Mechanically Adaptive Intracortical Implants Improve the Proximity of Neuronal Cell Bodies

Total Page:16

File Type:pdf, Size:1020Kb

Mechanically Adaptive Intracortical Implants Improve the Proximity of Neuronal Cell Bodies Home Search Collections Journals About Contact us My IOPscience Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies This content has been downloaded from IOPscience. Please scroll down to see the full text. 2011 J. Neural Eng. 8 066011 (http://iopscience.iop.org/1741-2552/8/6/066011) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 137.99.31.134 This content was downloaded on 22/05/2015 at 14:26 Please note that terms and conditions apply. IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING J. Neural Eng. 8 (2011) 066011 (13pp) doi:10.1088/1741-2560/8/6/066011 Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies J P Harris1,2, J R Capadona1,2, R H Miller3,BCHealy4,5, K Shanmuganathan6, S J Rowan1,2,6, C Weder6,7 and D J Tyler1,2,8 1 Department of Biomedical Engineering, CWRU, 2071 Martin Luther King Jr Drive, Wickenden Bldg, Cleveland, OH 44106, USA 2 Rehabilitation Research and Development, L Stokes Cleveland VA Medical Center, 10701 East Blvd Mail Stop 151 AW/APT, Cleveland, OH 44106-1702, USA 3 Department of Neurosciences, CWRU, 2109 Adelbert Road, Cleveland, OH 44106, USA 4 Department of Neurology, Brigham and Women’s Hospital, Partners MS Center, Harvard Medical School, 1 Brookline Place West, Suite 225, Boston, MA 02445, USA 5 Biostatistics Center, Massachusetts General Hospital, 50 Staniford St Suite 560, Boston, MA 02114, USA 6 Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Kent Hale Smith Bldg, CWRU, Cleveland, OH 44106, USA 7 Adolphe Merkle Institute and Fribourg Center for Nanomaterials, University of Fribourg, Rte de l’Ancienne Papeterie/PO Box 209, CH-1723 Marly 1, Switzerland E-mail: [email protected] Received 6 March 2011 Accepted for publication 27 September 2011 Published 2 November 2011 Online at stacks.iop.org/JNE/8/066011 Abstract The hypothesis is that the mechanical mismatch between brain tissue and microelectrodes influences the inflammatory response. Our unique, mechanically adaptive polymer nanocomposite enabled this study within the cerebral cortex of rats. The initial tensile storage modulus of 5 GPa decreases to 12 MPa within 15 min under physiological conditions. The response to the nanocomposite was compared to surface-matched, stiffer implants of traditional wires (411 GPa) coated with the identical polymer substrate and implanted on the contralateral side. Both implants were tethered. Fluorescent immunohistochemistry labeling examined neurons, intermediate filaments, macrophages, microglia and proteoglycans. We demonstrate, for the first time, a system that decouples the mechanical and surface chemistry components of the neural response. The neuronal nuclei density within 100 μm of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire. At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite. The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire. The results suggest that mechanically associated factors such as proteoglycans and intermediate filaments are important modulators of the response of the compliant nanocomposite. (Some figures in this article are in colour only in the electronic version) 8 Author to whom any correspondence should be addressed. 1741-2560/11/066011+13$33.00 1 © 2011 IOP Publishing Ltd Printed in the UK J. Neural Eng. 8 (2011) 066011 J P Harris et al 1. Introduction reactivity, measured through the expression of glial fibrillary acidic protein (GFAP) (Lu et al 2009). Despite increasing evidence for the importance of cellular Given the evidence for the contribution of mechanical mechanotransduction in tissue repair and homeostasis (Clark force to the glial scar from in vitro, in silico and in vivo et al 2007, Ingber 2006), the role of mechanical mismatch has experiments, we hypothesize that the in vivo glial scar not been fully elucidated in an in vivo study to explain the response is influenced by a chronic stiffness mismatch between interplay of chemical and mechanical factors that contribute the soft brain tissue and stiff intracortical implants. To to glial scarring surrounding intracortical implants. Previous create an in vivo device to characterize the importance of research in vitro and in silico has supported the importance mechanical compliance of intracortical implants in both the of mechanical signaling in several cell types in the brain. chronic inflammatory reaction and the long-term electrode Cultured astrocytes have been shown to respond to mechanical performance, we used our recently developed mechanically stimuli via calcium signaling (Ostrow and Sachs 2005). adaptive polymer nanocomposite (NC), previously described Investigations have shown that higher strain rates for cultured in detail (Capadona et al 2007, 2008, 2009, Shanmuganathan astrocytes lead to an increased reactivity (Cullen et al 2007). et al 2010a, 2010b, 2009). Our previous work has Cell types have responded differently to substrate stiffness as demonstrated that the polymer NC can reduce its tensile well. Notably, the rate of astrocyte and neuron proliferation as storage modulus from 5 GPa to 12 MPa within 15 min upon well as oligodendrocyte spreading and neuronal branching was exposure to simulated physiological conditions in artificial influenced by substrate stiffness (Kippert et al 2009, Flanagan cerebral spinal fluid at 37 ◦C (Capadona et al 2007, 2008, 2009, et al 2002, Georges et al 2006). Substrate stiffness is also Shanmuganathan et al 2010a, 2010b, 2009). The polymer NC known to shift cell differentiation in mesenchymal stem cells has modest aqueous swelling of 60–75%, in comparison to the to be neurogenic, myogenic or osteogenic (Engler et al 2006). several hundred per cent exhibited by hydrogel approaches. In addition to the effect of substrate stiffness, in silico Here, we have created model electrodes from the adaptive modeling studies indicate that indwelling electrodes exert polymer NC material. We have demonstrated that the NC forces on local populations of cells (Lee et al 2005, Subbaroyan material performs similarly in vitro and in vivo (Harris et al 2005, McConnell et al 2007). Over time, the implanted et al 2011). While the previous work performed modest electrode is anchored to the tissue via the extracellular matrix histological analysis, this is a more complete histological (ECM) and neural inflammatory cells (including microglia and report on their use as cortical implants, demonstrating that astrocytes), resulting in cellular attachments to the electrode there are both foreign body elements and mechanical effects modifying the forces exerted on the brain tissue (McConnell contributing to the overall tissue response at the biotic–abiotic et al 2007). Micromotion associated with electrode movement interface. These components of the inflammatory response within the tissue and the mechanical properties of the electrode appear to be separate but intricately coupled to the neuronal dynamically change the level of exerted forces on the cortical response. tissue during scar maturation. This phenomenon can also be exacerbated as a result of mechanically tethering the electrodes 2. Materials and methods to the skull. In vivo studies which focus on the effects of electrode tethering have shown that untethered implants reduce 2.1. Implant fabrication and imaging the extent of the glial scar (Biran et al 2007,Kimet al 2004, Subbaroyan 2007). It has been suggested that a reduced glial Implants consisted of two types, referred to as nanocomposite scar results from the reduction in forces applied to the tissue. (NC) and wire. NC implants were created by casting Alternatively, it has been proposed that less scarring is the films from a dimethylformamide solution of poly(vinyl result of limited meningeal ingrowth in response to untethered acetate) (PVAc) and tunicate whiskers, as reported previously implants (Subbaroyan 2007). (Capadona et al 2008). The NC had a cellulose whisker To investigate the effects of mechanical mismatch content of 15% w/w. The resulting films were used to create between the electrodes and the cortical tissue, several groups sheets via a custom mold in a hot press (Carver, Wabash, IN). have developed electrode substrates and substrate coatings Sheets were used to create 3 mm long probes that measured from materials such as polyimide, polydimethylsiloxane 100 ± 5 μm in thickness and 203 ± 19 μm in width with and parylene, which are more compliant than materials an approximately 45 ± 3◦ angle tip (figure 1(a)) via a cutting traditionally used to create electrodes. However, these process. The cutting process created a NC with two types materials have had limited success in attenuating glial scar of surfaces: two pressed sides (figure 1(c)) and two cut sides formation. A limitation to many of these studies is that (figure 1(d)). Both implant types were single shank probes such materials still have moduli six orders of magnitude with nearly the same cross-sectional area, refer to Harris et al larger than those of the brain, while also introducing different 2011 for a characterization of implant mechanical properties surface chemistries that could confound the tissue–material of the NC material. interaction (Lee et al 2004, Nikles et al 2003, Takeuchi Wire implants consisted of 50 μm diameter tungsten et al 2004,Westeret al 2009, Takeuchi et al 2005) and wires (AM-Systems, Sequim, WA) from which the Teflon complicate the interpretation of these results. Of interest is insulation was mechanically stripped using cutting tweezers. that surface treatments of electrode materials with a poly(vinyl Wire implants (figure 1(b)) were dip-coated in a solution of alcohol)/poly(acrylic acid) hydrogel have reduced astrocyte PVAc (MW 113 000 g mol−1, density 1.19 g cm−3,Sigma 2 J. Neural Eng. 8 (2011) 066011 J P Harris et al (b) (a) (c) (d) (e) Figure 1.
Recommended publications
  • Intracortical Microstimulation Modulates Cortical Induced Responses
    7774 • The Journal of Neuroscience, September 5, 2018 • 38(36):7774–7786 Systems/Circuits Intracortical Microstimulation Modulates Cortical Induced Responses Mathias Benjamin Voigt,1,2 XPrasandhya Astagiri Yusuf,1,2,3 and XAndrej Kral1,2 1Institute of AudioNeuroTechnology and Department of Experimental Otology, Hannover Medical School, 30625 Hannover, Germany, 2Cluster of Excellence “Hearing4all”, 30625 Hannover, Germany, and 3Department of Medical Physics/Medical Technology Cluster IMERI, Faculty of Medicine Universitas Indonesia, 10430 Jakarta, Indonesia Recentadvancesincorticalprostheticsreliedonintracorticalmicrostimulation(ICMS)toactivatethecorticalneuralnetworkandconvey information to the brain. Here we show that activity elicited by low-current ICMS modulates induced cortical responses to a sensory stimulus in the primary auditory cortex (A1). A1 processes sensory stimuli in a stereotyped manner, encompassing two types of activity: evoked activity (phase-locked to the stimulus) and induced activity (non-phase-locked to the stimulus). Time-frequency analyses of extracellular potentials recorded from all layers and the surface of the auditory cortex of anesthetized guinea pigs of both sexes showed that ICMS during the processing of a transient acoustic stimulus differentially affected the evoked and induced response. Specifically, ICMS enhanced the long-latency-induced component, mimicking physiological gain increasing top-down feedback processes. Further- more, the phase of the local field potential at the time of stimulation was
    [Show full text]
  • Challenges in the Design of Large-Scale, High-Density, Wireless Stimulation and Recording Interface
    Challenges in the Design of Large-Scale, High-Density, Wireless Stimulation and Recording Interface Po-Min Wang, Stanislav Culaclii, Kyung Jin Seo, Yushan Wang, Hui Fang, Yi-Kai Lo, and Wentai Liu 1 Introduction Neural stimulation and recording have been widely applied to fundamental research to better understand the nervous systems as well as to the clinical therapy of a variety of diseases. Well-known examples include monitoring and manipulating neural activities in the brain to map the brain function [1–3], spinal cord implant to restore the motor function after spinal cord injury [4–6], gastrointestinal (GI) implant to monitor and treat GI motility disorders [7–9], and retinal prostheses to regain eyesight in the blind [10–12]. These applications require continuous techno- logical advancement in designs of stimulation and recording electronics, electrodes, and the interconnections between the electronics and the electrodes. Despite technological advances to date, there are still challenges to overcome in applications requiring large-scale, high-density, wireless stimulation and recording. Concretely, the study of the brain function through monitoring and manipulating neural activities in freely moving and behaving subjects requires decoding the com- plex brain dynamics by mapping brain activity with both large-scale and high spa- tial resolution. This decoding demands a large-scale, high-density electrode array with small electrode size, which imposes significant challenges in electrode array fabrication as well as its interconnect with electronics. In addition, the capability to record high channel number implies the need for wireless electronics with high P.-M. Wang · S. Culaclii · Y. Wang · W. Liu (*) Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA e-mail: [email protected] K.
    [Show full text]
  • Upper Extremity Rehabilitation
    Stroke Rehabilitation Clinician Handbook 2020 4. Hemiplegic Upper Extremity Rehabilitation Robert Teasell MD, Norhayati Hussein MD, Magdalena Mirkowski MSc, MScOT, Danielle Vanderlaan RRT, Marcus Saikaley HBSc, Mitchell Longval BSc, Jerome Iruthayarajah MSc Table of Contents 4.3.16 Repetitive Transcranial Magnetic 4.1 Recovery for Upper Extremity ............ 2 Stimulation (rTMS) ....................................... 33 4.1.1 Brunnstrom Stages of Motor Recovery 2 4.3.17 Transcranial Direct Current Stimulation 4.1.2 Typical Recovery and Predictors ........... 2 (tDCS) ........................................................... 35 4.1.3 Recovery of Upper Extremity: Fixed 4.3.18 Telerehabilitation ............................. 36 Proportion ...................................................... 3 4.3.19 Orthosis in Hemiparetic Upper 4.2 Evaluation of Upper Extremity ........... 4 Extremity...................................................... 37 4.3.20 Robotics in Rehabilitation of Upper 4.2.1 Upper Extremity Asessement and Extremity Post-Stroke .................................. 38 Outcome Measures ........................................ 4 4.3.21 Virtual Reality ................................... 41 4.2.2 Motor Function ..................................... 5 4.3.22 Antidepressants and Upper Extremity 4.2.3 Dexterity................................................ 7 Function ....................................................... 42 4.2.4 ADLs ...................................................... 7 4.3.23 Peptides ...........................................
    [Show full text]
  • Electronic Approaches to Restoration of Sight
    Home Search Collections Journals About Contact us My IOPscience Electronic approaches to restoration of sight This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 Rep. Prog. Phys. 79 096701 (http://iopscience.iop.org/0034-4885/79/9/096701) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 171.64.108.170 This content was downloaded on 09/08/2016 at 17:30 Please note that terms and conditions apply. IOP Reports on Progress in Physics Reports on Progress in Physics Rep. Prog. Phys. Rep. Prog. Phys. 79 (2016) 096701 (29pp) doi:10.1088/0034-4885/79/9/096701 79 Review 2016 Electronic approaches to restoration of sight © 2016 IOP Publishing Ltd G A Goetz1,2 and D V Palanker1,3 RPPHAG 1 Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA 2 Neurosurgery, Stanford University, Stanford, CA 94305, USA 096701 3 Ophthalmology, Stanford University, Stanford, CA 94305, USA E-mail: [email protected] and [email protected] G A Goetz and D V Palanker Received 11 November 2014, revised 11 April 2016 Accepted for publication 23 May 2016 Electronic approaches to restoration of sight Published 9 August 2016 Abstract Printed in the UK Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce ROP information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal.
    [Show full text]
  • Cortical Responses to Vagus Nerve Stimulation Are Modulated by Brain State in Nonhuman Primates Irene Rembado1, Weiguo Song2, David K
    Cerebral Cortex, 2021;00: 1–19 https://doi.org/10.1093/cercor/bhab158 Original Article ORIGINAL ARTICLE Downloaded from https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhab158/6306501 by guest on 06 July 2021 Cortical Responses to Vagus Nerve Stimulation Are Modulated by Brain State in Nonhuman Primates Irene Rembado1, Weiguo Song2, David K. Su3, Ariel Levari4, Larry E. Shupe4, Steve Perlmutter4, Eberhard Fetz4 and Stavros Zanos2 1MindScope Program, Allen Institute, 615 Westlake Ave N., Seattle, WA 98103, USA, 2Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset NY 11030, USA, 3Providence Regional Medical Center Cranial Joint and Spine Clinic, Everett, WA 98201, USA and 4Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA Address correspondence to Irene Rembado, MindScope Program at the Allen Institute, 615 Westlake Ave N., Seattle, WA 98103, USA. Email: [email protected]; Stavros Zanos, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset NY 11030, USA. Email: [email protected] Abstract Vagus nerve stimulation (VNS) has been tested as therapy for several brain disorders and as a means to modulate cortical excitability and brain plasticity. Cortical effects of VNS, manifesting as vagal-evoked potentials (VEPs), are thought to arise from activation of ascending cholinergic and noradrenergic systems. However, it is unknown whether those effects are modulated by brain state at the time of stimulation. In 2 freely behaving macaque monkeys, we delivered short trains of 5 pulses to the left cervical vagus nerve at different frequencies (5-300 Hz) while recording local field potentials (LFPs) from sites in contralateral prefrontal, sensorimotor and parietal cortical areas.
    [Show full text]
  • Revolutionizing Prosthetics—Phase 3
    Revolutionizing Prosthetics—Phase 3 Alan D. Ravitz, Michael P. McLoughlin, James D. Beaty, Francesco V. Tenore, Matthew S. Johannes, Scott A. Swetz, John B. Helder, Kapil D. Katyal, Matthew P. Para, Kenneth M. Fischer, Timothy C. Gion, and Brock A. Wester n early 2006, APL was awarded a contract to start the first phase of the Revolutionizing Prosthetics 2009 program, a multiyear, multimillion-dollar effort to develop an advanced upper-extremity prosthetic limb, the Modular Prosthetic Limb (MPL). This program’s goal is to develop an advanced limb that would allow a prosthetic wearer to button a shirt, tune a radio, and feel the warmth of a loved one’s hand; such a limb might even provide the warfighter with the opportunity to return to active duty. Currently in the third phase of Revolutionizing Prosthetics, APL is leading the Defense Advanced Research Projects Agency’s effort to provide upper- extremity functionality to people who have no ability to control their native arms, such as amputees and those with high spinal cord injury or neurodegenerative diseases such as amyotrophic lateral sclerosis. Phase 3 of the program involves significant focus on clinical activities including maturing the MPL’s robustness, submitting regulatory filings, designing and executing preclinical and clinical activities, and advancing cortical implant technology. Initial clinical activities during this third year of Phase 3 have involved a sub- ject with tetraplegia using a brain computer interface to control the MPL. Further trials with this subject continue as the program team prepares for four additional subjects during Phase 3. INTRODUCTION Throughout history, the battlefield loss of limbs and/ injuries resulting from recent military operations, in or motor function has been the major driving force for addition to individuals in the general public with simi- technological progress in the field of prosthetics.
    [Show full text]
  • A Neural Interface for a Cortical Vision Prosthesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 39 (1999) 2577–2587 A neural interface for a cortical vision prosthesis Richard A. Normann *, Edwin M. Maynard, Patrick J. Rousche, David J. Warren Department of Bioengineering, Uni6ersity of Utah, 2840 Merrill Engineering Building, Salt Lake City, UT 84112, USA Received 11 August 1998; received in revised form 7 December 1998 Abstract The development of a cortically based vision prosthesis has been hampered by a lack of basic experiments on phosphene psychophysics. This basic research has been hampered by the lack of a means to safely stimulate large numbers of cortical neurons. Recently, a number of laboratories have developed arrays of silicon microelectrodes that could enable such basic studies on phosphene psychophysics. This paper describes one such array, the Utah electrode array, and summarizes neurosurgical, physiological and histological experiments that suggest that such an array could be implanted safely in visual cortex. We also summarize a series of chronic behavioral experiments that show that modest levels of electrical currents passed into cortex via this array can evoke sensory percepts. Pending the successful outcome of biocompatibility studies using such arrays, high count arrays of penetrating microelectrodes similar to this design could provide a useful tool for studies of the psychophysics of phosphene perception in human volunteers. Such studies could provide a proof-of-concept for cortically based artificial vision. © 1999 Published by Elsevier Science Ltd. All rights reserved. Keywords: Neuroprosthetics; Artificial vision; Electrode arrays; Multielectrode recordings; Biocompatibility 1. Introduction with an array of electrodes implanted subdurally over its surface.
    [Show full text]
  • "Visual Prostheses"
    530 VISUAL PROSTHESES VISUAL PROSTHESES JEAN DELBEKE CLAUDE VERAART Catholic University of Louvain Brussels, Belgium INTRODUCTION Minute electrical stimuli delivered to the retina, the optic nerve, or the occipital cortex can induce light perceptions called phosphenes. The visual prosthesis aims at exploiting these phosphenes to restore a form of vision in some cases of blindness. Very schematically, a camera or a picture capturing device transforms images into electrical signals that are then adapted and passed on to some still functional part of the visual pathways, thus bridging the defective structures. The system has at least some parts implanted, including electrodes and their stimulator circuits. A photo- sensitive array in the eye could provide the necessary image input, but most approaches use an external minia- ture camera. Typically, the visual data handling requires an external processor and the power supply as well as the data are provided to the implant by a transcutaneous transmission system. Despite a first pioneering attempt by Brindley and Lewin as early as 1968 (1) only very few experimental visual prostheses have been implanted in humans so far. The limited accessibility of the involved anatomical struc- tures, the poorly understood neural encoding, and the huge amount of information handled by the visual nervous system have clearly hampered a development that can not yet be compared with the far more advanced evolution of cochlear implants (see article on Cochlear Implants in this encyclopedia). The visual prosthesis is still at a very Encyclopedia of Medical Devices and Instrumentation, Second Edition, edited by John G. Webster Copyright # 2006 John Wiley & Sons, Inc.
    [Show full text]
  • Injectable Hydrogel Enables Local and Sustained Co-Delivery to the Brain
    Biomaterials 235 (2020) 119794 Contents lists available at ScienceDirect Biomaterials journal homepage: www.elsevier.com/locate/biomaterials Injectable hydrogel enables local and sustained co-delivery to the brain: Two clinically approved biomolecules, cyclosporine and erythropoietin, T accelerate functional recovery in rat model of stroke Anup Tuladhara,f, Jaclyn M. Obermeyera,b,f, Samantha L. Paynea,b,f, Ricky C.W. Siub, ∗ Sohrab Zandc, Cindi M. Morsheada,e,f, Molly S. Shoicheta,b,d,e, a Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada b Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada c Department of Human Biology, University of Toronto, 300 Huron Street, Toronto, ON, M5S 3E5, Canada d Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada e Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5S 3E1, Canada f Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada ARTICLE INFO ABSTRACT Keywords: Therapeutic delivery to the brain is limited by the blood-brain barrier and is exacerbated by off-target effects Hyaluronan associated with systemic delivery, thereby precluding many potential therapies from even being tested. Given Methyl cellulose the systemic side effects of cyclosporine and erythropoietin, systemic administration would be precluded in the Drug delivery context of stroke, leaving only the possibility of local delivery. We wondered if direct delivery to the brain would Cyclosporine allow new reparative therapeutics, such as these, to be identified for stroke.
    [Show full text]
  • Hardware-Software Co-Design for Brain-Computer Interfaces
    Hardware-Software Co-Design for Brain-Computer Interfaces Ioannis Karageorgos* Karthik Sriram* Jan´ Vesely*´ Michael Wu Dept of Electrical Engineering Dept of Computer Science Dept of Computer Science Dept of Computer Science Arts & Sciences Arts & Sciences Arts & Sciences Arts & Sciences Yale University Yale University Rutgers & Yale Universities Rutgers University [email protected] [email protected] [email protected] [email protected] Marc Powell David Borton Rajit Manohar Abhishek Bhattacharjee School of Engineering School of Engineering Dept of Electrical Engineering Dept of Computer Science Carney Institute for Brain Science Carney Institute for Brain Science Arts & Sciences Arts & Sciences Brown University Brown University Yale University Yale University marc [email protected] david [email protected] [email protected] [email protected] Abstract—Brain-computer interfaces (BCIs) offer avenues to the skull from biological neurons to deduce brain activ- treat neurological disorders, shed light on brain function, and ity [42, 54, 77]. While these devices do not require surgi- interface the brain with the digital world. Their wider adoption cal deployment, the signals they collect are noisy and low- rests, however, on achieving adequate real-time performance, meeting stringent power constraints, and adhering to FDA- resolution, making them less ideal as a source of control mandated safety requirements for chronic implantation. BCIs signal for forward-looking BCI applications [34, 41, 74, 86]. have, to date, been designed as custom ASICs for specific diseases In these cases, a better alternative—and the focus of our or for specific tasks in specific brain regions. General-purpose study—is to surgically embed BCIs directly on, around [111], architectures that can be used to treat multiple diseases and and in the brain tissue [15].
    [Show full text]
  • The Generation and Propagation of the Human Alpha Rhythm Milan Halgren, Orrin Devinsky, Werner K
    bioRxiv preprint first posted online Nov. 18, 2017; doi: http://dx.doi.org/10.1101/202564. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC 4.0 International license. The Generation and Propagation of the Human Alpha Rhythm Milan Halgren, Orrin Devinsky, Werner K. Doyle, Hélène Bastuji, Marc Rey, Rachel Mak- McCully, Patrick Chauvel, István Ulbert, Dániel Fabó, Lorand Erőss, Lucia Wittner, Gary Heit, Emad Eskandar, Arnold Mandell, Sydney S. Cash Contact: [email protected] Introduction The alpha rhythm (7-13 Hz) is the longest studied brain oscillation and has been theorized to play a key role in cognition. Still, substantial uncertainty remains over its physiology. In this study, we used micro and macro electrodes in patients undergoing surgery for epilepsy to measure the intracortical and thalamic generators of the human alpha rhythm. We first found that alpha propagates from higher-order anterosuperior cortex towards the lower- order occipital poles, consistent with alpha effecting top-down processing. This cortical alpha drives thalamic alpha, reversing prevailing theories of a thalamic alpha pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortex, contravening the popular conception of alpha as an infragranular rhythm. Together, these results demonstrate that the alpha rhythm reflects short-range supragranular feedback which propagates from higher-order to lower order cortex and cortex to thalamus. These physiological insights explain how alpha could mediate feedback throughout the thalamocortical system. bioRxiv preprint first posted online Nov. 18, 2017; doi: http://dx.doi.org/10.1101/202564.
    [Show full text]
  • Totally Implantable Bidirectional Neural Prostheses: a Flexible Platform for Innovation in Neuromodulation
    MINI REVIEW published: 07 September 2018 doi: 10.3389/fnins.2018.00619 Totally Implantable Bidirectional Neural Prostheses: A Flexible Platform for Innovation in Neuromodulation Philip A. Starr* Professor of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States Implantable neural prostheses are in widespread use for treating a variety of brain disorders. Until recently, most implantable brain devices have been unidirectional, either delivering neurostimulation without brain sensing, or sensing brain activity to drive external effectors without a stimulation component. Further, many neural interfaces that incorporate a sensing function have relied on hardwired connections, such that subjects are tethered to external computers and cannot move freely. A new generation of neural prostheses has become available, that are both bidirectional (stimulate as well as Edited by: record brain activity) and totally implantable (no externalized connections). These devices Andre Machado, Cleveland Clinic Lerner College of provide an opportunity for discovering the circuit basis for neuropsychiatric disorders, Medicine, United States and to prototype personalized neuromodulation therapies that selectively interrupt neural Reviewed by: activity underlying specific signs and symptoms. David Borton, Brown University, United States Keywords: neural prostheses, brain-computer interface, deep brain stimulation, bidirectional interface, oscillatory J. Luis Lujan, brain activity, electrocorticography, local field potential, brain sensing Mayo Clinic College of Medicine & Science, United States *Correspondence: INTRODUCTION Philip A. Starr [email protected] Implantable bidirectional neural prostheses are devices that combine neurostimulation with neural sensing. These may be implanted in the central or peripheral nervous system. Here, we focus on Specialty section: bidirectional interfaces that are implanted in the central nervous system (CNS).
    [Show full text]