Metabolic Connectivity As a Driver of Host and Endosymbiont Integration

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Connectivity As a Driver of Host and Endosymbiont Integration PAPER Metabolic connectivity as a driver of host and COLLOQUIUM endosymbiont integration Slim Karkara,1, Fabio Facchinellib,1, Dana C. Pricea, Andreas P. M. Weberb,2, and Debashish Bhattacharyaa,2 aDepartment of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901; and bInstitut für Biochemie der Pflanzen, Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität, D-40225 Düsseldorf, Germany Edited by Patrick J. Keeling, University of British Columbia, Vancouver, Canada, and accepted by the Editorial Board March 6, 2015 (received for review December 19, 2014) The origin of oxygenic photosynthesis in the Archaeplastida com- Given the fundamental role of algae and plants as primary mon ancestor was foundational for the evolution of multicel- producers in aquatic and terrestrial habitats (17, 18), much at- lular life. It is very likely that the primary endosymbiosis that tention has focused on elucidating the rules that underlie pri- explains plastid origin relied initially on the establishment of a mary plastid origin in Archaeplastida and, more recently, in metabolic connection between the host cell and captured cyano- Paulinella. We have previously made the argument that a key, bacterium. We posit that these connections were derived primarily and likely fundamental, step in endosymbiont integration (i.e., from existing host-derived components. To test this idea, we used enslavement) was linking the metabolism of the host and endo- phylogenomic and network analysis to infer the phylogenetic symbiont, thereby allowing regulatory pathways to evolve that origin and evolutionary history of 37 validated plastid innermost would maximize connectivity of the partners, and as a result, host membrane (permeome) metabolite transporters from the model fitness (19–21). The major players in this process are trans- plant Arabidopsis thaliana. Our results show that 57% of these porters located in the innermost envelope membrane of plastids transporter genes are of eukaryotic origin and that the captured (the plastid envelope permeome) that are responsible for the cyanobacterium made a relatively minor (albeit important) con- controlled movement of metabolites to and from the endosym- tribution to the process. We also tested the hypothesis that the biont (e.g., energy as photosynthetically fixed carbon; the pre- bacterium-derived hexose-phosphate transporter UhpC might sumed raison d’être for plastid origin). Our previous work showed EVOLUTION have been the primordial sugar transporter in the Archaeplastida that members of the nucleotide sugar transporter family [NST; ancestor. Bioinformatic and protein localization studies demon- within the drug/metabolite superfamily (DMS)] gave rise through strate that this protein in the extremophilic red algae Galdieria gene duplication and divergence to a variety of plastidic sugar sulphuraria and Cyanidioschyzon merolae are plastid targeted. transporters in red algae and Viridiplantae (Fig. S1) (19, 22, Given this protein is also localized in plastids in the glaucophyte 23). These genes encode the plastidic phosphate translocators alga Cyanophora paradoxa, we suggest it played a crucial role in (pPTs) that facilitate the strict counter exchange of a host-derived early plastid endosymbiosis by connecting the endosymbiont and inorganic orthophosphate (Pi) for an endosymbiont-derived phos- host carbon storage networks. In summary, our work significantly phorylated C3, C5, or C6 carbon compound (e.g., triose phosphate, advances understanding of plastid integration and favors a host- xylulose-5-phosphate, glucose-6-phosphate). Along with the shared centric view of endosymbiosis. Under this view, nuclear genes of ancestry of the plastid protein import system (6, 24), this in- either eukaryotic or bacterial (noncyanobacterial) origin provided novation provides one of the strongest pieces of evidence key elements of the toolkit needed for establishing metabolic con- that two major members of the Archaeplastida (red algae and nections in the primordial Archaeplastida lineage. Viridiplantae) are monophyletic. The tree also shows that members of the “chromalveolates” (e.g., stramenopiles, apicomplexans, Arabidopsis thaliana | endosymbiosis | evolution | network analysis | cryptophytes) gained their pPT homologs through red algal symbiont integration endosymbiosis. The retention of hexose phosphate transport as the primary carbon export mechanism in the third arm of the he origin and establishment of the photosynthetic organelle, Archaeplastida, the Glaucophyta (6), provides another in- Tthe plastid, is heralded as one of the most important bi- triguing twist in the story of primary endosymbiosis and will be ological innovations on our planet (1, 2). This primary endosym- discussed in detail below. This transporter (UhpC) originated biosis occurred more than a billion years ago and resulted from through horizontal gene transfer (HGT) from a bacterial the engulfment and enslavement of a once free-living cyanobac- source. The work on pPTs inspired us to look in more detail terium by a phagotrophic protist (3). Primary plastid capture into the evolutionary history and functional diversification putatively occurred a single time in the common ancestor of the eukaryotic supergroup Archaeplastida (also known as Plantae) This paper results from the Arthur M. Sackler Colloquium of the National Academy of that comprises the green algae and land plants (Viridiplantae), Sciences, “Symbioses Becoming Permanent: The Origins and Evolutionary Trajectories of red algae, and glaucophyte algae (4–6). Once established in these Organelles,” held October 15–17, 2014 at the Arnold and Mabel Beckman Center of the lineages, the plastid spread to other lineages such as diatoms, National Academies of Sciences and Engineering in Irvine, CA. The complete program and video recordings of most presentations are available on the NAS website at www. haptophytes, most dinoflagellates, and euglenids, through red or nasonline.org/Symbioses. green algal secondary endosymbiosis, and in some dinoflagellates, Author contributions: A.P.M.W. and D.B. designed research; S.K., F.F., D.C.P., and D.B. through tertiary endosymbiosis of a secondary endosymbiont- performed research; S.K. and F.F. contributed new reagents/analytic tools; S.K., D.C.P., containing alga (7, 8). The exceptional rarity of primary plastid and D.B. analyzed data; and F.F., A.P.M.W., and D.B. wrote the paper. endosymbiosis is supported by there being only one other known The authors declare no conflict of interest. case of a cyanobacterium-derived photosynthetic organelle (9). This article is a PNAS Direct Submission. P.J.K. is a guest editor invited by the Editorial “ ” Board. This chromatophore is found in a single lineage of photosyn- 1 Paulinella chromatophora S.K. and F.F. contributed equally to this work. thetic filose amoebae that includes and 2 – To whom correspondence may be addressed. Email: [email protected] its sister taxa (10 14). This independent primary endosymbiosis or [email protected]. ∼ likely occurred 60 Mya, and the plastid donor was a member of This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. the α-cyanobacterium clade (15, 16). 1073/pnas.1421375112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1421375112 PNAS Early Edition | 1of8 Downloaded by guest on September 25, 2021 of other plastid-targeted transporters and here we present an existing host-derived proteins to the plastid envelope permeome analysis of these proteins in Archaeplastida. Our approach rather than by the wholesale repurposing of endosymbiont genes was to use phylogenomic and protein similarity network (22, 25, 29). The genes encoding these ancient transporters analysis of the validated plastidic transporters from Arabi- presumably underwent duplication(s) with one or more copies dopsis thaliana to deduce their evolutionary histories and or- taking on plastid-specific functions (Figs. S1 and S2). This host- igins (25). We also studied the phylogeny and cellular centric perspective has also been taken to suggest that the eu- localization of UhpC proteins in red algae to gain insights into karyote rather than the endosymbiont was the major contributor what may have been the ancestral pathway of sugar transport to protein sorting components with the endosymbiont outer in Archaeplastida. These data, combined with recent evidence membrane being the initial target for integration (30, 31). A of apparent translocon-independent protein import to the contrasting view (32) relies on genetic tinkering with endosym- photosynthetic organelle in Paulinella (26), provide a novel biont genes to derive basic components of mitochondrial trans- perspective on endosymbiont integration. Based on these data, locons (31). This lively discussion is far from settled, but it is we suggest that metabolic connectivity, whereby recruitment of clear that distinguishing between these hypotheses with regard to existing host-derived transporters to the plastid innermost mem- different endosymbiont traits depends not only on identifying the brane, was likely an early and fundamental step in unlocking the putative genetic toolkit for endosymbiont integration (with sol- metabolic potential of the captured cyanobacterium. ute transport and protein import being obvious candidates) but equally importantly, on elucidating their phylogenetic history. Results and Discussion Whereas explaining the origins of plastid protein
Recommended publications
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Coupled Reductive and Oxidative Sulfur Cycling in the Phototrophic Plate of a Meromictic Lake T
    Geobiology (2014), 12, 451–468 DOI: 10.1111/gbi.12092 Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake T. L. HAMILTON,1 R. J. BOVEE,2 V. THIEL,3 S. R. SATTIN,2 W. MOHR,2 I. SCHAPERDOTH,1 K. VOGL,3 W. P. GILHOOLY III,4 T. W. LYONS,5 L. P. TOMSHO,3 S. C. SCHUSTER,3,6 J. OVERMANN,7 D. A. BRYANT,3,6,8 A. PEARSON2 AND J. L. MACALADY1 1Department of Geosciences, Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA 2Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 3Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 4Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA 6Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Nanyang, Singapore 7Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany 8Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA ABSTRACT Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacte- ria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary pro- duction in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate – including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data – as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction.
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Archaeal Distribution and Abundance in Water Masses of the Arctic Ocean, Pacific Sector
    Vol. 69: 101–112, 2013 AQUATIC MICROBIAL ECOLOGY Published online April 30 doi: 10.3354/ame01624 Aquat Microb Ecol FREEREE ACCESSCCESS Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector Chie Amano-Sato1, Shohei Akiyama1, Masao Uchida2, Koji Shimada3, Motoo Utsumi1,* 1University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572, Japan 2National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki 305-8506, Japan 3Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo 108-8477, Japan ABSTRACT: Marine planktonic Archaea have been recently recognized as an ecologically impor- tant component of marine prokaryotic biomass in the world’s oceans. Their abundance and meta- bolism are closely connected with marine geochemical cycling. We evaluated the distribution of planktonic Archaea in the Pacific sector of the Arctic Ocean using fluorescence in situ hybridiza- tion (FISH) with catalyzed reporter deposition (CARD-FISH) and performed statistical analyses using data for archaeal abundance and geochemical variables. The relative abundance of Thaum - archaeota generally increased with depth, and euryarchaeal abundance was the lowest of all planktonic prokaryotes. Multiple regression analysis showed that the thaumarchaeal relative abundance was negatively correlated with ammonium and dissolved oxygen concentrations and chlorophyll fluorescence. Canonical correspondence analysis showed that archaeal distributions differed with oceanographic water masses; in particular, Thaumarchaeota were abundant from the halocline layer to deep water, where salinity was higher and most nutrients were depleted. However, at several stations on the East Siberian Sea side of the study area and along the North- wind Ridge, Thaumarchaeota and Bacteria were proportionally very abundant at the bottom in association with higher nutrient conditions.
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]
  • Oceans of Archaea Abundant Oceanic Crenarchaeota Appear to Derive from Thermophilic Ancestors That Invaded Low-Temperature Marine Environments
    Oceans of Archaea Abundant oceanic Crenarchaeota appear to derive from thermophilic ancestors that invaded low-temperature marine environments Edward F. DeLong arth’s microbiota is remarkably per- karyotes), Archaea, and Bacteria. Although al- vasive, thriving at extremely high ternative taxonomic schemes have been recently temperature, low and high pH, high proposed, whole-genome and other analyses E salinity, and low water availability. tend to support Woese’s three-domain concept. One lineage of microbial life in par- Well-known and cultivated archaea generally ticular, the Archaea, is especially adept at ex- fall into several major phenotypic groupings: ploiting environmental extremes. Despite their these include extreme halophiles, methanogens, success in these challenging habitats, the Ar- and extreme thermophiles and thermoacido- chaea may now also be viewed as a philes. Early on, extremely halo- cosmopolitan lot. These microbes philic archaea (haloarchaea) were exist in a wide variety of terres- first noticed as bright-red colonies trial, freshwater, and marine habi- Archaea exist in growing on salted fish or hides. tats, sometimes in very high abun- a wide variety For many years, halophilic isolates dance. The oceanic Marine Group of terrestrial, from salterns, salt deposits, and I Crenarchaeota, for example, ri- freshwater, and landlocked seas provided excellent val total bacterial biomass in wa- marine habitats, model systems for studying adap- ters below 100 m. These wide- tations to high salinity. It was only spread Archaea appear to derive sometimes in much later, however, that it was from thermophilic ancestors that very high realized that these salt-loving invaded diverse low-temperature abundance “bacteria” are actually members environments.
    [Show full text]
  • Novel Abundant Oceanic Viruses of Uncultured Marine Group II Euryarchaeota Identified by Genome-Centric Metagenomics
    bioRxiv preprint doi: https://doi.org/10.1101/101196; this version posted January 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Novel Abundant Oceanic Viruses of Uncultured Marine Group II Euryarchaeota Identified by Genome-Centric Metagenomics Alon Philosof1*, Natalya Yutin2, José Flores-Uribe1, Itai Sharon3, Eugene V. Koonin2, 5 and Oded Béjà1* 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel. 2National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA. 10 3Migal Galilee Research Institute, Kiryat Shmona, 11016, Israel. Tel Hai College, Upper Galilee 12210, Israel. *To whom correspondence should be addressed. E-mail: [email protected] and E-mail: [email protected] 15 bioRxiv preprint doi: https://doi.org/10.1101/101196; this version posted January 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Marine Group II Euryarchaeota (MGII) are among the most abundant microbes in the oceanic surface waters. So far, however, representatives of MGII have not been 20 cultivated, and no viruses infecting these organisms have been described. Here we present complete genomes for 3 distinct groups of viruses assembled from metagenomic sequence datasets highly enriched for MGII. These novel viruses, which we denote Magroviruses, possess double-stranded DNA genomes of 65 to 100 kilobase in size that encode a structural module characteristic of head-tailed 25 viruses and, unusually for archaeal and bacterial viruses, a nearly complete replication apparatus of apparent archaeal origin.
    [Show full text]
  • Archaea and the Origin of Eukaryotes
    REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative.
    [Show full text]
  • Metagenomics Analysis Reveals the Microbial Communities
    diversity Article Metagenomics Analysis Reveals the Microbial Communities, Antimicrobial Resistance Gene Diversity and Potential Pathogen Transmission Risk of Two Different Landfills in China Shan Wan 1,†, Min Xia 2,†, Jie Tao 1, Yanjun Pang 1, Fugen Yu 1,* , Jun Wu 3,* and Shanping Chen 2,* 1 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; [email protected] (S.W.); [email protected] (J.T.); [email protected] (Y.P.) 2 Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China; [email protected] 3 State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China * Correspondence: [email protected] (F.Y.); [email protected] (J.W.); [email protected] (S.C.) † There authors contribute equally to this work. Abstract: In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical Citation: Wan, S.; Xia, M.; Tao, J.; landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacte- Pang, Y.; Yu, F.; Wu, J.; Chen, S. ria were predominant in the two landfills, and archaea and fungi were also detected. The genera Metagenomics Analysis Reveals the Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, Microbial Communities, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens Antimicrobial Resistance Gene were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas Diversity and Potential Pathogen aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of Transmission Risk of Two Different potential environmental risk in landfills.
    [Show full text]
  • Fernanda , A. Metal Corrosion and Biological H2S Cycling in Closed
    Metal corrosion and biological H2S cycling in closed systems Fernanda Abreu* Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; [email protected]* Abstract Sulfate reducing bacteria produce H2S during growth. This gas is toxic and is associated with corrosion in industrial systems. In the environment purple sulfur bacteria, green sulfur bacteria and sulfur oxidizing bacteria use the H2S produced by sulfate reducing bacteria as electron donors. The major aim of this project is to evaluate the possibility of using H2S consuming bacteria to lower H2S concentration and prevent corrosion. Introduction In metal corrosion process the surface of the metal is destroyed due to certain external factors that lead to its chemical or electrochemical change to form more stable compounds. The simplified explanation of the corrosion process is the oxidation of at an anode (corroded end releasing electrons) and the reduction of a substance at a cathode. Corrosion mechanisms are very diverse and can be based on inorganic physicochemical reactions and/or biologically influenced. Microbiologically influenced corrosion (MIC) is a natural process that occurs in the environment as a result of metabolic activity of microorganisms. Microbial colonization and biofilm formation on metal surfaces modify the electrochemical conditions at the metal–solution interface, which usually have positive influence on corrosion process. MIC of steel generates approximately US$ 100 million financial losses per annum in the United States (Muyzer and Stams, 2008). In industrial settings, especially in petroleum, gas and shipping industries, sulfate reducing bacteria (SRB) are a major concern. SRB are ubiquitous in anoxic habitats and have an important role in both the sulfur and carbon cycles (Muyzer and Stams, 2008).
    [Show full text]
  • Coral-Associated Archaea
    MARINE ECOLOGY PROGRESS SERIES Vol. 273: 89–96, 2004 Published June 8 Mar Ecol Prog Ser Coral-associated Archaea Linda Wegley1, Yanan Yu1, Mya Breitbart1, Veronica Casas1, David I. Kline1, 2, 3, Forest Rohwer1, 4,* 1Department of Biology, LS316, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-4614, USA 2University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA 3Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama 4Center for Microbial Sciences, San Diego State University, 5500 Campanile Dr, San Diego, California 92182, USA ABSTRACT: The coral holobiont includes the coral, zooxanthellae, fungi, endolithic algae, and >30 species of Bacteria. Using culture-independent techniques, we now show that Archaea are also abun- dant and widespread on corals. Sequence analyses of Archaea on 3 species of Caribbean corals revealed that coral-associated Archaea are novel, diverse, and include representatives from both the Crenarchaeota and Euryarchaeota. Unlike zooxanthellae and Bacteria, the Archaea do not appear to form species-specific associations with reef-building corals. Fluorescent in situ hybridizations with peptide nucleic acid (PNA) probes showed that Archaea were present at >107 cells cm–2 on Porites astreoides, comprising nearly half of the prokaryotic community. This study and one by Kellogg (Mar Ecol Prog Ser 273:81–88) show that Archaea are abundant, diverse, and potentially important com- ponents of the coral holobiont. KEY WORDS: Coral · Archaea · 16S rDNA · Fluorescent in situ hybridization · FISH · Peptide nucleic acid probe · PNA Resale or republication not permitted without written consent of the publisher INTRODUCTION 1994, Murray et al. 1998, 1999).
    [Show full text]
  • Archaea;Crenarchaeota;Marine;Other;Other Archaea;Crenarchaeota;Miscellaneous;Other;Other Archaea;Crenarchaeota;Soil;Other;Other
    Archaea;Crenarchaeota;Marine;Other;Other Archaea;Crenarchaeota;Miscellaneous;Other;Other Archaea;Crenarchaeota;Soil;Other;Other Archaea;Crenarchaeota;South;Other;Other Archaea;Crenarchaeota;terrestrial;Other;Other Archaea;Euryarchaeota;Halobacteria;Halobacteriales;Miscellaneous Archaea;Euryarchaeota;Methanobacteria;Methanobacteriales;Methanobacteriaceae Archaea;Euryarchaeota;Methanomicrobia;Methanocellales;Methanocellaceae Archaea;Euryarchaeota;Methanomicrobia;Methanosarcinales;Methanosarcinaceae Archaea;Euryarchaeota;Thermoplasmata;Thermoplasmatales;Marine Bacteria;Acidobacteria;Acidobacteria;11-24;uncultured Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidobacteriaceae Bacteria;Acidobacteria;Acidobacteria;BPC102;uncultured Bacteria;Acidobacteria;Acidobacteria;Bryobacter;uncultured Bacteria;Acidobacteria;Acidobacteria;Candidatus;Other Bacteria;Acidobacteria;Acidobacteria;DA023;uncultured Bacteria;Acidobacteria;Acidobacteria;DA023;unidentified Bacteria;Acidobacteria;Acidobacteria;DS-100;uncultured Bacteria;Acidobacteria;Acidobacteria;PAUC26f;uncultured Bacteria;Acidobacteria;Acidobacteria;RB41;uncultured Bacteria;Acidobacteria;Holophagae;32-20;uncultured Bacteria;Acidobacteria;Holophagae;43F-1404R;uncultured Bacteria;Acidobacteria;Holophagae;Holophagales;Holophagaceae Bacteria;Acidobacteria;Holophagae;NS72;uncultured Bacteria;Acidobacteria;Holophagae;SJA-36;uncultured Bacteria;Acidobacteria;Holophagae;Sva0725;uncultured Bacteria;Acidobacteria;Holophagae;iii1-8;uncultured Bacteria;Acidobacteria;RB25;uncultured;Other Bacteria;Actinobacteria;Actinobacteria;Actinobacteridae;Actinomycetales
    [Show full text]