, 1.739], = -2.362 differences was pairwise D Tajima’s 2.4, 1.836], = ([-1.763, differences was pairwise the D of number Tajima’s diploids, 1.921], 1.3, = For ([-1.724, differences -2.226 individually. pairwise of cytotype number mean each for culated ( intervals confidence and parameters in eefudfrhres hnpeiul eotd and reported, previously than east further found popula- were Hexaploid tions Arizona. western mixed and broadly central were throughout however, hexaploids, and Populations tetraploids example. of for tetraploids, of east- the populations than ernmost west further found were diploids of two populations only defined, well particularly seems and cytotypes diploid tetraploid between boundary and The Yang 1969). 1970; Barbour 1968; 1968, Lowe 1967, (Yang as studies Deserts, classical Mojave in and reported Sonoran, Chihuahuan, the cor- to of generally distribution respond populations the hexaploid that and found tetraploid, We diploid, 3). 2, (Figs. topographically terrain in occur complex and America, North western of areas imthdsrbtosadetmtso demographic of estimates and distributions Mismatch Cytogeography— rpoB-trnC p .tridentata L. 0.016). = negncsae Tbe1). (Table spacer intergenic p < ouain.Crlsaeszdt elc haplotype reflect to sized are Circles populations. .0) o ealistema ubrof number mean the hexaploids for 0.001); h yoye of cytotypes The p Discussion .0) o erpod h mean the tetraploids for 0.002); = p < 0.001). .tridentata L. a .5 eeas cal- also were 0.05) = pnlarge span Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. mn rus22.0 groups Among geography by defined Groups and (Hagberg levels ploidy rep- cytotype between Ellerstro by minority barriers caused reflect selection roductive frequency-dependent may single a within finding exclusion, observed This rarely co- was populations. however, range, cytotypes the of of Turner portion occurrence western 1986; the (McLaughlin in Deserts Even 1994). Sonoran of con- and distinctiveness is Mojave there floristic the contrast, the In about 1990). disagreement al. siderable et (Betancourt evolution- period extended formation ary an the over their and of independently suggests occurred endemism Deserts has floristic Sonoran since the and have example, Chihuahuan but For races, obscured. chromosomal been the separated formerly 2). (Fig. sites study two in cytotypes hexaploid and tetraploid of occurrence sympatric observed we 159 BUSH CREOSOTE OF PHYLOGENY AL.: ET LAPORT 2012] egah dsr)adpod level. ploidy and (desert) geography (botto analyses Bayesian of probabilities posterior and (top) analyses parsimony of bootstrapping on based nodes for support statistical indicate ihnppltos65.8 67.1 populations Within populations Within mn rus29.7 4.5 10.9 groups within populations Among groups Among level ploidy by defined Groups groups within populations Among yoyedsrbtosmyrfethsoia aresthat barriers historical reflect may distributions Cytotype Table Fig. .Cnesspyoeyo ot n ot American South and North of phylogeny Consensus 5. ¨ .Aayi fmlclrvrac o pN altpsrcvrdfo ot American North from recovered haplotypes cpDNA for variance molecular of Analysis 2. 99 ei 95 93.I sas rpsd how- proposed, also is It 1983). 1975, Levin 1959; m nlssPretg fvrainFxto ne ttsia significance Statistical index Fixation variation of Percentage Analysis Larrea ae nfv o-oigcDArgos(et n rN rgt.Numbers (right). nrDNA and (left) regions cpDNA non-coding five on based ouain snee orsleteepsiiiis The possibilities. these resolve to South American needed South closely-related is of from occasion, sampling populations occasions further single but few a sources, a on American on North happened perhaps of have or Colonization to appears studies. morphological, America from allozyme inferred and taxa cytogenetic, these of relationship ary tdfo pN n rN upr h oohl of monophyly American the South support nrDNA tridentata and L. cpDNA from Ignace ated 1998; Schemske 2009). al. and et 1992; Husband Maherali 2009; 1997; Lumaret Huxman al. and and et environmental Thompson Soyza different De 1988; in thus (Lumaret occur to and conditions “pre-adapted” attributes, be physiological may and life-history, logical, of cytotypes the that ever, rgno ot mrcnLarrea— American North of Origin Fg ) ot American North 5). (Fig. .divaricata L. f f f f f f CT CT SC SC .tridentata L. ST ST 0.06 = 0.14 = 0.34 = 0.30 = 0.33 = 0.22 = .tridentata L. ofrigtecoeevolution- close the confirming , ihpplto ruig ae on based groupings population with , aeatraepheno- alternate have Larrea hlgne gener- Phylogenies ssse othe to sister is p p p p p p < < < < < < .0,d 37 = df 0.001, 37 = df 0.001, .0,d 72 = df 0.001, 2 = df 0.001, 72 = df 0.001, 2 = df 0.001, m). Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. 97 00.Hwvr eas fteDAsqec differ- sequence al. DNA the et between observed of ences (Yang because However, crosses 2000). experimental 1977, in compatibility repro- partial ductive and distributions allopatric species’ the by cated one hnsgetdb i ta.(01 .–. mya) 4.2–8.4 (2001; gene al. chloroplast et the pair- Lia on by ITS based is suggested timeframe mya; This than mya). 0.52–1.57 younger 0.42–3.36 0.672%, 0.313%, = North divergence = wise of (cpDNA divergence Pliocene colonization late or pairwise that Pleistocene the suggests in occurred America here diver- Sequence reported 2006). al. years et gence million Kay per (ITS; 0.8% cpDNA nrDNA 0.1– non-coding non-coding and for 2000) for Muse years 1987; al. million et per (Wolfe 0.3% 0.1– of order omlclrdt oetmt iegnetm between time divergence is estimate than to longer tridentata turned data L. have far and molecular however, deserts record, to fossil has American the bush by North creosote documented that in suspect of botanists occurred sediments Most 1996; al. (Woolfendon 2000). lake et ybp Bader 47,000–109,000 Hunter in to 1990; dates evidence Valley al. Death palynological packrat et while Betancourt from ybp; 2001), 18,700 1976; recovered (ca. (Sternberg mum macrofossils old and years ( thousand 1980), al. several et esti- Vasek be Lia been have 1990; to Desert al. Mojave mated the et in Betancourt clones 1977; Individual 1969; 2001). 1972, (Barbour the al. latitudes dating northern et in to Hunziker bush interest creosote longstanding of been arrival has there pairs) deserts, base 946 among changes (12 pairs) ETS/ITS. 1.27% for base and 3,198 cpDNA separate among for changes as sequence (10 taxa Nonetheless, 0.313% approximately the conspecific. of as between recognition divergence than favor rather we species 1977), al. in et populations polyploid of absence 6 YTMTCBTN Vlm 37 [Volume of status taxonomic BOTANY SYSTEMATIC 160 rdfo ot American North from ered natraeapoc odtn h mhtoia dispersal amphitropical the dating of to allozymes. approach on alternate based An mya) 0.6–1.2 (1997; Hunziker and Cortes xetdb oe fpplto expansion. population of model a by expected Neotoma N usiuinrtsi lwrn lnsaeo the on are plants flowering in rates substitution DNA eas fiseooia oiac nNrhAmerican North in dominance ecological its of Because Fig. Larrea .Piws imthdsrbto o pN altpsrecov- haplotypes cpDNA for distribution mismatch Pairwise 6. idn date middens ) oue nNrhAeia ebvr n pollina- and herbivore American North on focuses and .divaricata L. .tridentata L. .tridentata L. .tridentata L. .tridentata L. .tridentata L. Hne ta.20;Lae l 2001). al. et Lia 2001; al. et (Hunter h ahdln niae values indicates line dashed The . rbcL vs. and and otels lca maxi- glacial last the to .divaricata L. n iia ota of that to similar and .divaricata L. .divaricata L. .divaricata L. scompli- is (Hunziker n the and , slow, is li niiul aeteisrin(i.4.Oeo these of One 4). tetra- (Fig. two insertion Furthermore, the lineage. have diploid individuals the ploid in only American fixing South the of by populations exhibited mutation as divaricata backwards state, L. i.e. ancestral the reversion, to character a represents the of occurrence tridentata L. ( nitida species L. American South sta the that is unexpected. not hexa- is and cytotypes the hybrids tetraploid ploid Thus, between triploid differences 2007). sequence Ramsey than of 2002; paucity rule, 1998, fertile Schemske a more and as (Ramsey are of and rate hybrids populations, the diploid pentaploid exceeds in far formation hexaploid populations tetraploid of tetraploid rate The sequences in 2007). al. formation DNA et Soltis characteristic 1999; Soltis develop and (Soltis to had have extensively time formed (iii) insufficient have or have progenitors; tetraploid (ii) (i) their American populations; with either hybridized North tetraploid hexaploids the in that among recurrently but time bush, single tetra- creosote that a suggest evolved findings ploidy These cytotypes. we tetraploid hexaploid contrast, between and differences In sequence 4). consistent (Fig. no found cytotypes hexaploid and tetraploid soitdwt liy satincetd ne nthe in indel tri-nucleotide a trnC as ploidy, with associated and (Rogers and populations 5) expanding 1992). Harpending 6) of 4, (Fig. characteristic (Figs. distribution is mismatch that star-shaped DNA unimodal were the exhibited haplotypes relationships or cpDNA Genealogical geography of 2). either prior (Table with boundaries with associated population consistent structure and, shared genetic 1) little or diploid (Table unique in individuals were work sequences few haplotypes recovered a cpDNA all by b) Most of and 4). (a 39.3% (Fig. haplotypes comprised cpDNA together common that two population. only founding found small We a from expansion demographic of geography population by a supported below). suggest also (see analyses criteria is genetic and conclusion late and sources This mid-Pleistocene Pliocene. data the between of origin recent variety relatively a time exact on the based know never fossil may that of absence botanists the and in calibrations, times divergence of in estimates bush precise creosote of 2007). arrival Crespi the and for (Joy America mya North 3.88–4.23 of bound .–.%prmlinyas(aua19;Boe 94,the non- between 1994), and divergence Brower pairwise 1992; COI of (Tamura observed rate years divergence in million mtDNA divergence per a 1.1–1.2% on via Based radiation Crespi location. and adaptive feeding Joy host an by represent shown to recently were (2007) and 1989) Price and o rusta pcaieo rooebs safood a as bush creosote are (Cecidomyiidae) the on of group midges specialize gall example, For that resource. groups tor n opiaint h frmnindinterpretation aforementioned the to complication One h laeteiec fpplto eei tutr was structure genetic population of evidence clearest The Structure— Genetic and Phylogeography provide to variable too are evolution molecular of Rates Larrea negncsae itnuse ili yoye from cytotypes diploid distinguished spacer intergenic n oyli yoye fteNrhAmerican North the of cytotypes polyploid and ) Larrea rpoB-trnC rie nNrhAeia oehls,estimates Nonetheless, America. North in arrived ri h ne a oyopi nancestral in polymorphic was indel the if or , hr h eein(al ) ti nla fthe if unclear is It 1). (Table deletion the share .tridentata L. pcait of specialists .tridentata L. .tridentata L. rpoB-trnC ne per ob eie insertion: derived a be to appears indel ssgetv frcn n rapid and recent of suggestive is eeini polyploid in deletion .cuneifolia L. ihteisrinsubsequently insertion the with .tridentata L. Asphondylia Drne l 05,teewas there 2005), al. et (Duran , 93)pt lower a puts (9.3%) pcait (Waring specialists shnyi auripila Asphondylia .divaricata L. Larrea h phylo- The .tridentata L. -specialist and , rpoB- Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. ae,N .20.Ple nlsso et alysdmnsdeposited sediments Valley Death of analysis Pollen 2000. identification. E. model N. statistical Bader, the at look new A 1974. H. Akaike, of University JR. a to and Research (DEB-0953551) Multidisciplinary grant for to CAREER Award grant Provost NSF research Rochester an student as America well Society of as Botanical sup- Society RL, Torrey was Botanical a research a (DEB-1010738), and This grant fellowship, DDIG manuscript. NSF this an provided of by Ramsey draft for (Arizona-Sonora ported T. a Garden) and on Ng, Devender Botanic J. comments Ana Green, Van helpful A. Santa samples. (Rancho T. outgroup Takara of and provision J. for and Ramsey laboratory; T. Museum) and the Desert Green, Widener, A. L. in Fox, Pullman, H. E. Hatem, assistance field; L. the Reiss, in E. assistance Hardy, O. for Strangas M. and Castiglione, n ohro pN n T/T altpsietclto hexaploid identical and haplotypes tetraploid ETS/ITS of and those cpDNA harbor to and 02 AOTE L:PYOEYO ROOEBS 161 var. reveal analyses Our 2000). its 1981; Felger Darrow of to and (Benson investigation endemism history evolutionary prior or and no level ploidy was morphology there of Dunes, basis Algodones the the on defined was intro- creosote and polyploid populations. hybridization and bush diploid evaluating modern-day for among marker gression useful a BUSH be this CREOSOTE OF of PHYLOGENY AL.: existence ET trnC LAPORT the of for diploid sampling and explanation population best Additional the individual. be may tion muta- Backward hundred populations. diploid several known from 1), kilometers near Appendix sampled (SN07-B, was Mexico 4) Fig. Hermosillo, a, (haplotype However, individual neopolyploidy. second or the flow gener- gene probably intercytotype diploid was by and near ated 1) sampled Appendix was (AZ07-S, 4) populations Fig. a’, (haplotype individuals 2012] lmn,M,D oaa n .A rnal 00 C:acmue pro- computer a TCS: 2000. Crandall. A. K. and Posada, D. M., Clement, convergence and radiation morphological Rapid 1994. Z. V. A. Brower, 1990. eds. Martin, S. P. and Devender, Van R. T. L., J. Betancourt, 1981. Darrow. A. R. and L. Benson, 1944. Darrow. A. R. and L. Benson, between similarity genetic of Patterns 1969. G. M. Barbour, rgna ueaatdeoyeo h oewidespread more level. subspecific the the at of ecotype tridentata dune-adapted L. a as origin arenaria 2). tetraploid ploid (Fig. sites, hexaploid few are a Dunes Algodones In the to Coville of tetraploid(DC.) populations nearest the of moreover, and Coville, boundary range western 4). Fig. 1; (Table nul aa.Nntees pcmn of specimens Nonetheless, data). unpubl. dniibei h il R aotpr.os) ae nthese on readily Based obs.). are that pers. suggest and Laport we findings, traits, (R. field floral the and in identifiable leaf, stem, of combination aratiett a.arenaria— var. tridentata Larrea Acknowledgments. ewe 6 n 1 ka. 114 and 166 between Control Automatic on Transactions rmt siaegn genealogies. gene estimate to gram USA Sciences evolution. DNA mitochondrial butterfly the of races among change biotic of years Press. Arizona 40,000 last The middens: Press. Arizona of University Tucson: shrubs fNrhadSuhAmerica. South and North of ne hrce.Rgrls fishsoy h ne may indel the history, its of Regardless character. indel .tridentata L. r itnuse from distinguished are usn nvriyo rzn,BooySineBlei o 6. No. Bulletin Science Biology Arizona, of University Tucson: . D. oil,adwrat otne recognition continued warrants and Coville, (DC.) .tridentata L. 1 6491–6495. 91: aratridentata Larrea D. oil cu nsmar R Laport (R. sympatry in occur Coville (DC.) etakS aot .Lpr,J g M. Ng, J. Laport, M. Laport, S. thank We ieaueCited Literature Palynology .tridentata L. a lrf h rgno the of origin the clarify may .tridentata L. eioiserato Heliconius mrcnMdadNaturalist Midland American aulo otwsendsr re and trees desert southwestern of manual A re n huso h otws deserts southwest the of shrubs and Trees rceig fteNtoa cdm of Academy National the of Proceedings .tridentata L. 9 716–723. 19: oeua Ecology Molecular 4 49–61. 24: var. .tridentata L. var. hssbpcfctaxon subspecific This arenaria var. arenaria nerdfo atrsof patterns from inferred arenaria usn nvriyof University Tucson: . .tridentata L. arenaria D. oil ya by Coville (DC.) .tridentata L. ob tetraploid be to eie tthe at resides :1657–1660. 9: D. Coville (DC.) aradivaricata Larrea a recent a had .divaricata L. .tridentata L. n hexa- and 1 54–67. 81: Packrat (DC.) rpoB- IEEE var. . D Zee. u van W. r J. and a Martinez-Meza, n E. Whitford, ,K G. .L W. G., . A. Soyza, ,TDe .K .L in Isozymes o 1997. Hunziker. w H. J. r and C. e M. Cortes, y ,R .P .P a r m e n t e r ,a n dP .O .L e w i s .2 0 0 5 . uhs .R n .C ule.19.Dtcino ihypolymorphic highly of Detection 1993. Queller. C. D. and R. C. Hughes, Ellerstro S. and A. Hagberg, ubn,B .adD .Shmk.19.Cttp itiuina a at distribution Cytotype 1998. Schemske. Devender, W. D. Van and R. C. T. B. Husband, Riddle, R. B. Betancourt, L. J. L., K. Hunter, of subspecies Are 2010. Laport. G. R. and E. R. Glor, esnti,J 98 hlgne rmmlclrsqecs Inference sequences: molecular from Phylogenies 1988. J. Felsenstein, 2000. S. R. Felger, gae .D n .E umn 09 iiain ophotosynthetic to Limitations 2009. Huxman. E. T. and D. D. Ignace, Yang. W. T. and Naranjo, A. C. Poggio, L. Palacios, A. 1972. R. Poggio. H., J. L. Hunziker, and Valesi, De G. A. Palacios, A. R. H., J. Hunziker, ue .V 00 xmnn ae n atrso uloiesubstitution nucleotide of patterns and rates Examining 2000. V. S. Muse, major and relationships Higher-level 2001. Baldwin. G. B. and S. duplica- Markos, Genome 2009. Husband. C. B. and Walden, E. Analysis A. 4.05: H., MacClade Maherali, 2002. Maddison. P. W. and R. D. Maddison, 1977. Jr. Difeo R. D. and Hunziker, H. J. J., T. Mabry, levels. ploidy and strategies Adaptive 1988. R. Lumaret, cagln .P 96 lrsi nlsso h otwsenUnited southwestern the of analysis Floristic 1986. P. S. McLaughlin, 2001. Hunziker. H. J. and Comas, I. C. Confalonieri, A. V. V., V. Lia, 1980. ed. plants. H. flowering W. Lewis, in novelty and Polyploidy 1983. A. D. populations. Levin, plant local in exclusion cytotype Minority 1975. A. nuclear D. of Levin, survey A 2006. Hodges. A. S. and Whittall, B. J. M., K. insects gall-inducing Kay, of radiation Adaptive 2007. Crespi. J. B. and B. J. Joy, eei iest nCiuha eetppltoso creosotebush of populations Desert Chihuahuan (Zygophyllaceae: in diversity Genetic plant annual associated and fertility, soil habitat, communities. to relation in ( ogy creosotebush in Variation 1997. autopolyploidy. and vicariants tridentata Larrea irstlielc naseiswt itealzm polymorphism. allozyme little with species Ecology a Molecular in loci microsatellite rye. aneuploid and tetraploid mito- A distinct? j.ympev.2010.11.004. genetically also pattern analysis. and chondrial color dewlap in differ ic h atGailMxmmi h ot mrcndesert American in North zone contact diploid-tetraploid distributions the race in Ploidy Maximum 2001. Glacial Spaulding. shrub, G. Last W. the and since Cole, L. K. n reliability. and Mexico ucinars esnin season across function Inc. Ross, deserts and Hutchison World Dowden, New in cytoge- In evolution. hybridization, and morphology, netics, distribution, Geographic 1977. albumins. seed Garden and Botanical Missouri compounds, phenolic genetics, in disjunctions Species (Onagraceae). nplants. in stress. of lineages water to responses physiological of Phytologist New evolution The the and tion Sunderland: 4.05. Version evolution. character Associates. Sinauer and phylogeny of Inc. Ross and Hutchinson deserts Dowden, World Stroudsburg: New 6. vol. in Larrea of chemistry and to arrival Plantarum Œcologia bush creosote of time probable America. the North and evolution ulate ncnrsigsi ufcsi h ooa Desert. Sonoran the in surfaces Environments soil contrasting on States. sequences. ETS) and (ITS spacer Botany transcribed Systematic external and internal of phylogeny Molecular Naturalist effects. Taxon history life with clock Biology Evolutionary molecular BMC approximate an angio- across sperms: rates substitution spacer transcribed internal ribosomal species. host-plant single a within 4 35–43. 24: usn nvriyo rzn Press. Arizona of University Tucson: . h ra ai Naturalist Basin Great The aratridentata Larrea ln oeua Biology Molecular Plant 2:1–25. 122: Lessingia lr fteGa eiroadRoClrd fnorthwestern of Colorado Rio and Desierto Gran the of Flora 3 626–633. 73: mrcnJunlo Botany of Journal American mrcnMdadNaturalist Midland American nulRve fGenetics of Review Annual oeua hlgntc n Evolution and Phylogenetics Molecular oyliy ilgclrelevance biological Polyploidy, aratridentata Larrea Zgpylca) td ftoamphitropical two of study A (Zygophyllaceae): 6 168–183. 26: :131–137. 2: oeua hlgntc n Evolution and Phylogenetics Molecular :83–93. 9: 8:721–731. 184: Cmoia,Atra)bsdo ula rDNA nuclear on based Astereae) (Compositae, SIPSnhssSre .Stroudsburg: 6. Series Synthesis US/IBP , . ¨ lblEooyadBiogeography and Ecology Global .15.Tecmeiinbtendiploid, between competition The 1959. m. Larrea rooebs:Booyadceityo Larrea of chemistry and Biology bush: Creosote Larrea 9 224–233. 59: :36. 6: aratridentata Larrea Hereditas vdnefo opooy cyto- morphology, from Evidence : n t lis(yohlaee:Retic- (Zygophyllaceae): allies its and ). Genetica 6 46–65. 46: mrcnJunlo Botany of Journal American 2 25–43. 42: aratridentata Larrea Chamerion Evolution 5 369–416. 45: 5 1688–1694. 85: 0:115–124. 101: 2 521–565. 22: 3:13–26. 137: SIPSnhssSeries Synthesis US/IBP , e ok lnmPress. Plenum York: New . 1 784–795. 61: cestbs)growing (creosotebush) ( Epilobium rooebs:Biology bush: Creosote aradivaricata Larrea aoymorphol- canopy ) Anolis caŒcologica/ Acta 1 309–320. 21: ora fArid of Journal o:10.1016/ doi: , ) naso the of Annals angustifolium 0 521–533. 10: iad that lizards 2 722–729. 92: American and Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. ots .E,P .Sli,D .Shmk,J .Hnok .N Thompson, N. J. Hancock, F. J. Schemske, W. D. Soltis, S. P. E., D. Soltis, otr .M 94 ijntdsrbto nteNwWorld New the pop- natural in in neopolyploids distribution and gametes Unreduced Disjunct 2007. J. 1974. Ramsey, M. D. Porter, ots .E n .S ots 99 oyliy eurn omto and formation recurrent Polyploidy: 1999. Soltis. S. P. and E. D. Soltis, mitochon- of comparisons Pairwise 1991. Hudson. R. R. and M. Slatkin, America. North of vegetation desert The 1942. F. Shreve, wfod .L 03 PAUP 2003. L. D. Swofford, of forms Growth 1976. L. Sternberg, 37 [Volume BOTANY SYSTEMATIC diver- adaptive Rapid 2008. Husband. B. and Robertson, A. J., Ramsey, plants. flowering in Neopolyploidy 2002. Schemske. W. D. and J. Ramsey, rates and mechanisms, Pathways, 1998. Schemske. W. D. and J. Ramsey, DNA Nuclear 1989. Hunziker. H. J. and Burghardt, D. A. Evolu- University: L., Uppsala Poggio, MrModelTest1.1b. 2002. A. A. J. Nylander, 162 aul . .Bcmi,J os,adF hedre.19.ISsequences ITS 1998. Ehrendorfer. F. and Jobst, phyloge- J. Bachmair, Bayesian A. 3: R., MrBayes Samuel, 2003. Huelsenbeck. P. J. and F. Ronquist, waves makes growth Population 1992. Harpending. H. and R. A. Rogers, haa,M .adM .Cae 00 hlgntcrltosiswithin relationships Phylogenetic 2000. Chase. W. M. and C. M. Sheahan, summary. A disjunctions: species Plant 1972. H. and P. North Raven, of floras the in relationships Amphitropical 1963. H. P. Raven, aia .18.Saitclmto o etn h eta mutation neutral the testing for method Statistical 1989. F. Tajima, unr .M n .E rw.19.Dsrlns p 4–2 in 143–221 Pp. Desertlands. 1994. Brown. E. D. and of M. R. dynamics Turner, evolutionary The 1992. Lumaret. in R. substitution and D. nucleotide J. of Thompson, pattern and rate The 1992. K. Tamura, haa,M .adM .Cae 96 hlgntcaayi of analysis phylogenetic A 1996. Chase. W. M. and C. M. Sheahan, of Comparison 2007. Small. L. R. and Shilling, E. E. Lickey, B. C. E. J., K. Shaw, Miller, J. Liu, W. Farmer, B. S. Beck, T. v2.000, J. ARLEQUIN Lickey, 2000. B. Excoffier. E. J., L. Shaw, and Roessli, D. S., Schneider, demographic past of Estimation 1999. Excoffier. L. and S. Schneider, prs aew rsl neetmtdtenme fspecies? angio- of in number Autopolyploidy the 2007. underestimated Judd. grossly S. Taxon we W. have and sperms: Husband, C. B. ltosof ulations Zygophyllaceae. Heredity ( evolution. genome popula- growing exponentially and stable tions. in sequences DNA drial 195–246. 8: races. ec nnwworld new in gence Ecology in Reviews Annual 467–501. 29: plants. flowering in formation polyploid of of taxa polyploid and diploid in variation Centre. Biology tionary ewe uoMdtraen atAitcadNrhAeia taxa of American North relationships and phylogenetic East-Asiatic Euro-Mediterranean, unexpected between suggest rDNA nuclear from models. mixed under inference netic differences. genetic Evolution pairwise and of distribution the in Garden Botanical Missouri pca mhsso Zygophylloideae. with on regions, plastid emphasis three special of sequences DNA on based Zygophyllaceae 279–300. America. South yohssb N polymorphism. DNA by hypothesis .E rw.Sl aeCt:Uiest fUa Press. Utah of University City: Mexico Lake northwestern Salt Brown. and E. D. States United southwestern communities: persistence. Evolution and & establishment Ecology origins, plants: polyploid 814–825. Drosophila N eunedata. and sequence anatomical morphological, DNA on based BR. R. Zygophyllaceae Hare the and Tortoise The regions angiosperms: III. noncoding in choose studies to phylogenetic for sequences genome chloroplast whole The 2005. Small. L. 142–166. R. chloroplast 92: noncoding analysis. and 21 phylogenetic of for Shilling, utility sequences Relative E. DNA II: Hare E. the and Winder, Tortoise T. C. Siripun, http:/ mitochon- human to the Application sites: when DNA. drial among differences vary pairwise rates of mutation distribution the from parameters * n te ehd) .40bt 0 udrad iae Associates. Sinauer Sunderland: 10. beta 4.0 v. methods), other and Quercus mrcnJunlo Botany of Journal American /anthro.unige.ch/arlequin. Genetics Evolution 6 13–30. 56: 3 321–328. 63: (Fagaceae iohnra DNA. mitochondrial cilaborealis Achillea Genetics :552–569. 9: 2:555–562. 129: 2 639–653. 62: h urel eiwo Biology of Review Quarterly The Taxon rnsi clg Evolution & Ecology in Trends :302–307. 7: 5:1079–1089. 152: Achillea ) . ln ytmtc n Evolution and Systematics Plant oaia ora fteLnenSociety Linnean the of Journal Botanical * 3 339–346. 23: 9 234–246. 59: 3 589–639. 33: hlgntcaayi sn parsimony using analysis Phylogenetic . (Asteraceae). natplpodcmlxo ecological of complex autopolyploid an , 4 275–288. 94: aratridentata Larrea oeua ilg n Evolution and Biology Molecular Genetics Bioinformatics ytmtcBotany Systematic Heredity mrcnJunlo Botany of Journal American nulRvesi Ecology in Reviews Annual Larrea 2:585–595. 123: . 8 151–177. 38: Madron 4 348–352. 14: 8 143–150. 98: (Zygophyllaceae). 9 1572–1574. 19: oeua Biology Molecular oaia Review Botanical 1:129–139. 211: ˜ 5 371–384. 25: o naso the of Annals 3 408–417. 23: rnsin Trends Biotic ,ed. rbcL 122: 9: oledn .B 1996. B. substitu- W. nucleotide Woolfendon, of Rates 1987. Sharp. P. and Li, W. H., K. Wolfe, ag .W,J .Hnie,L ogo n .A aaj.17.Hybrid- 1977. Naranjo. A. C. and of Poggio, L. inheritance Hunziker, Paternal H. J. 2000. W., T. Xiong. Yang, Z. and Yang, A. Y. of W., ecotypes T. in variation Yang, Chromosome 1968. Lowe. H. C. and W. T. of Yang, races chromosome Major 1970. W. T. Yang, of race chromosome new A 1968. W. T. Yang, bush creosote of populations in numbers Chromosome 1967. W. T. Yang, ( bush creosote the of Origin 1976. Hunziker. H. J. and V. P. Wells, o:A0- (31 AZ07-B Co.: region. indicated the for generated was data sequence no indicates “–“ spacer, aig .L n .W rc.18.Prsti rsueadteradiation the and pressure Parasitoid 1989. Price. W. P. and L. G. Waring, ae,F .18.Cest uh oglvdcoe nteMjv Desert. Mojave the in clones Long-lived Bush: Creosote 1980. C. 1995. F. Burgess. Vasek, L. T. and Bowers, E. J. M., R. Turner, F699 F690 F681 F682 F683 F605 JF267066, JF267065, (2 JF267308. JF266833; JF267184; JF267183, JF266832, JF267182, JF267067; JF266831, JF266950; JF266949, oriae fo G 4dtm;cletn niiuladvoucher and the following individual for the numbers collecting spacer, accession in datum); GenBank and paragraph 84 GPS accession; WGS per and identifier (from taxon population location; coordinates by collection are field presented ploidy; and sequence: are 2006-2009 Data in California Claremont, Gardens, (RSA). plants Botanic Ana field-collected Santa Rancho the from at deposited prepared speci- Voucher were accessions. GenBank mens and numbers, voucher information, iaC. Z7G(33 AZ07-G Co.: Gila ohs o:A0- (32 AZ07-L Co.: Cochise iaC. Z7Q(33 JF267080, AZ07-Q JF266848; Co.: Gila JF266847, (4 JF267199;–. JF267198, JF266846, JF267197, JF267082; JF267081, JF266965; JF266964, JF266963, .S . rzn:Gaa o:A0- (32 AZ07-H Co.: JF266850, Graham Arizona: A.: JF266849, S. U. JF266968; (2 JF267202;–. JF267201, JF266967, JF267200, JF267085; JF267084, JF267083, JF266966, JF266851; JF266734; JF266733, 766182 .S . rzn:Gl o:A0- (33 AZ07-O Co.: Gila Arizona: A.: S. U. .S . rzn:CcieC. Z7J(32 AZ07-J Co.: Cochise Arizona: A.: S. U. 110 F681 F682 F683 F605 F606 F607 JF267212, JF267097; (31 JF267096, (2 JF267095, JF267214;–. JF266863; JF267213, JF266862, JF266861, 766175 F684 F685 F607 F608 F609 F614 JF267195, JF267194, JF267079; JF266843, JF266962; JF267078, (4 JF267077, JF267196;–. JF266961, JF266845; JF266960, JF266728; JF266844, JF266727, JF266726, .S . rzn:CcieC. Z7U(32 AZ07-U Co.: Cochise JF266835, Arizona: A.: JF266834, S. U. JF266953; (2 JF267187;–. JF267186, JF266952, JF267185, JF267070; JF267069, JF267068, JF266836; JF266951, JF266719; JF266718, (33 766179 Laport R. 766172 aratridentata Larrea Appendix 54 America. invr ral mn ln iohnra,clrpat and chloroplast, mitochondrial, plant 9054–9058. 84: among DNAs. greatly nuclear vary tion zto ewe ot mrcnjrlaadNrhAeia diploid ( American North bush genus and creosote jarilla American the South between ization in hybrids interspecific in (Zygophyllaceae). DNA chloroplast divaricata Larrea Academy. Publication Reserve Special Western Ohio: Museum Hudson, History 1–4. 2: Natural Academy Reserve Western 183–184. 4: Desert. American North the ( California Arizona. County, of Inyo University region, Valley Owens America. North Garden southwestern Botanical of deserts oebs ( (Cecidomyiidae: bush sote group gallforming a of mrcnJunlo Botany of Journal American atlas ecological An tion 09 17 aradivaricata Larrea –––––– (2 ;–;–;–;–;–;–. F674 F675 F676 F698 F699 JF266980; JF266979, JF266978, JF266746; JF266745, JF266744, ; –––––– (2 ;–;–;–;–;–;–. 0 0 petN-trnC 0 rpL32-trnL ,109 N, ,110 N, 2:331–346. 126: W), x .Ls ftx sdi h rsn td ihcollection with study present the in used taxa of List 1. .Lpr 766173 Laport R. ;U .A:Aioa iaC. Z7F(33 AZ07-F Co.: Gila Arizona: A.: S. U. ); ora fteAioaAaeyo Science of Academy Arizona the of Journal aratridentata Larrea 44 –––––– (4 ;–;–;–;–;–;–. negncsae,adrbsmlESadISsequences. ITS and ETS ribosomal and spacer, intergenic 48 0 48 x negncspacer, intergenic 0 W), x Larrea ;U .A:Aioa rhmC. Z7M(33 AZ07-M Co.: Graham Arizona: A.: S. U. ); nteNrhAeia Desert. American North the in 0 rceig fteNtoa cdm fSine USA Sciences of Academy National the of Proceedings ;U .A:Aioa ohs o:A0- (32 AZ07-K Co.: Cochise Arizona: A.: S. U. ); W), 3 843–861. 63: nteCiuha n ooa udvsosof subdivisions Sonoran and Chihuahuan the in ) usn nvriyo rzn Press. Arizona of University Tucson: . D. oil (2 Coville (DC.) 20 ,110 N, mrcnJunlo Botany of Journal American .Lpr 766176 Laport R. 05 x 0 ;U .A:Aioa ohs o:AZ08-AI Co.: Cochise Arizona: A.: S. U. ); aeqatrayvgtto itr ftesouthern the of history vegetation Late-quarternary .Lpr 766180 Laport R. ,110 N, Zygophyllaceae). , 0 02 ,110 N, 0 ,110 N, x F674 F675 F676 JF266948, JF266716; JF266715, JF266714, ; 7 246–255. 67: ). 09 ;U .A:Aioa iaC. AZ07-P Co.: Gila Arizona: A.: S. U. ); Oecologia ora fteAioaAaeyo Science of Academy Arizona the of Journal 0 35 W), 0 42 W), 19 rpL16 10 0 –––––– (2 ;–;–;–;–;–;–. x .Lpr 766171 Laport R. 0 ;U .A:Aioa Cochise Arizona: A.: S. U. ); W), 0 W), .Lpr 766177 Laport R. ,110 N, F679 F670 JF266731; JF266730, JF266729, ; 9 293–299. 79: 15 16 50 intron, ln ytmtc n Evolu- and Systematics Plant .Lpr 766181 Laport R. aradivaricata Larrea .Lpr 766174 Laport R. Asphondylia 0 0 0 aradivaricata Larrea ,110 N, 110 N, ,109 N, h .tei.Tucson: thesis. D. Ph. . 7 1452–1458. 87: Missouri the of Annals 31 Madron 0 ooa eetplants: Desert Sonoran x x psbA-trnH x rpoB-trnC W), ;U .A:Arizona: A.: S. U. ); ;U .A:Arizona: A.: S. U. ); ;U .A:Arizona: A.: S. U. ); :41–45. 6: 01 20 21 37 –––––– (2 ;–;–;–;–;–;–. .Lpr 766178 Laport R. 0 –––––– (2 ;–;–;–;–;–;–. ˜ ,110 N, 0 0 0 p. ncreo- on spp.) o W), W), W), 9 161–164. 19: nArizona. in JF266732, ; JF266717, ; intergenic intergenic .Laport R. nNorth in .Laport R. .Laport R. 44 Larrea 09 Larrea 09 0 0 0 W), x N, N, x x x ); ); ); ); ) ; Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. Z8A (31 AZ08-AW (32 AZ07-T o:A0-Q(32 AZ08-AQ Co.: (32 AZ07-C Co.: (6 02 AOTE L:PYOEYO ROOEBS 163 BUSH CREOSOTE OF PHYLOGENY AL.: ET LAPORT 110 2012] o:A0-J(32 AZ08-AJ Co.: o:A0-C(32 AZ08-AC Co.: (6 F690 F691 F682 F683 F684 F606 JF267087, JF267086, (32 AZ07-S JF266854; (4 JF266853, JF267205;–. JF267204, JF267203, JF267088; JF266852, JF266971; JF266970, (31 JF267060, AZ07-Z JF267059, Co.: (4 Pima JF266827; JF267298. JF267178; JF267177, JF266826, JF267176, JF267061; JF266825, JF266944; JF266943, JF267099, (33 AZ08-AF JF267098, Co.: (6 Maricopa JF266866; JF267303. JF267217; JF267216, JF266865, JF267215, JF267100; JF266864, JF266983; JF266982, JF267072, (33 JF267071, AZ07-E Co.: (6 JF266839; JF267190;–. JF267189, JF266838, JF267188, JF267073; JF266837, JF266956; JF266955, .S . rzn:Pm o:A0-H(31 AZ08-AH Co.: Pima Arizona: A.: S. U. F698 F680 F681 F614 F615 F621 JF267222; JF267221, JF267105; JF267104, (6 JF267309. JF266871; JF266870, JF266988; F602 F603 F604 F629 F620 F621– (2 JF267211;–. (31 JF267210, AZ08-AX Co.: Pima JF267209, JF266860; Arizona: A.: JF266859, JF267094; S. U. JF266858, JF267093, JF266977; JF267092, JF266976, JF266975, JF266743; .S . rzn:YvpiC. Z8A (34 AZ08-AY Co.: Yavapai Arizona: A.: S. U. .S . rzn:Ym o:A0-Z(32 AZ09-AZ Co.: Yuma Arizona: A.: S. U. F673 F695 F696 F697 F688 F689 JF266830; (33 AZ07-W JF266829, Co.: Maricopa Arizona: JF266828, (4 JF267181;–. JF267180, JF266947; JF267179, JF267064; JF267063, JF267062, JF266946, JF266945, JF266713; 766201 .S . rzn:Pm o:A0-A(32 AZ08-AA Co.: Pima JF266876, Arizona: A.: JF266875, S. U. JF266994; (4 JF267228;–. JF267227, JF266993, JF267226, JF267111; JF267110, JF267109, JF266877; JF266992, JF266760; JF266759, .S . rzn:Ym o:A0- (32 AZ07-Y Co.: Yuma Arizona: A.: S. U. uaC. Z8A (33 AZ08-AS Co.: Yuma (33 AZ08-AL Co.: Maricopa F681 F682 F604 F605 F606 F611 JF267192, JF267191, JF267076; JF266840, JF267075, JF266959; (4 JF267193;–. JF267074, JF266958, JF266842; JF266957, JF266841, JF266725; JF266724, JF266723, .S . rzn:Mrcp o:A0-U(32 AZ08-AU Co.: Maricopa Arizona: A.: S. U. rzn:PnlC. Z7N(33 AZ07-N Co.: Pinal Arizona: F609 F600 F601 F626 F627 F628– (4 JF267208;–. (32 JF267207, AZ08-AD Co.: Pinal JF267206, JF266857; Arizona: A.: JF266856, JF267091; S. U. JF266855, JF267090, JF266974; JF267089, JF266973, JF266972, JF266740; o:A0- (32 AZ07-D Co.: 766185 F688 F689 F611 F612 F613 F628 JF267219, JF267218, JF267103; JF266867, JF267102, JF266986; (4 JF267220;–. JF267101, JF266985, JF266869; JF266984, JF266868, JF266752; JF266751, JF266750, 766207 766204 .S . rzn:L a o:A0- (34 AZ07-I Co.: Paz La Arizona: A.: S. U. 766213 F682 F683 F684 F616 F617 F618 JF267223, JF267108; (32 JF267107, (6 JF267225;–. JF267106, JF267224, JF266874; JF266873, JF266872, 766219 766216 766191 (34 766197 Laport R. (33 766194 Laport R. 112 112 114 113 111 110 111 111 111 114 x x ;U .A:Aioa aioaC. Z8A (32 AZ08-AT Co.: Maricopa Arizona: A.: S. U. ); ;U .A:Aioa aioaC. Z8A (33 AZ08-AG Co.: Maricopa Arizona: A.: S. U. ); 52 11 43 58 00 46 13 32 22 28 38 15 38 24 –––––– (4 ;–;–;–;–;–;–. –––––– (6 ;–;–;–;–;–;–. –––––– (4 ;–;–;–;–;–;–. –––––– (4 ;–;–;–;–;–;–. –––––– (4 ;–;–;–;–;–;–. F675 F676 F677 F699 F690 JF266991; JF266990, JF266989, JF266757; JF266756, JF266755, ; –––––– (4 ;–;–;–;–;–;–. –––––– (6 ;–;–;–;–;–;–. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,114 N, 112 N, W), W), W), W), ,113 N, W), W), W), W), W), W), W), x .Lpr 766208 Laport R. 766199 Laport R. .Lpr 766189 Laport R. 766186 Laport R. ;U .A:Aioa oaeC. Z8A (36 AZ08-AR Co.: Mohave Arizona: A.: S. U. ); 38 x 29 .Lpr 766217 Laport R. x .Lpr 766205 Laport R. .Lpr 766214 Laport R. .Lpr 766211 Laport R. 766202 Laport R. 766192 Laport R. 766183 Laport R. ;U .A:Aioa aioaC. Z8A (32 AZ08-AP Co.: Maricopa Arizona: A.: S. U. ); 57 ;U .A:Aioa ia o:A0- (32 AZ07-R Co.: Pinal Arizona: A.: S. U. ); –––––– (6 ;–;–;–;–;–;–. 0 0 22 38 –––––– (6 ;–;–;–;–;–;–. 0 36 110 N, 32 ,110 N, 0 0 ,110 N, 36 39 x x x x x x 50 0 x W), W), 0 20 41 ;U .A:Aioa aioaC. Z7V(33 AZ07-V Co.: Maricopa Arizona: A.: S. U. ); ;U .A:Aioa aPzC. Z8A (33 AZ08-AM Co.: Paz La Arizona: A.: S. U. ); ;U .A:Aioa uaC. Z8A (32 AZ08-AO Co.: Yuma Arizona: A.: S. U. ); ;U .A:Aioa iaC. Z8A (32 AZ08-AV Co.: Pima Arizona: A.: S. U. ); ;U .A:Aioa iaC. Z8A (32 AZ08-AB Co.: Pima Arizona: A.: S. U. ); ;U .A:Aioa ia o:A0-E(33 AZ08-AE Co.: Pinal Arizona: A.: S. U. ); ;U .A:Aioa iaC. Z7A(32 AZ07-A Co.: Pima Arizona: A.: S. U. ); 0 ,112 N, 0 W), 0 0 0 ,114 N, ,114 N, ,112 N, .Lpr 766220 Laport R. 766195 Laport R. ,111 N, ,112 N, 10 59 x .Lpr 766198 Laport R. ;U .A:Aioa uaC. AZ08-AN Co.: Yuma Arizona: A.: S. U. ); 43 33 29 0 0 ,114 N, x 32 0 112 N, 17 0 0 –––––– (4 ;–;–;–;–;–;–. (2 ;–;–;–;–;–;–. –––––– (4 ;–;–;–;–;–;–. (4 ;–;–;–;–;–;–. 52 x ;U .A:Aioa aioaC. AZ08-AK Co.: Maricopa Arizona: A.: S. U. ); W), ;U .A:Aioa oaeC. AZ07-X Co.: Mohave Arizona: A.: S. U. ); W), 0 W), –––––– (6 ;–;–;–;–;–;–. 0 –––––– (4 ;–;–;–;–;–;–. –––––– (4 ;–;–;–;–;–;–. F675 F676 F677 JF266969, JF266737; JF266736, JF266735, ; JF266942, JF266710; JF266709, JF266708, ; JF266981, JF266749; JF266748, JF266747, ; JF266954, JF266722; JF266721, JF266720, ; 0 ,111 N, 28 ,112 N, 21 08 27 51 W), .Lpr 766209 Laport R. 0 0 0 10 0 0 .Lpr 766212 Laport R. .Lpr 766200 Laport R. 01 W), W), W), W), W), 0 .Lpr 766187 Laport R. 36 50 0 ,110 N, W), 0 0 25 38 –––––– (6 ;–;–;–;–;–;–. (6 ;–;–;–;–;–;–. .Lpr 766184 Laport R. .Lpr 766218 Laport R. ,113 N, .Lpr 766215 Laport R. .Lpr 766206 Laport R. .Lpr 766190 Laport R. W), x x 0 0 x x F673 F674 JF266987, JF266754; JF266753, ; x .Lpr 766221 Laport R. ;U .A:Aioa iaCo.: Pima Arizona: A.: S. U. ); Co.: Pima Arizona: A.: S. U. ); W), ;U .A:Aioa Maricopa Arizona: A.: S. U. ); Maricopa Arizona: A.: S. U. ); W), ;U .A:Aioa ia Co.: Pinal Arizona: A.: S. U. ); x 38 x 17 56 49 x 25 x 57 32 ;U .A:Aioa aPaz La Arizona: A.: S. U. ); ;U .A:Aioa Yuma Arizona: A.: S. U. ); ;U .A:Aioa Pima Arizona: A.: S. U. ); ;U .A:Aioa Pinal Arizona: A.: S. U. ); 39 .Lpr 766203 Laport R. 0 55 0 0 0 0 0 0 .Lpr 766193 Laport R. .Lpr 766196 Laport R. 30 ,114 N, 0 ,114 N, ,110 N, ,111 N, ,111 N, ,110 N, ,114 N, 0 18 ,111 N, –––––– (2 ;–;–;–;–;–;–. ,112 N, 0 0 W), x x F678 JF266739, JF266738, ; F671 JF266742, JF266741, ; W), x x ;U .A:Arizona: A.: S. U. ); Arizona: A.: S. U. ); F671 JF266712, JF266711, ; ;U .A:Arizona: A.: S. U. ); Arizona: A.: S. U. ); 58 52 .Lpr 766210 Laport R. 0 0 08 05 39 12 21 55 34 .Lpr 766188 Laport R. 45 44 –––––– (6 ;–;–;–;–;–;–. ,112 N, –––––– (6 ;–;–;–;–;–;–. ,112 N, –––––– (2 ;–;–;–;–;–;–. –––––– (4 ;–;–;–;–;–;–. –––––– (4 ;–;–;–;–;–;–. –––––– (6 ;–;–;–;–;–;–. 0 0 0 0 0 0 0 0 0 W), W), W), W), W), W), W), W), W), x x JF266758, ; ;–;–;–;–;–;–. ;–;–;–;–;–;–. ;U .A.: S. U. ); ;U .A.: S. U. ); .Laport R. .Laport R. .Laport R. .Laport R. .Laport R. .Laport R. .Laport R. .Laport R. .Laport R. 40 35 44 07 50 04 18 27 01 50 31 03 0 0 0 0 0 0 0 0 0 0 0 0 W), W), N, N, N, N, N, N, N, N, N, N, x x x x x x x x x ); ); ); ); ); ); ); ); ); ; ; F691 F692 F615 F616 F622 F623– (2 JF267253;–. JF267252, JF267136; JF267135, JF266902; JF266901, eio hhau:Mp hhau:CIIY(28 CHICITY Chihuahua: Mup. Chihuahua: Mexico: 766222 enlloC. M7C(34 NM07-C Co.: Bernalillo A7C(34 CA07-C F613 F628 F629 F620 F635 (4 (33 JF267305. CA09-R Co.: JF267240; JF267122, Imperial JF267121, JF267239, California: JF266889; JF267238, JF266888, JF267123; JF266887, JF267006; JF267005, .S . aiona a ig o:C0- (33 CA09-Q Co.: Diego San California: A.: S. U. (6 JF267234;–. JF267233, JF267117; JF267116, JF266883; JF266882, JF267000; eio oor o:N0- (33 NM07-E JF267137, Co.: (2 JF266905; Socorro JF267256;–. Mexico: JF266904, JF267255, JF267254, JF266903, JF267139; JF267138, JF267022; JF267021, JF267020, (32 NM07-A Co.: JF267145, Luna (2 JF266913; JF267264;–. Mexico: JF266912, JF267263, JF267262, JF266911, JF267147; JF267146, JF267030; JF267029, JF267028, X7A(31 TX07-A (34 F697 F698 F680 F681 F614 F615 JF267231, JF267115; JF267114, JF266881; (6 JF267232;–. JF266880, JF266998; JF266997, ea:Bese o:T0- (29 TX07-C JF267162, Co.: JF266930; Brewster (2 JF267302. Texas: JF266929, JF267281; JF267280, JF267279, JF266928, JF267164; JF267163, JF267047; JF267046, JF267045, o:C0- (32 CA08-T Co.: (33 CA07-G Co.: 766225 ea:Jf ai o:SET(31 SKENT JF266927; Co.: Davis JF266926, Jeff Texas: JF266925, (2 JF267278;–. JF267277, JF267044; JF267276, JF267161; JF267160, JF267159, JF267043, JF267042, JF266810; .S . aiona meilC. A7I(32 CA07-I JF266891, Co.: Imperial California: JF266890, A.: S. JF267009; U. (6 JF267243;–. JF267242, JF267008, JF267241, JF267126; JF267125, JF267124, JF266892; JF267007, JF266775; JF266774, (32 766247 (32 766249 766229 104 114 114 116 115 aiona meilC. A8N(33 CA08-N Co.: Imperial California: (29 766255 Laport R. 766240 (2 F684 F685 F686 F618 F619 F610 JF267235, JF267120; JF267119, JF267118, (6 JF267304. JF267237; JF267236, JF266886; JF266885, JF266884, 766237 .S . aiona iesd o:C0- (33 CA07-E Co.: Riverside California: A.: S. U. F673 F606 F607 F689 F690 F614 JF267135; (25 JF267134, SPDLC Pedro: San JF266900; (2 JF267306. JF266899, JF267251; JF267250, JF267017; JF267016, JF266783; F695 F696 F618 F619 F610 F625 JF267286, JF267285, JF267170; JF266934, JF267169, JF267053; (4 JF267287;–. JF267168, JF267052, JF266936; JF267051, JF266935, JF266819; JF266818, JF266817, JF267258, JF267257, JF267142; JF266906, JF267141, JF267025; (2 JF267259;–. JF267024, JF267140, JF266908; JF267023, JF266907, JF266791; JF266790, JF266789, .Lpr 766241 Laport R. F692 F693 F615 F616 F617 F622 JF267283, JF267282, JF267167; JF266931, JF267166, JF267050; (2 JF267284;–. JF267165, JF267049, JF266933; JF267048, JF266932, JF266816; JF266815, JF266814, ea:Jf ai o:T0- (30 TX07-D JF267149, Co.: Davis JF267148, Jeff Texas: JF266917; JF267033, (2 JF267268;–. JF267267, JF266916, JF267032, JF267266, JF267265, JF267151; JF267150, JF266915, JF267031, JF266914, JF266800; JF267034; JF266799, JF266798, JF266797, 115 F686 F687 F688 F610 F611 F612 JF267247, JF267132; (33 JF267131, (6 JF267130, JF267249;–. JF267248, JF266898; JF266897, JF266896, 766227 e eio Don Mexico: (2 JF267307. New JF267261; JF267260, JF267144; 766246 JF267143, JF266910; Laport R. utoings UT (26 CUATR Cuatrocienegas: x ;U .A:NwMxc:Brail o:N0- (34 NM07-F Co.: Bernalillo Mexico: New A.: S. U. ); 29 25 20 38 54 00 44 01 47 52 36 –––––– (4 ;–;–;–;–;–;–. –––––– (6 ;–;–;–;–;–;–. –––––– (2 ;–;–;–;–;–;–. –––––– (2 ;–;–;–;–;–;–. –––––– (6 ;–;–;–;–;–;–. –––––– (6 ;–;–;–;–;–;–. F677 F678 F679 F601 F602 JF267003; JF267002, JF267001, JF266769; JF266768, JF266767, ; F679 F670 F671 F603 F604 JF267015; JF267014, JF267013, JF266781; JF266780, JF266779, ; 0 0 0 0 0 0 0 0 0 0 0 ,102 N, W), W), W), ,115 N, ,107 N, 109 N, W), W), ,114 N, W), x .Lpr 766230 Laport R. 766515 Laport R. x .Lpr 766258 Laport R. ;U .A:Txs rwtrC. DR (29 ADARA Co.: Brewster Texas: A.: S. U. ); x 41 ;Mxc:Bj aiona u.Mxcl:LGA(32 LAGSA Mexicali: Mup. California: Baja Mexico: ); 43 .Lpr 766223 Laport R. x .Lpr 766224 Laport R. .Lpr 766244 Laport R. ;U .A:Txs ubro o:VNR (30 VANHRN Co.: Culberson Texas: A.: S. U. ); ;U .A:Clfri:SnBradn o:CA07-D Co.: Bernardino San California: A.: S. U. ); 0 0 –––––– (2 ;–;–;–;–;–;–. –––––– (2 ;–;–;–;–;–;–. 53 ˜ 42 38 01 ,106 N, ,114 N, F672 F673 F606 F607 JF266909, JF267027; JF267026, JF266793; JF266792, ; n o:N0- (32 NM07-B Co.: Ana a 54 x x x 37 0 x 0 0 0 x ;U .A:Clfri:Ipra o:C0- (33 CA07-B Co.: Imperial California: A.: S. U. ); ;U .A:Clfri:Ipra o:C0- (33 CA07-F Co.: Imperial California: A.: S. U. ); ;U .A:Clfri:Ipra o:C0- (33 CA08-S Co.: Imperial California: A.: S. U. ); x 24 ;U .A:Nvd:CakC. V8A(35 NV08-A Co.: Clark Nevada: A.: S. U. ); W), 0 ;U .A:NwMxc:HdloC. NM07-G Co.: Hidalgo Mexico: New A.: S. U. ); W), W), W), 0 ;U .A:NwMxc:Ln o:NM07-D Co.: Luna Mexico: New A.: S. U. ); 0 ,114 N, 52 W), x ,115 N, ;U .A:Clfri:Ipra o:CA08-M Co.: Imperial California: A.: S. U. ); .Lpr 766256 Laport R. 0 .Lpr 766239 Laport R. .Lpr 766250 Laport R. 766248 Laport R. 16 ,102 N, 30 55 .Lpr 766228 Laport R. 52 –––––– (6 ;–;–;–;–;–;–. (6 ;–;–;–;–;–;–. 0 –––––– (2 ;–;–;–;–;–;–. 0 0 x W), x W), 0 x F674 F675 F608 JF267019; JF267018, JF266785; JF266784, ; F670 F671 F672 JF267004, JF266772; JF266771, JF266770, ; ;U .A:Txs rwtrC. TX07-B Co.: Brewster Texas: A.: S. U. ); –––––– (2 ;–;–;–;–;–;–. ,106 N, ;Mxc:Caul eZrgz:Mup. Zaragoza: de Coahuila Mexico: ); 39 ;U .A:Clfri:SnBradn Co.: Bernardino San California: A.: S. U. ); x ,102 N, ;Mxc:Caul eZrgz:Mup. Zaragoza: de Coahuila Mexico: ); 0 54 49 34 .Lpr 766259 Laport R. .Lpr 766238 Laport R. 00 37 44 W), 0 0 0 0 0 0 W), 19 ,102 N, W), ,104 N, ,107 N, 43 ,104 N, 08 0 .Lpr 766231 Laport R. 06 17 x x 0 x F681 F682 JF266813; JF266812, JF266811, ; 0 .Lpr 766243 Laport R. F675 F676 JF266999, JF266766; JF266765, ; F676 F677 JF266788; JF266787, JF266786, ; JF266796; JF266795, JF266794, ; ;U .A:Clfri:Imperial California: A.: S. U. ); Imperial California: A.: S. U. ); W), ;U .A:Txs lPs Co.: Paso El Texas: A.: S. U. ); ,107 N, 0 0 W), 38 .Lpr 766226 Laport R. x ,115 N, ,114 N, 53 –––––– (6 ;–;–;–;–;–;–. ;U .A:NwMexico: New A.: S. U. ); 40 0 18 .Lpr 766245 Laport R. 0 .Lpr 766242 Laport R. 57 ,107 N, 11 41 08 0 0 ,114 N, ,115 N, ,116 N, 0 0 0 0 W), W), W), W), F688 JF266809, JF266808, ; F673 JF266764; JF266763, ; 40 31 x x 49 44 54 0 ;U .A:New A.: S. U. ); New A.: S. U. ); 25 .Lpr 766257 Laport R. .Lpr 766260 Laport R. .Lpr 766261 Laport R. .Lpr 766251 Laport R. 13 0 0 50 0 0 48 –––––– (6 ;–;–;–;–;–;–. 13 x 0 ,105 N, –––––– (2 ;–;–;–;–;–;–. W), ,106 N, 0 ;U .A.: S. U. ); W), ,102 N, W), 0 0 x 0 W), W), ;U .A.: S. U. ); W), W), x x JF266773, ; x x ;U .A.: S. U. ); ;U .A.: S. U. ); ;–;–;–;–;–;–. ;U .A.: S. U. ); ;U .A.: S. U. ); JF266782, ; .Laport R. .Laport R. .Laport R. .Laport R. .Laport R. .Laport R. .Laport R. 56 43 53 46 11 20 06 07 20 0 0 0 0 0 0 0 0 0 W), W), W), x N, N, N, N, N, x x N, x x ); ); ); ); ); ; ; ; ; Delivered by Publishing Technology to: Michael Simpson IP: 146.244.235.168 on: Mon, 05 Mar 2012 22:24:45 Copyright (c) American Society for Plant Taxonomists. All rights reserved. meilC. A7A(32 CA07-A Co.: Imperial F606 F607 F608 F690 F691 F692 JF267154, JF266922; JF267299. JF267272; JF266921, JF267271, JF267270, JF266920, JF267156; JF267155, JF267038; JF267037, JF267036, 6 YTMTCBTN Vlm 37 [Volume BOTANY SYSTEMATIC (31 SN07-C Prieta: Agua Mup. Sonora: Mexico: 164 F672 F695 F696 F688 F689 F612 JF267113; (32 JF267112, CA07-H Co.: JF266879; (4 JF267301. JF267300, JF266878, JF267230; JF267229, JF266996; JF266995, JF266762; F682 F605 F601 F698 F699 F612 JF267153; JF267152, (28 JF266919; (4 JF267275;–. JF266918, JF267269, JF267041; JF267035, JF266802; F617 F618 F619 F624 F625 F626– (4 JF267246;–. JF267245, (32 CA07-J Co.: JF267244, JF266895; Imperial California: A.: JF266894, JF267129; S. U. JF266893, JF267128, JF267012; JF267127, JF267011, JF267010, JF266778; F617 F618 F623 F624– (4 (29 JF267274;–. SN07-A Hermosillo: JF267273, JF267158; JF267157, 766252 aratridentata Larrea 59 F686 F687 F609 F600 F693 JF266924; JF266923, JF267040; JF267039, JF266807; JF266806, ; 0 ,111 N, 11 42 0 0 W), D. oil var. Coville (DC.) ,115 N, x .Lpr 766254 Laport R. ;Mxc:Snr:Mp emslo SN07-B Hermosillo: Mup. Sonora: Mexico: ); 04 44 0 13 0 ,110 N, ,114 N, 0 W), .Lpr 766233 Laport R. 59 53 arenaria 0 0 x W), F683 F684 JF266805; JF266804, JF266803, ; W), ;U .A:Clfri:Imperial California: A.: S. U. ); 58 .Lpr 766253 Laport R. x .Lpr 766232 Laport R. 18 ;Mxc:Snr:Mup. Sonora: Mexico: ); 0 (4 0 ,115 N, ,109 N, x ;U .A:California: A.: S. U. ); F676 JF266777, JF266776, ; 11 19 0 0 W), W), JF266801, ; JF266761, ; .Laport R. .Laport R. x ); 766234 o:C0- (32 CA08-U Co.: F698 F614 F629 JF267296. Arizona), JF267289; JF267174; of JF266938; University at vated JF267297. Arizona), JF267288; JF267171; of JF266937; University at vated 115 Cliae tRnh at n oai Gardens), (2 JF267294. Botanic JF267291; JF267173; Ana JF266940; Santa JF267056; JF266824; Rancho at (Cultivated rzn:Pm o:VNEII Cliae nTco,AZ), Tucson, in (Cultivated 766265 VANDENITID Co.: Pima Arizona: Cliae tAioaSnr eetMuseum), JF267293. Desert JF267292; JF267175; JF266941; Arizona-Sonora JF267058; JF266823; at (Cultivated aranitida Larrea cuneifolia Larrea uicmcoulteri Guaiacum 16 –––––– (4 ;–;–;–;–;–;–. F682 F607 F699 F612 F620 JF267295. JF267290; JF267172; JF266939; JF267057; JF266822; ; 0 W), .Lpr 766235 Laport R. a.(2 Cav. 42 x 0 ;U .A:Clfri:Ipra o:C0- (32 CA08-O Co.: Imperial California: A.: S. U. ); a.(4 Cav. ,115 N, a.(2 Cav. .Ga –;U .A:Aioa iaC. GUAIA Co.: Pima Arizona: A.: S. U. (–); Gray A. x ;U .A:Clfri:LsAglsC. RSABG Co.: Angeles Los California: A.: S. U. ); x x 02 –––––– (4 ;–;–;–;–;–;–. ;U .A:Aioa iaC. UE(Culti- CUNE Co.: Pima Arizona: A.: S. U. ); ;U .A:Aioa iaC. IA(Culti- DIVA Co.: Pima Arizona: A.: S. U. ); 0 W), .Lpr 766263 Laport R. 766262 Laport R. .Lpr 766236 Laport R. x ;U .A:Clfri:Imperial California: A.: S. U. ); F681 JF267055; JF266821; ; JF267054; JF266820; ; ;–;–;–;–;–;–. .Lpr 766266 Laport R. .Lpr 766264 Laport R. x ;U .A.: S. U. ); .Laport R. 58 0 N, ; ;