Research Paper GEOSPHERE Mesozoic magmatism and timing of epigenetic Pb-Zn-Ag mineralization in the western Fortymile mining district, east-central Alaska: Zircon GEOSPHERE; v. 11, no. 3 U-Pb geochronology, whole-rock geochemistry, and Pb isotopes DOI:10.1130/GES01092.1 Cynthia Dusel-Bacon1, John N. Aleinikoff2, Warren C. Day3, and James K. Mortensen4 1U.S. Geological Survey, 346 Middlefield Road, MS 901, Menlo Park, California 94025, USA 13 figures; 5 tables; 5 supplemental files 2U.S. Geological Survey, Denver Federal Center, MS 963, Denver, Colorado 80225, USA 3U.S. Geological Survey, Denver Federal Center, MS 911, Denver, Colorado 80225, USA 4University of British Columbia, 2020-2207 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada CORRESPONDENCE:
[email protected] CITATION: Dusel-Bacon, C., Aleinikoff, J.N., Day, ABSTRACT on the northeast-trending faults to be a far-field effect of dextral translation W.C., and Mortensen, J.K., 2015, Mesozoic magma- tism and timing of epigenetic Pb-Zn-Ag mineralization along Late Cretaceous plate-scale boundaries and faults that were roughly in the western Fortymile mining district, east-central The Mesozoic magmatic history of the North American margin records parallel to the subsequently developed Denali and Tintina fault systems, which Alaska: Zircon U-Pb geochronology, whole-rock geo- the evolution from a more segmented assemblage of parautochthonous and currently bound the region. chemistry, and Pb isotopes: Geosphere, v. 11, no. 3, p. 786–822, doi:10.1130/GES01092.1. allochthonous terranes