蛋白激酶与神经系统功能调控 曹 帅1,王 韵1,2* (1 北京大学基础医学院神经生物学系,北京大学神经科学研究所,教育部/卫生计生委 重点实验室,北京 100191;2 北京大学麦戈文脑研究所,北京 100871)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Material
Supplemental Table B ARGs in alphabetical order Symbol Title 3 months 6 months 9 months 12 months 23 months ANOVA Direction Category 38597 septin 2 1557 ± 44 1555 ± 44 1579 ± 56 1655 ± 26 1691 ± 31 0.05219 up Intermediate 0610031j06rik kidney predominant protein NCU-G1 491 ± 6 504 ± 14 503 ± 11 527 ± 13 534 ± 12 0.04747 up Early Adult 1G5 vesicle-associated calmodulin-binding protein 662 ± 23 675 ± 17 629 ± 16 617 ± 20 583 ± 26 0.03129 down Intermediate A2m alpha-2-macroglobulin 262 ± 7 272 ± 8 244 ± 6 290 ± 7 353 ± 16 0.00000 up Midlife Aadat aminoadipate aminotransferase (synonym Kat2) 180 ± 5 201 ± 12 223 ± 7 244 ± 14 275 ± 7 0.00000 up Early Adult Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 958 ± 28 1052 ± 58 1086 ± 36 1071 ± 44 1141 ± 41 0.05371 up Early Adult Abcb1a ATP-binding cassette, sub-family B (MDR/TAP), member 1A 136 ± 8 147 ± 6 147 ± 13 155 ± 9 185 ± 13 0.01272 up Midlife Acadl acetyl-Coenzyme A dehydrogenase, long-chain 423 ± 7 456 ± 11 478 ± 14 486 ± 13 512 ± 11 0.00003 up Early Adult Acadvl acyl-Coenzyme A dehydrogenase, very long chain 426 ± 14 414 ± 10 404 ± 13 411 ± 15 461 ± 10 0.01017 up Late Accn1 amiloride-sensitive cation channel 1, neuronal (degenerin) 242 ± 10 250 ± 9 237 ± 11 247 ± 14 212 ± 8 0.04972 down Late Actb actin, beta 12965 ± 310 13382 ± 170 13145 ± 273 13739 ± 303 14187 ± 269 0.01195 up Midlife Acvrinp1 activin receptor interacting protein 1 304 ± 18 285 ± 21 274 ± 13 297 ± 21 341 ± 14 0.03610 up Late Adk adenosine kinase 1828 ± 43 1920 ± 38 1922 ± 22 2048 ± 30 1949 ± 44 0.00797 up Early -
Neuroprotective Effects of Geniposide from Alzheimer's Disease Pathology
Neuroprotective effects of geniposide from Alzheimer’s disease pathology WeiZhen Liu1, Guanglai Li2, Christian Hölscher2,3, Lin Li1 1. Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, PR China 2. Second hospital, Shanxi medical University, Taiyuan, PR China 3. Neuroscience research group, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK running title: Neuroprotective effects of geniposide corresponding author: Prof. Lin Li Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, PR China Email: [email protected] Neuroprotective effects of geniposide Abstract A growing body of evidence have linked two of the most common aged-related diseases, type 2 diabetes mellitus (T2DM) and Alzheimer disease (AD). It has led to the notion that drugs developed for the treatment of T2DM may be beneficial in modifying the pathophysiology of AD. As a receptor agonist of glucagon- like peptide (GLP-1R) which is a newer drug class to treat T2DM, Geniposide shows clear effects in inhibiting pathological processes underlying AD, such as and promoting neurite outgrowth. In the present article, we review possible molecular mechanisms of geniposide to protect the brain from pathologic damages underlying AD: reducing amyloid plaques, inhibiting tau phosphorylation, preventing memory impairment and loss of synapses, reducing oxidative stress and the chronic inflammatory response, and promoting neurite outgrowth via the GLP-1R signaling pathway. In summary, the Chinese herb geniposide shows great promise as a novel treatment for AD. Key words: Alzheimer’s disease, geniposide, amyloid-β, neurofibrillary tangles, oxidative stress, inflammatation, type 2 diabetes mellitus, glucagon like peptide receptor, neuroprotection, tau protein Neuroprotective effects of geniposide 1. -
Tropomyosin Receptor Antagonism in Cylindromatosis (TRAC), an Early Phase Trial of a Topical Tropomyosin Kinase Inhibitor As
Cranston et al. Trials (2017) 18:111 DOI 10.1186/s13063-017-1812-z STUDY PROTOCOL Open Access Tropomyosin Receptor Antagonism in Cylindromatosis (TRAC), an early phase trial of a topical tropomyosin kinase inhibitor as a treatment for inherited CYLD defective skin tumours: study protocol for a randomised controlled trial Amy Cranston1* , Deborah D. Stocken1,2, Elaine Stamp2, David Roblin3, Julia Hamlin4, James Langtry5, Ruth Plummer6, Alan Ashworth7, John Burn8 and Neil Rajan5,8 Abstract Background: Patients with germline mutations in a tumour suppressor gene called CYLD develop multiple, disfiguring, hair follicle tumours on the head and neck. The prognosis is poor, with up to one in four mutation carriers requiring complete surgical removal of the scalp. There are no effective medical alternatives to treat this condition. Whole genome molecular profiling experiments led to the discovery of an attractive molecular target in these skin tumour cells, named tropomyosin receptor kinase (TRK), upon which these cells demonstrate an oncogenic dependency in preclinical studies. Recently, the development of an ointment containing a TRK inhibitor (pegcantratinib — previously CT327 — from Creabilis SA) allowed for the assessment of TRK inhibition in tumours from patients with inherited CYLD mutations. Methods/design: Tropomysin Receptor Antagonism in Cylindromatosis (TRAC) is a two-part, exploratory, early phase, single-centre trial. Cohort 1 is a phase 1b open-labelled trial, and cohort 2 is a phase 2a randomised double-blinded exploratory placebo-controlled trial. Cohort 1 will determine the safety and acceptability of applying pegcantratinib for 4 weeks to a single tumour on a CYLD mutation carrier that is scheduled for a routine lesion excision (n = 8 patients). -
Horizon Scanning Status Report June 2019
Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI Institute under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG- 2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions. A representative from PCORI served as a contracting officer’s technical representative and provided input during the implementation of the horizon scanning system. PCORI does not directly participate in horizon scanning or assessing leads or topics and did not provide opinions regarding potential impact of interventions. Financial Disclosure Statement None of the individuals compiling this information have any affiliations or financial involvement that conflicts with the material presented in this report. Public Domain Notice This document is in the public domain and may be used and reprinted without special permission. Citation of the source is appreciated. All statements, findings, and conclusions in this publication are solely those of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI) or its Board of Governors. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0317005 A1 Hardin Et Al
US 20100317005A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0317005 A1 Hardin et al. (43) Pub. Date: Dec. 16, 2010 (54) MODIFIED NUCLEOTIDES AND METHODS (22) Filed: Mar. 15, 2010 FOR MAKING AND USE SAME Related U.S. Application Data (63) Continuation of application No. 11/007,794, filed on Dec. 8, 2004, now abandoned, which is a continuation (75) Inventors: Susan H. Hardin, College Station, in-part of application No. 09/901,782, filed on Jul. 9, TX (US); Hongyi Wang, Pearland, 2001. TX (US); Brent A. Mulder, (60) Provisional application No. 60/527,909, filed on Dec. Sugarland, TX (US); Nathan K. 8, 2003, provisional application No. 60/216,594, filed Agnew, Richmond, TX (US); on Jul. 7, 2000. Tommie L. Lincecum, JR., Publication Classification Houston, TX (US) (51) Int. Cl. CI2O I/68 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 435/6 LIFE TECHNOLOGES CORPORATION (57) ABSTRACT CFO INTELLEVATE Labeled nucleotide triphosphates are disclosed having a label P.O. BOX S2OSO bonded to the gamma phosphate of the nucleotide triphos MINNEAPOLIS, MN 55402 (US) phate. Methods for using the gamma phosphate labeled nucleotide are also disclosed where the gamma phosphate labeled nucleotide are used to attach the labeled gamma phos (73) Assignees: LIFE TECHNOLOGIES phate in a catalyzed (enzyme or man-made catalyst) reaction to a target biomolecule or to exchange a phosphate on a target CORPORATION, Carlsbad, CA biomolecule with a labeled gamme phosphate. Preferred tar (US); VISIGEN get biomolecules are DNAs, RNAs, DNA/RNAs, PNA, BIOTECHNOLOGIES, INC. polypeptide (e.g., proteins enzymes, protein, assemblages, etc.), Sugars and polysaccharides or mixed biomolecules hav ing two or more of DNAs, RNAs, DNA/RNAs, polypeptide, (21) Appl. -
Regression of Epileptogenesis by Inhibiting Trkb Signaling Following A
RESEARCH ARTICLE Regression of Epileptogenesis by Inhibiting Tropomyosin Kinase B Signaling following a Seizure Kamesh Krishnamurthy, MD, PhD ,1 Yang Zhong Huang, PhD,1 Stephen C. Harward, MD, PhD,2 Keshov K. Sharma, BS,1 Dylan L. Tamayo,1 and James O. McNamara, MD1,3,4 Objective: Temporal lobe epilepsy (TLE) is a devastating disease in which seizures persist in 35% of patients despite optimal use of antiseizure drugs. Clinical and preclinical evidence implicates seizures themselves as one factor promot- ing epilepsy progression. What is the molecular consequence of a seizure that promotes progression? Evidence from preclinical studies led us to hypothesize that activation of tropomyosin kinase B (TrkB)–phospholipase-C-gamma-1 (PLCγ1) signaling induced by a seizure promotes epileptogenesis. Methods: To examine the effects of inhibiting TrkB signaling on epileptogenesis following an isolated seizure, we implemented a modified kindling model in which we induced a seizure through amygdala stimulation and then used either a chemical–genetic strategy or pharmacologic methods to disrupt signaling for 2 days following the seizure. The severity of a subsequent seizure was assessed by behavioral and electrographic measures. Results: Transient inhibition of TrkB-PLCγ1 signaling initiated after an isolated seizure limited progression of epi- leptogenesis, evidenced by the reduced severity and duration of subsequent seizures. Unexpectedly, transient inhibi- tion of TrkB-PLCγ1 signaling initiated following a seizure also reverted a subset of animals to an earlier state of epileptogenesis. Remarkably, inhibition of TrkB-PLCγ1 signaling in the absence of a recent seizure did not reduce severity of subsequent seizures. Interpretation: These results suggest a novel strategy for limiting progression or potentially ameliorating severity of TLE whereby transient inhibition of TrkB-PLCγ1 signaling is initiated following a seizure. -
Natural Psychoplastogens As Antidepressant Agents
molecules Review Natural Psychoplastogens As Antidepressant Agents Jakub Benko 1,2,* and Stanislava Vranková 1 1 Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; [email protected] 2 Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia * Correspondence: [email protected]; Tel.: +421-948-437-895 Academic Editor: Olga Pecháˇnová Received: 31 December 2019; Accepted: 2 March 2020; Published: 5 March 2020 Abstract: Increasing prevalence and burden of major depressive disorder presents an unavoidable problem for psychiatry. Existing antidepressants exert their effect only after several weeks of continuous treatment. In addition, their serious side effects and ineffectiveness in one-third of patients call for urgent action. Recent advances have given rise to the concept of psychoplastogens. These compounds are capable of fast structural and functional rearrangement of neural networks by targeting mechanisms previously implicated in the development of depression. Furthermore, evidence shows that they exert a potent acute and long-term positive effects, reaching beyond the treatment of psychiatric diseases. Several of them are naturally occurring compounds, such as psilocybin, N,N-dimethyltryptamine, and 7,8-dihydroxyflavone. Their pharmacology and effects in animal and human studies were discussed in this article. Keywords: depression; antidepressants; psychoplastogens; psychedelics; flavonoids 1. Introduction 1.1. Depression Depression is the most common and debilitating mental disease. Its prevalence and burden have been steadily rising in the past decades. For example, in 1990, the World Health Organization (WHO) projected that depression would increase from 4th to 2nd most frequent cause of world-wide disability by 2020 [1]. -
Horizon Scanning Status Report, Volume 2
PCORI Health Care Horizon Scanning System Volume 2, Issue 3 Horizon Scanning Status Report September 2020 Prepared for: Patient-Centered Outcomes Research Institute 1828 L St., NW, Suite 900 Washington, DC 20036 Contract No. MSA-HORIZSCAN-ECRI-ENG-2018.7.12 Prepared by: ECRI Institute 5200 Butler Pike Plymouth Meeting, PA 19462 Investigators: Randy Hulshizer, MA, MS Damian Carlson, MS Christian Cuevas, PhD Andrea Druga, PA-C Marcus Lynch, PhD, MBA Misha Mehta, MS Prital Patel, MPH Brian Wilkinson, MA Donna Beales, MLIS Jennifer De Lurio, MS Eloise DeHaan, BS Eileen Erinoff, MSLIS Cassia Hulshizer, AS Madison Kimball, MS Maria Middleton, MPH Diane Robertson, BA Melinda Rossi, BA Kelley Tipton, MPH Rosemary Walker, MLIS Andrew Furman, MD, MMM, FACEP Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG-2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the Horizon Scanning System has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions. -
Neuron-Satellite Glial Cell Interactions in Sympathetic Nervous System Development
NEURON-SATELLITE GLIAL CELL INTERACTIONS IN SYMPATHETIC NERVOUS SYSTEM DEVELOPMENT by Erica D. Boehm A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July 2020 © 2020 Erica Boehm All rights reserved. ABSTRACT Glial cells play crucial roles in maintaining the stability and structure of the nervous system. Satellite glial cells are a loosely defined population of glial cells that ensheathe neuronal cell bodies, dendrites, and synapses of the peripheral nervous system (Elfvin and Forsman 1978; Pannese 1981). Satellite glial cells are closely juxtaposed to peripheral neurons with only 20nm of space between their membranes (Dixon 1969). This close association suggests a tight coupling between the cells to allow for possible exchange of important nutrients, yet very little is known about satellite glial cell function and development. How neurons and glial cells co-develop to create this tightly knit unit remains undefined, as well as the functional consequences of disrupting these contacts. Satellite glial cells are derived from the same population of cells that give rise to peripheral neurons, but do not begin differentiation and proliferation until neurogenesis has been completed (Hall and Landis 1992). A key signaling pathway involved in glial specification is the Delta/Notch signaling pathway (Tsarovina et al. 2008). However, recent studies also implicate Notch signaling in the maturation of glia through non- canonical Notch ligands such as Delta/Notch-like EGF-related Receptor (DNER) (Eiraku et al. 2005). Interestingly, it has been reported that levels of DNER in sympathetic neurons may be dependent on the target-derived growth factor, nerve growth factor (NGF), and this signal is prominent in sympathetic neurons at the time in which satellite glial cells are developing (Deppmann et al. -
Supplementary Tables
Supplemental Data Table 1. Peptide number Sequence Kinase Barrett / Squamous 183 SSLKSRKRA 2.46 152 KRPSKRAKA PKC 2.39 164 SSKRAK PKC 2.25 995 RQRKSRRTI PKC 2.11 926 KYRKSSLKS 2.07 195 LRGRSFMNN PKA 1.85 389 SRTASFSES PKB 1.77 650 EDTLSDSDD CKII 1.75 23 SPRKSPKKS sperm-specific histone kinase 1.73 179 RKQISVRGL PK 1.73 239 KASASPRRK sperm-specific 1.67 369 SLRASTSKS S6K 1.66 368 RSGYSSPGS 1.66 34 RKRSAKE PKA,PKG 1.65 1062 SPRKSPRKS sperm-specific 1.65 900 AAASFKAKR PKC 1.61 201 HMRSSMSGL PKA 1.55 316 RGKSSSYSK PKC 1.52 566 RRATPA 1.51 1096 AAASFKAKK PKC 1.51 45 KRAKAKTAKKR PKC 1.50 941 DPTMSKKKK PKC 1.49 352 DAGASPVEK PKC 1.49 380 PLTPSGEAP Src 1.49 356 EGTHSTKRG PKC 1.48 351 GSRGSGSSV PKA 1.47 30 TLASSFKRR PKC 1.46 793 ALGISYGRK PKC 1.46 833 LTRRASFSAQ PKA 1.45 807 SPKKSPRKA sperm-specific 1.45 705 ARKKSSAQL PKA 1.44 364 GEINTEDDD CKII 1.44 231 VIKRSPRKR CDK 1.43 180 AGTTYAL MHCK 1.43 348 KRPSIRAKA PKC 1.43 169 RLSPSPTSQ CDK 1.42 969 LGSALRRR 1.40 166 AVDRYIAIT IR 1.39 1044 RRLSSLRAS S6K 1.38 244 KRSGSVYEP PKA 1.37 1110 REILSRRPS GSK3 1.36 574 YKNDYYRKR 1.36 167 DPLLTYRFP PKC 1.36 1033 EQEEYEDPD Lyn,Syk 1.35 189 VKRGISGL H4-PK-I,PKA 1.35 154 PYKFPSSPLRIPGZ na 1.33 349 NPGFYVEAN EGFR 1.32 1149 RKRKSSQAL PKA 1.31 827 KAKTTKKRP 1.31 151 ESSNYMAPY PDGFR 1.30 551 GTVPSDNID GRK2,GRK5 1.30 337 KLRRSSSVG PKA,PKC 1.29 571 RKFSSARPE PKA 1.28 362 AVDGYVKPQ Lyn,Src,JAK2 1.28 188 PQPEYVNQP erbB2 1.27 786 KRPSNRAKA PKC 1.25 158 GGRDSRSGS PKA,PKC 1.25 1063 RRRASVA PKA,PKC 1.25 156 DAHKSKRQH CKII 1.24 915 GRGLSLSR PKA 1.20 49 KRKQGSVRGL PhK,PKA 1.16 -
12) United States Patent (10
US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S. -
Zero-Shot Learning for Predicting Kinase Phosphorylation Sites
DEEPKINZERO: ZERO-SHOT LEARNING FOR PREDICTING KINASE PHOSPHORYLATION SITES a thesis submitted to the graduate school of engineering and science of bilkent university in partial fulfillment of the requirements for the degree of master of science in computer engineering By Iman Deznabi August 2018 DeepKinZero: Zero-Shot Learning for Predicting Kinase Phosphoryla- tion Sites By Iman Deznabi August 2018 We certify that we have read this thesis and that in our opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science. Abdullah Ercüment Çiçek(Advisor) Öznur Taştan Okan (Co-advisor) Erman Ayday Ramazan Gökberk Cinbiş Approved for the Graduate School of Engineering and Science: Ezhan Karaşan Director of the Graduate School ii ABSTRACT DEEPKINZERO: ZERO-SHOT LEARNING FOR PREDICTING KINASE PHOSPHORYLATION SITES Iman Deznabi M.S. in Computer Engineering Advisor: Asst. Prof. Dr. A. Ercüment Çiçek and Asst. Prof. Dr. Öznur Taştan Okan August 2018 Protein kinases are a large family of enzymes that catalyze the phosphorylation of other proteins. By acting as molecular switches for protein activity, the phos- phorylation events regulate intracellular signal transduction, thereby assuming a central role in a broad range of cellular activities. On the other hand, aberrant kinase function is implicated in many diseases. Understanding the normal and malfunctioning signaling in the cell entails the identification of phosphorylation sites and the characterization of their interactions with kinases. Recent advances in mass spectrometry enable rapid identification of phosphosites at the proteome level. Alternatively, there are many computational models that predict phospho- sites in a given input protein sequence.