Bedrock Geologic Map of the Nashua South Quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts

Total Page:16

File Type:pdf, Size:1020Kb

Bedrock Geologic Map of the Nashua South Quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts Prepared in cooperation with the Commonwealth of Massachusetts, Massachusetts Geological Survey and the State of New Hampshire, New Hampshire Geological Survey Bedrock Geologic Map of the Nashua South Quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts By Gregory J. Walsh, Richard H. Jahns, and John N. Aleinikoff Pamphlet to accompany Scientific Investigations Map 3200 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Walsh, G.J., Jahns, R.H., and Aleinikoff, J.N., 2013, Bedrock geologic map of the Nashua South quadrangle, Hillsbor- ough County, New Hampshire, and Middlesex County, Massachusetts: U.S. Geological Survey Scientific Investigations Map 3200, 1 sheet, scale 1:24,000, 31-p. pamphlet. iii Contents Introduction.....................................................................................................................................................1 Previous Work .......................................................................................................................................1 Age of the Rocks ............................................................................................................................................1 Stratigraphy ....................................................................................................................................................2 Igneous Rocks ................................................................................................................................................2 Diorite-Gabbro Suite.............................................................................................................................4 Ayer Granodiorite—Devens-Long Pond Facies ..............................................................................5 New Hampshire Plutonic Suite ..........................................................................................................8 Chelmsford Granite ......................................................................................................................8 Pegmatite ....................................................................................................................................14 Jurassic Dikes .....................................................................................................................................14 Geochronology ....................................................................................................................................14 Methods.......................................................................................................................................14 Results .........................................................................................................................................15 Ayer Granodiorite ..............................................................................................................15 Chelmsford Granite ...........................................................................................................15 Structural Geology .......................................................................................................................................18 Ductile Structures ...............................................................................................................................18 Brittle Structures.................................................................................................................................20 Glacial Features ..................................................................................................................................24 Metamorphism .............................................................................................................................................27 Discussion .....................................................................................................................................................27 References Cited..........................................................................................................................................27 Figures 1. Photographs of the Berwick Formation ....................................................................................3 2. Photographs of migmatitic Berwick Formation .......................................................................4 3. Photographs of the diorite-gabbro suite...................................................................................5 4. Photographs of the Ayer Granodiorite ......................................................................................7 5. International Union of the Geological Sciences (IUGS) rock classification of samples of Ayer Granodiorite and Chelmsford Granite .........................................................9 6. Major-, trace-, and rare-earth-element discrimination diagrams for the dated samples of the Ayer Granodiorite and Chelmsford Granite .................................................11 7. Photographs of the Chelmsford Granite .................................................................................12 8. Lower hemisphere equal-area projection (stereonet) and azimuth-frequency (rose) diagram of pegmatite dikes ...........................................................................................15 9. Cathodoluminescence and transmitted light images of representative zircons and concordia plots of dated rocks from the Nashua South quadrangle .........................16 10. Photographs and companion sketches of relict D1 structure in the Berwick Formation .....................................................................................................................................19 11. Photographs and companion sketches of D2 and D3 structures .........................................20 iv 12. Lower hemisphere equal-area projections (stereonets) of ductile fabrics in the Nashua South quadrangle ........................................................................................................21 13. Photographs of major fracture types ......................................................................................22 14. Lower hemisphere equal-area projections (stereonets) and azimuth-frequency (rose) diagrams of fractures .....................................................................................................23 15. Map of brittle faults in the Nashua South quadrangle .........................................................25 16. Lower hemisphere equal-area projections (stereonets) azimuth-frequency (rose) diagram of brittle faults ..................................................................................................26 17. Rose diagram of nine glacial striations in the Nashua South quadrangle .......................26 Tables 1. Modal compositions and rock classifications of selected rocks from the diorite- gabbro suite ...................................................................................................................................6 2. Modal compositions and rock classifications of selected rocks from the Ayer Granodiorite ...................................................................................................................................8 3. Major, trace, and rare-earth element whole-rock geochemistry of the dated samples of the Ayer Granodiorite and Chelmsford Granite .................................................10 4. Modal compositions and rock classifications of selected rocks from the Chelmsford Granite .....................................................................................................................13 5. SHRIMP U-Th-Pb data for zircons from igneous rocks of the Nashua South quadrangle, N.H.-Mass ..............................................................................................................17 Conversion Factors SI to Inch/Pound Multiply By To obtain Length centimeter (cm) 0.3937 inch (in.) millimeter (mm) 0.03937 inch (in.) meter (m) 3.281 foot (ft) kilometer (km) 0.6214 mile (mi) Mass gram (g) 0.03527 ounce, avoirdupois (oz) kilogram (kg) 2.205 pound, avoirdupois (lb) Bedrock Geologic Map of the Nashua South Quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts By Gregory J. Walsh,1 Richard H. Jahns,2 and John N. Aleinikoff3 Introduction Previous Work The bedrock of the Nashua South quadrangle consists The 7.5-minute Nashua South quadrangle was formerly primarily of Silurian metasedimentary rocks of the Berwick named the Tyngsborough quadrangle. Jahns mapped the New Formation. Regionally, the Berwick Formation is part
Recommended publications
  • The Geology of the Saddleback Mountain Area, Northwood Quadrangle, Southeastern New Hampshire
    University of New Hampshire University of New Hampshire Scholars' Repository New England Intercollegiate Geological NEIGC Trips Excursion Collection 1-1-1984 The geology of the Saddleback Mountain Area, Northwood quadrangle, southeastern New Hampshire Whitaker, Laura R. Follow this and additional works at: https://scholars.unh.edu/neigc_trips Recommended Citation Whitaker, Laura R., "The geology of the Saddleback Mountain Area, Northwood quadrangle, southeastern New Hampshire" (1984). NEIGC Trips. 352. https://scholars.unh.edu/neigc_trips/352 This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. B6-1 207 THE GEOLOGY OF THE SADDLEBACK MOUNTAIN AREA, NORTHWOOD QUADRANGLE, SOUTHEASTERN NEW HAMPSHIRE Laura R. Whitaker Department of Geology The College of Charleston Charleston. SC 2942^ Introduction Saddleback Mountain is a four-peaked saddle-shapped mountain located 39 km west of Portsmouth, NH (Figure 1). The mountain lies along the boundary between the New England Uplands and the Seaboard Lowlands Sections of the New England Physiographic Province of Fenneman (1938). It also lies adjacent to the western boundary of the Massabesic Gneiss Complex as designated by Anderson (1978). Figure 2 of this text is a generalized Geologic Map of Southeastern New Hampshire compiled from Billings (1956) and later workers cited in the references from Figure 1. Portions of Figure 2 show that the Saddleback Mountain area is on strike with two convergent fault zones which are postulated to be of regional tectonic significance: the Nurambego of southern Maine (Hussey and Pankiwskyj, 1976; Hussey and Newberg, 1978), and the Pinnacle-Campbell-Hill-Hall Mountain Faults mapped by Camein (1976).
    [Show full text]
  • Tom Abstraktow 6B-Ost Ver Publ.Pdf
    Cover photo: A euhedral, oscillatory zoned, primary monazite has been altered at the rims and along cracks to an allanite-apatite-xenotime assemblage. The host mineral is feldspar. Granite, Strzegom Massif. Workshop on accessory minerals, University of Warsaw, September 2014 Editors of Volume Bogusław BAGIŃSKI, Oliwia GRAFKA Witold MATYSZCZAK, Ray MACDONALD Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw Al. Żwirki i Wigury 93, 02-089 Warszawa [email protected] Language correction: Ray MACDONALD Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw Al. Żwirki i Wigury 93, 02-089 Warszawa [email protected] 1 Organizing committee: Bogusław BAGIŃSKI Ray MACDONALD Michał RUSZKOWSKI Financial support: Workshop on accessory minerals was financially supported by the Polish Ministry of Science and Higher Education subvention and research grant No N N307634040, Faculty of Geology University of Warsaw and PIG-PIB. 2 Workshop on accessory minerals, University of Warsaw, September 2014 Preface The progress made over the past two decades in our understanding of accessory minerals containing HFSE has been remarkable. Even when “fresh-minted”, minerals such as monazite, xenotime, allanite and zircon are compositionally and structurally complex. The complexity increases many times during low-temperature alteration processes, such as interaction with hydrothermal fluids and weathering. Progress has, of course, been expedited by the introduction of a range of exciting new technologies, especially in structure determinations. On re-reading the excellent 2002 review of accessory mineral research by Poitrasson et al., one is struck by how far the subject area has advanced in 12 years. We felt that this was an opportune time to bring together a group of Earth scientists with special expertise in accessory minerals to outline their current research interests, to share ideas and to consider productive future research directions.
    [Show full text]
  • Open-File Report 2005-1235
    Prepared in cooperation with the Idaho Geological Survey and the Montana Bureau of Mines and Geology Spatial databases for the geology of the Northern Rocky Mountains - Idaho, Montana, and Washington By Michael L. Zientek, Pamela Dunlap Derkey, Robert J. Miller, J. Douglas Causey, Arthur A. Bookstrom, Mary H. Carlson, Gregory N. Green, Thomas P. Frost, David E. Boleneus, Karl V. Evans, Bradley S. Van Gosen, Anna B. Wilson, Jeremy C. Larsen, Helen Z. Kayser, William N. Kelley, and Kenneth C. Assmus Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 2005-1235 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Abstract .......................................................................................................................................................... 1 Introduction
    [Show full text]
  • Town of Auburn, New Hampshire Hazard Mitigation Plan Executive Summary
    TOWN OF AUBURN, NEW HAMPSHIRE Town of Auburn, New Hampshire, Town Offices HAZARD MITIGATION PLAN 2018 TOWN OF AUBURN NEW HAMPSHIRE HAZARD MITIGATION PLAN October 2018 Prepared for the Town of Auburn, NH, NH Homeland Security & Emergency Management (NHHSEM) and Federal Emergency Management Agency (FEMA) by The Southern New Hampshire Planning Commission with assistance from the Auburn Hazard Mitigation Committee October, 2018 October 22, 2018 Public Hearing Date October 22, 2018 Adoption Date Final Plan Acknowledgements Southern NH Planning Commission and the Town of Auburn wish to thank the following individuals for serving on the Town’s Hazard Mitigation Committee and for their assistance in the development of this Plan: Acknowledgements Appreciation is extended to the following people for contributing their time and effort to complete the Auburn Hazard Mitigation Plan: 2016-2018 Auburn Hazard Mitigation Committee Members Edward Gannon Fire Chief/Emergency Director, Town of Auburn, Chair Lori Collins Principal, Auburn Village School Lillian Deeb Police, Town of Auburn Mike Dross Road Agent, Town of Auburn Bill Herman Town Administrator, Town of Auburn Ray Pelton Police Chief, Town of Auburn Carrie Rouleau-Cote Building Inspector, Town of Auburn Denise Royce Planning/Land Use Administrator, Town of Auburn Jim Scalnier Fire Inspector, Town of Auburn Madeline DiIonno Southern New Hampshire Planning Commission Cameron Prolman Southern New Hampshire Planning Commission Derek Shooster Southern New Hampshire Planning Commission Zachary Swick
    [Show full text]
  • Earth Science Chapter 6
    Chapter6 Rocks Chapter Outline 1 ● Rocks and the Rock Cycle Three Major Types of Rock The Rock Cycle Properties of Rocks 2 ● Igneous Rock The Formation of Magma Textures of Igneous Rocks Composition of Igneous Rocks Intrusive Igneous Rock Extrusive Igneous Rock 3 ● Sedimentary Rock Formation of Sedimentary Rocks Chemical Sedimentary Rock Organic Sedimentary Rock Clastic Sedimentary Rock Characteristics of Clastic Sediments Sedimentary Rock Features 4 ● Metamorphic Rock Formation of Metamorphic Rocks Why It Matters Classification of The hundreds of different types of Metamorphic Rocks rocks on Earth can be classified into three main types: igneous, sedimentary, and metamorphic. This formation in Arizona is made of sedimentary rock. When you know the type of rock, you know something about how that rock formed. 132 Chapter 6 hq10sena_rxscho.indd 1 3/25/09 4:10:29 PM Inquiry Lab Sedimentary Sandwich 15 min Use slices of different types of bread to model Questions to Get You Started layers of different types of sediment deposits. Next, 1. Make a labeled diagram showing the rock layers in put your model in a plastic bag. Place a weight on the sample you observed. top of the bag to simulate the process of 2. Which factors might affect the thickness of a rock compacting sediment into rock. Then, use an empty layer in a real rock formation? film canister to obtain a core sample of the sedimentary sandwich. Trade samples with another 3. Your model has layers of different types of rocks. group and observe the other group’s sample. In a real formation, what might changes in Identify the different layers of rock and determine if rock type indicate about the rock layers are the same thickness or if some are formation’s geological history? thicker than others.
    [Show full text]
  • Rock Classification – Best for Coarse-Grained Rocks – Useful for Field Work Chapter 2, Pp
    Basis for Classification • Minerals present in the rock Rock Classification – Best for coarse-grained rocks – Useful for field work Chapter 2, pp. 17-26 • Chemical Composition – Works for fine-grained rock – Expensive and takes time Mineralogical Classification Monomineralic Rocks • Color Index = % of dark minerals • Plagioclase Anorthosite • Felsic < 35% mafic minerals • Olivine Dunite • Mafic = 35% – 90% mafic minerals • Augite Clinopyroxenite • Ultramafic > 90% mafic mineral • Hypersthene Orthopyroxenite QAPF Chemical Classification Diagram • CIPW norm • Useful for most – Calculated minerals from Common rocks chemical analysis • Saturation concept – Si saturation • Recalculate the • Acid to basic minerals to – Al saturation 100% QAP or • Harker-Peacock index FAP – Alkalies vs calcium 1 Silica Saturation Aluminum Saturation Acid SiO2 > 66 % Based on the feldspar ratio 1:1:3 (NaAlSi3O8) Intermediate SiO2 52 to 66 % Basic SiO2 45 to 52 % Peraluminous Al2O3 > (CaO + Na2O + K2O) Ultrabasic SiO2 < 52 % Peralkaline (Na2O + K2O) > Al2O3 Classification of Igneous Rocks Classification of Igneous Rocks Figure 2-1a. Method #1 for plotting a point with the components: 70% X, 20% Y, and 10% Z on Figure 2-1b. Method #2 for plotting a point with the components: 70% X, 20% Y, and 10% Z on triangular triangular diagrams. An Introduction to Igneous and Metamorphic Petrology, John Winter, Prentice Hall. diagrams. An Introduction to Igneous and Metamorphic Petrology, John Winter, Prentice Hall. Feldspar Classification Pyroxene Classification 2 Classification
    [Show full text]
  • Carbon Sources and the Graphitization of Carbonaceous Matter in Precambrian Rocks of the Keivy Terrane (Kola Peninsula, Russia)
    minerals Article Carbon Sources and the Graphitization of Carbonaceous Matter in Precambrian Rocks of the Keivy Terrane (Kola Peninsula, Russia) Ekaterina Fomina 1,* , Evgeniy Kozlov 1 , Kirill Lokhov 2, Olga Lokhova 3 and Vladimir Bocharov 4 1 Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14, Fersmana Street, 184209 Apatity, Russia; [email protected] 2 Institute of Earth Sciences, Saint-Petersburg State University, 7/9, Universitetskaya Emb., 199034 St. Petersburg, Russia; [email protected] 3 Institute for the History of Material Culture, Russian Academy of Sciences, 18, Dvortsovaya Emb., 191186 St.-Petersburg, Russia; [email protected] 4 Resource Center for Geo-Environmental Research and Modeling (GEOMODEL), Saint-Petersburg State University, 1, Ulyanovskaya Street, 198504 St. Petersburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-921-276-2996 Received: 15 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: The Precambrian rocks of the Keivy Terrane reveal five types of carbonaceous matter (CM): Fine-grained, flaky, nest, vein, and spherulitic. These types differ in their distribution character, carbon isotope composition, and graphitization temperatures calculated by the Raman spectra of carbonaceous material (RSCM) geothermometry. Supracrustal rocks of the Keivy Terrane 13 contain extremely isotopically light (δ CPDB = –43 ± 3‰) carbon. Presumably, its source was a methane–aqueous fluid. According to temperature calculations, this carbon matter and the host strata underwent at least two stages of metamorphism in the west of the Keivy Terrane and one stage in 13 the east. The CM isotope signatures of several samples of kyanite schists (δ CPDB = –33 ± 5‰) are close to those of oils and oil source rocks, and they indicate an additional carbon reservoir.
    [Show full text]
  • Structural, Petrological, and Tectonic Constraints on the Loch Borralan and Loch Ailsh Alkaline Intrusions, Moine Thrust Zone, GEOSPHERE, V
    Research Paper GEOSPHERE Structural, petrological, and tectonic constraints on the Loch Borralan and Loch Ailsh alkaline intrusions, Moine thrust zone, GEOSPHERE, v. 17, no. 4 northwestern Scotland https://doi.org/10.1130/GES02330.1 Robert Fox and Michael P. Searle 24 figures Department of Earth Sciences, Oxford University, South Parks Road, Oxford OX1 3AN, UK CORRESPONDENCE: [email protected] ABSTRACT during ductile shearing. The minerals pseudomor- Grit Members of the An t-Sron Formation) and the phing leucites show signs of ductile deformation Ordovician Durness Group dolomites and lime- CITATION: Fox, R., and Searle, M.P., 2021, Structural, petrological, and tectonic constraints on the Loch Bor- During the Caledonian orogeny, the Moine indicating that high-temperature (~500 °C) defor- stones (Woodcock and Strachan, 2000; Strachan ralan and Loch Ailsh alkaline intrusions, Moine thrust thrust zone in northwestern Scotland (UK) mation acted upon pseudomorphed leucite crystals et al., 2010; British Geological Survey, 2007). zone, northwestern Scotland: Geosphere, v. 17, no. 4, emplaced Neoproterozoic Moine Supergroup rocks, that had previously undergone subsolidus break- The hinterland of the Caledonian orogenic p. 1126– 1150, https:// doi.org /10.1130 /GES02330.1. meta morphosed during the Ordovician (Grampian) down. New detailed field mapping and structural wedge comprises schists of the Moine Super- and Silurian (Scandian) orogenic periods, westward and petrological observations are used to constrain group with structural inliers of Lewisian basement Science Editor: Andrea Hampel Associate Editor: Robert S. Hildebrand over the Laurentian passive margin in the north- the geological evolution of both the Loch Ailsh gneisses and intrusive Caledonian granites (Geikie, ern highlands of Scotland.
    [Show full text]
  • Landslides Triggered by Hurricane Maria
    22–25 Sept. GSA 2019 Annual Meeting & Exposition VOL. 29, NO. 6 | JUNE 2019 Landslides Triggered by Hurricane Maria: Assessment of an Extreme Event in Puerto Rico FUS_125 Creative Ad Concepts_MECH_OL.pdf 1 5/1/19 8:54 AM JUNE 2019 | VOLUME 29, NUMBER 6 SCIENCE 4 Landslides Triggered by Hurricane Maria: Assessment of an Extreme Event in Puerto Rico GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news Erin Bessette-Kirton et al. and information for more than 22,000 GSA member readers and subscribing libraries, with 11 monthly issues (March- Cover: Landslides triggered by Hurricane Maria in Sept. 2017 in the April is a combined issue). GSA TODAY is published by The municipality of Utuado, Puerto Rico. Photo taken by Erin Bessette- Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- Kirton during helicopter reconnaissance on 29 Oct. 2017. See related ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. article, p. 4–10. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of race, citizenship, gender, sexual orientation, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. © 2019 The Geological Society of America Inc. All rights reserved. Copyright not claimed on content prepared GSA 2019 Annual Meeting & Exposition wholly by U.S. government employees within the scope of their employment. Individual scientists are hereby granted ATTEND permission, without fees or request to GSA, to use a single figure, table, and/or brief paragraph of text in subsequent work and to make/print unlimited copies of items in GSA 11 Important Dates 22 Scientific Field Trips TODAY for noncommercial use in classrooms to further education and science.
    [Show full text]
  • California State University, Northridge Depositional
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE DEPOSITIONAL ENVIRONMENTS OF THE EOCENE MANIOBRA FORMATION NORTHEASTERN OROCOPIA MOUNTAINS, RIVERSIDE COUNTY, SOUTHERN CALIFORNIA A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Geology by David Michael Advocate January, 1983 The Thesis of David Michael Advocate is approved: Dr. Martin H. Link California State University, Northridge ii DEDICATION This thesis is dedicated to my father, Harry Advocate, whom above all others, encouraged me to pursue greater levels of education. iii ACKNOWLEDGEMENTS I am grateful to my friend and thesis chairman, Richard L. Squires, for his patient help and enthusiastic encouragement throughout this study. I am further grateful to Richard L. Squires and Peter Raftery for introducing me to the Maniobra Formation. Many of the helpful dis­ cussions with Martin H. Link led to the ultimate interpretations of depositional environments presented within this thesis. Peter Weigand and A. Eugene Fritsche reviewed this manuscript and contributed many helpful suggestions. I am appreciative of all the help that Janet Burke, Curt Clyne, and Tim Garvey lent in the field. Janet Burke helped with the graphics and Curt Clyne assisted with the photography. I am indebted to David Liggett, Mark Oborne, Juli Oborne, and Robert Griffis for their help in various. stages of this project. Thanks to John C. Crowell for reviewing the geologic map of the t~aniobra Valley region, Plate 1, and for discussions concerning the source area and origin of the Maniobra Formation. The author is particularly indebted to Alvin A. Almgren, Mark V. Filewicz, Hal L. Heitman, Joan Winterer, and Union Oil Company of California for kindly analyzing 29 microfossil samples.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • International Geology Review Petrogenesis of I-Type Granitoids
    This article was downloaded by: [El-Shazly, A. K.] On: 13 May 2010 Access details: Access Details: [subscription number 922195545] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK International Geology Review Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t902953900 Petrogenesis of I-type granitoids from the Melrose Stock, east-central Nevada A. K. El-Shazly a; D. D. Sanderson a;J. Napier a a Geology Department, Marshall University, Huntington, WV, USA First published on: 13 May 2010 To cite this Article El-Shazly, A. K. , Sanderson, D. D. andNapier, J.(2010) 'Petrogenesis of I-type granitoids from the Melrose Stock, east-central Nevada', International Geology Review,, First published on: 13 May 2010 (iFirst) To link to this Article: DOI: 10.1080/00206811003755396 URL: http://dx.doi.org/10.1080/00206811003755396 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]