THE ROLE of the HERPES SIMPLEX VIRUS TYPE 1 UL28 PROTEIN in TERMINASE COMPLEX ASSEMBLY and FUNCTION by Jason Don Heming Bachelor

Total Page:16

File Type:pdf, Size:1020Kb

THE ROLE of the HERPES SIMPLEX VIRUS TYPE 1 UL28 PROTEIN in TERMINASE COMPLEX ASSEMBLY and FUNCTION by Jason Don Heming Bachelor THE ROLE OF THE HERPES SIMPLEX VIRUS TYPE 1 UL28 PROTEIN IN TERMINASE COMPLEX ASSEMBLY AND FUNCTION by Jason Don Heming Bachelor of Science, Clarion University of Pennsylvania, 2004 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Jason Don Heming It was defended on April 18, 2013 and approved by Michael Cascio, Associate Professor, Bayer School of Natural and Environmental Sciences James Conway, Associate Professor, Department of Structural Biology Neal DeLuca, Professor, Department of Microbiology and Molecular Genetics Saleem Khan, Professor, Department of Microbiology and Molecular Genetics Dissertation Advisor: Fred Homa, Associate Professor, Department of Microbiology and Molecular Genetics ii Copyright © by Jason Don Heming 2013 iii THE ROLE OF THE HERPES SIMPLEX VIRUS TYPE 1 UL28 PROTEIN IN TERMINASE COMPLEX ASSEMBLY AND FUNCTION Jason Don Heming, PhD University of Pittsburgh, 2013 Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. Cleavage and packaging of replicated, concatemeric viral DNA into newly assembled capsids is critical to virus proliferation and requires seven viral genes: UL6, UL15, UL17, UL25, UL28, UL32, and UL33. Analogy with the well-characterized cleavage and packaging systems of double-stranded DNA bacteriophage suggests that HSV-1 encodes for a viral terminase complex to perform these essential functions, and several studies have indicated that this complex consists of the viral UL15, UL28, and UL33 proteins. However, the inability to purify the terminase proteins has hampered biochemical analysis of these proteins. The goal of the following studies was to isolate a functional terminase complex from HSV-1-infected cells by affinity chromatography using a virus expressing a UL28-TAP fusion protein. The tandem affinity purification (TAP) procedure resulted in the isolation of soluble UL28 complexes containing the UL15 and UL33 proteins. Biochemical studies were performed to determine the protein composition and stoichiometry of the purified complex, and the associated nuclease activity was examined. Mass spectrometry was utilized to identify viral and cellular proteins that associate with the complex during infection. Finally, mutations or deletions within the nuclease domain of UL15 or the iv metal-binding domain of UL28 were introduced into the genome of the NTAP-UL28 fusion virus. Characterization of these viruses followed by the isolation of terminase complexes revealed that the domain mutations did not preclude complex formation but each virus was deficient in viral DNA cleavage, further demonstrating the importance of these domains during DNA encapsidation. The ability to purify the endogenous terminase complex is novel to the field and we view these studies as a critical step in understanding how the terminase complex functions in the context of productive HSV-1 infection. v TABLE OF CONTENTS PREFACE .................................................................................................................................... XI 1.0 INTRODUCTION ........................................................................................................ 1 1.1 HSV-1 LINEAGE AND PATHOGENESIS ...................................................... 1 1.2 THE HSV-1 VIRION .......................................................................................... 5 1.3 MOLECULAR BIOLOGY OF HSV-1 LYTIC INFECTION ........................ 9 1.4 HSV-1 CAPSID ASSEMBLY AND DNA ENCAPSIDATION ..................... 17 1.5 THE HSV-1 TERMINASE COMPLEX .......................................................... 30 1.6 SPECIFIC AIMS AND RATIONALE ............................................................ 40 2.0 AFFINITY PURIFICATION OF THE HERPES SIMPLEX VIRUS TYPE I TERMINASE COMPLEX ......................................................................................................... 42 2.1 ABSTRACT........................................................................................................ 42 2.2 INTRODUCTION ............................................................................................. 43 2.3 MATERIALS AND METHODS ...................................................................... 46 2.4 RESULTS ........................................................................................................... 54 2.5 DISCUSSION ..................................................................................................... 72 3.0 MUTATIONAL ANALYSIS OF ESSENTIAL RESIDUES WITHIN THE HERPES SIMPLEX VIRUS TYPE I UL15 AND UL28 TERMINASE SUBUNITS ........... 80 3.1 ABSTRACT........................................................................................................ 80 vi 3.2 INTRODUCTION ............................................................................................. 81 3.3 MATERIALS AND METHODS ...................................................................... 85 3.4 RESULTS ........................................................................................................... 92 3.5 DISCUSSION ................................................................................................... 102 4.0 SUMMARY AND CONCLUSIONS ...................................................................... 108 APPENDIX A ............................................................................................................................ 123 BIBLIOGRAPHY ..................................................................................................................... 130 vii LIST OF TABLES Table 1. The human Herpesviridae ................................................................................................ 2 Table 2. Essential viral replication proteins .................................................................................. 13 Table 3. Protein components of the four capsid types. ................................................................. 19 Table 4. Role of the four capsid types during infection. ............................................................... 20 Table 5. PCR primers for generation of recombinant viruses ...................................................... 47 Table 6. Viral stock titers: NTAP-UL28 fusion mutants .............................................................. 56 Table 7. Mass spectrometry confirmation and analysis of specific interacting proteins .............. 65 Table 8. HSV-1 interacting proteins ............................................................................................. 66 Table 9. Interacting cellular proteins ............................................................................................ 68 Table 10. PCR primers for generation of recombinant domain mutant viruses ........................... 87 Table 11. Viral stock titers: UL15 and UL28 domain mutants..................................................... 94 Table 12. Interacting HSV-1 protein (complete) ........................................................................ 123 Table 13. Interacting cellular proteins (complete) ...................................................................... 124 viii LIST OF FIGURES Figure 1. Model of recurrent HSV-1 infection. .............................................................................. 3 Figure 2. Structure of the HSV-1 virion. ........................................................................................ 5 Figure 3. The capsid structural proteins. ......................................................................................... 7 Figure 4. Structure and sequence arrangement of the HSV-1 genome. .......................................... 8 Figure 5. Isolation and morphology of the four capsid types. ...................................................... 19 Figure 6. Proteolytic processing of the scaffolding proteins by the maturational protease. ......... 21 Figure 7. Capsid assembly and DNA packaging. ......................................................................... 24 Figure 8. Structure and essential cis-acting elements within the viral a sequences. .................... 26 Figure 9. Conserved amino acid domains within the UL15 protein. ............................................ 36 Figure 10. Conserved amino acid domains within the UL28 protein. .......................................... 37 Figure 11. UL33 protein domain mutations affecting terminase activity. .................................... 38 Figure 12. Recombinant UL28 virus constructs. .......................................................................... 55 Figure 13. Recombinant NTAP-UL28 virus single-step growth curves....................................... 57 Figure 14. Recombinant NTAP-UL28 fusion protein expression. ............................................... 58 Figure 15. Recombinant NTAP-UL28 fusion protein expression time course. ............................ 59 Figure 16. TAP of NTAP-UL28 fusion proteins. ......................................................................... 61 Figure 17. Sedimentation velocity analysis of TAP-purified UL28
Recommended publications
  • Structure and Expression of Class II Defective Herpes Simplex Virus
    JOURNAL OF VIROLOGY, Aug. 1982, p. 574-593 Vol. 43, No. 2 0022-538X/82/080574-20$02.00/0 Structure and Expression of Class II Defective Herpes Simplex Virus Genomes Encoding Infected Cell Polypeptide Number 8 HILLA LOCKER,1t NIZA FRENKEL,l* AND IAN HALLIBURTON2 Department ofBiology, The University of Chicago, Chicago, Illinois 60637,1 and Department of Microbiology, University ofLeeds, Leeds, England' Received 12 February 1982/Accepted 13 May 1982 Defective genomes present in serially passaged virus stocks derived from the tsLB2 mutant of herpes simplex virus type 1 were found to consist of repeat units in which sequences from the UL region, within map coordinates 0.356 and 0.429 of standard herpes simplex virus DNA, were covalently linked to sequences from the end of the S component. The major defective genome species consisted of repeat units which were 4.9 x 106 in molecular weight and contained a specific deletion within the UL segment. These tsLB2 defective genomes were stable through more than 35 sequential virus passages. The ratios of defective virus genomes to helper virus genomes present in different passages fluctuated in synchrony with the capacity of the passages to interfere with standard virus replication. Cells infected with passages enriched for defective genomes overpro- duced the infected cell polypeptide number 8, which had previously been mapped within the UL sequences present in the tsLB2 defective genomes. In contrast, the synthesis of most other infected cell polypeptides was delayed and reduced. The abundant synthesis of infected cell polypeptide number 8 followed the , regula- tory pattern, as evident from kinetic studies and from experiments in which cycloheximide, canavanine, and phosphonoacetate were used.
    [Show full text]
  • HIV Accessory Proteins: Review Leading Roles for the Supporting Cast
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 82, 189-192, July 28, 1995, Copyright © 1995 by Cell Press HIV Accessory Proteins: Review Leading Roles for the Supporting Cast Didier Trono ment into coated pits. The lymphoid-specific p56~k tyrosine Infectious Disease Laboratory kinase bound to the CD4 cytoplasmic tail plays such an The Salk Institute for Biological Studies inhibitory role. While Lck is released by Nef, this seems 10010 North Torrey Pines Road to be an epiphenomenon, because Nef-induced CD4 La Jolla, California 92037 down-modulation is observed in cells that do not express Lck and on truncated CD4 molecules that do not bind the kinase. In yet another model that would be unprecedented, Considering that a set of three genes is sufficient for the Nef could physically connect CD4 with a component of replication of most retroviruses, the human and simian the internalization pathway. Future experiments should immunodeficiency viruses (HIV and SIV) exhibit a surpris- test these various possibilities, in particular by determining ing degree of genomic complexity. HIV-1 contains no less conclusively whether Nef, directly or indirectly, interacts than six open reading frames in addition to the prototypic with CD4 or with the endocytic apparatus. Irrespective of gag, pol, and env coding sequences (see Figure 1). Two its mechanism, what' advantage does Nef-mediated CD4 of these supplementary genes, tat and rev, are absolutely down-regulation confer to the virus? Does it rapidly block necessary for virus growth: Tat is a major transactivator detrimental superinfection events? Does it prevent virus of the proviral long terminal repeat (LTR), and Rev acts aggregation on the surface of cells during budding, analo- posttranscriptionally to ensure the switch from the early gous to the role played by neuraminidase for influenza to the late phase of viral gene expression.
    [Show full text]
  • Herpes Simplex Virus 1 ICP8 Mutant Lacking Annealing Activity Is Deficient for Viral DNA Replication
    Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication Savithri Weerasooriyaa,1, Katherine A. DiScipioa,b,1, Anthar S. Darwisha,b, Ping Baia, and Sandra K. Wellera,2 aDepartment of Molecular Biology and Biophysics, University of Connecticut School of Medicine, Farmington, CT 06030; and bMolecular Biology and Biochemistry Graduate Program, University of Connecticut School of Medicine, Farmington, CT 06030 Edited by Jack D. Griffith, University of North Carolina, Chapel Hill, NC, and approved December 4, 2018 (received for review October 13, 2018) Most DNA viruses that use recombination-dependent mechanisms culating in patient populations (18–22). Additionally, it has long to replicate their DNA encode a single-strand annealing protein been recognized that viral replication intermediates are com- (SSAP). The herpes simplex virus (HSV) single-strand DNA binding posed of complex X- and Y-branched structures as evidenced by protein (SSB), ICP8, is the central player in all stages of DNA electron microscopy (10, 16) and pulsed-field gel electrophoresis replication. ICP8 is a classical replicative SSB and interacts physi- (15, 23, 24). ′ ′ cally and/or functionally with the other viral replication proteins. The HSV exo/SSAP, composed of a 5 -to-3 exonuclease Additionally, ICP8 can promote efficient annealing of complemen- (UL12) and an SSAP (ICP8), is capable of promoting strand ex- tary ssDNA and is thus considered to be a member of the SSAP change in vitro (25, 26). More recently, we have shown that HSV infection stimulates single-strand annealing (27), and ICP8 has family. The role of annealing during HSV infection has been been reported to promote recombineering in transfected cells difficult to assess in part, because it has not been possible to (28).
    [Show full text]
  • Type of the Paper (Article
    Viruses 2018 – Breakthroughs in Viral Replication Faculty of Biology University of Barcelona Spain 7 – 9 February 2018 Conference Chair Eric O. Freed Conference Co-Chair Albert Bosch Organised by Conference Secretariat Antonio Peteira Man Luo George Andrianou Nikoleta Kiapidou Kristjana Xhuxhi Pablo Velázquez Lucia Russo Sara Martínez Lynn Huang Sarai Rodríguez Viruses 2018 – Breakthroughs in Viral Replication 1 CONTENTS Abridged Programme 5 Conference Programme 6 Welcome 13 General Information 15 Abstracts – Session 1 25 General Topics in Virology Abstracts – Session 2 45 Structural Virology Abstracts – Session 3 67 Virus Replication Compartments Abstracts – Session 4 89 Replication and Pathogenesis of RNA viruses Abstracts – Session 5 105 Genome Packaging and Replication/Assembly Abstracts – Session 6 127 Antiviral Innate Immunity and Viral Pathogenesis Abstracts – Poster Exhibition 147 List of Participants 297 Viruses 2018 – Breakthroughs in Viral Replication 3 Viruses 2018 – Breakthroughs in Viral Replication 7 – 9 February 2018, Barcelona, Spain Wednesday Thursday Friday 7 February 2018 8 February 2018 9 February 2018 S3. Virus S5. Genome Check-in Replication Packaging and Compartments Replication/Assembly Opening Ceremony S1. General Topics in Virology Morning Coffee Break S1. General Topics S3. Virus S5. Genome in Virology Replication Packaging and Compartments Replication/Assembly Lunch S2. Structural S4. Replication and S6. Antiviral Innate Virology Pathogenesis of Immunity and Viral RNA Viruses Pathogenesis Coffee Break Apéro and Poster Coffee Break Session S2. Structural S6. Antiviral Innate Virology Immunity and Viral Afternoon Conference Group Pathogenesis Photograph Closing Remarks Conference Dinner Wednesday 7 February 2018: 08:00 - 12:30 / 14:00 - 18:00 / Conference Dinner: 20:30 Thursday 8 February 2018: 08:30 - 12:30 / 14:00 - 18:30 Friday 9 February 2018: 08:30 - 12:30 / 14:00 - 18:15 Viruses 2018 – Breakthroughs in Viral Replication 5 Conference Programme Wednesday 7 February 08:00 – 08:45 Check-in 08:45 – 09:00 Opening Ceremony by Eric O.
    [Show full text]
  • An Exploration of the Interplay Between HSV-1 and the Non-Homologous End Joining Proteins PAXX and DNA-Pkcs
    An exploration of the interplay between HSV-1 and the non-homologous end joining proteins PAXX and DNA-PKcs Benjamin James Trigg Gonville and Caius College This dissertation is submitted for the degree of Doctor of Philosophy September 2017 2. Abstract An exploration of the interplay between HSV-1 and the non-homologous end joining proteins PAXX and DNA-PKcs Benjamin James Trigg Abstract DNA damage response (DDR) pathways are essential in maintaining genomic integrity in cells, but many DDR proteins have other important functions such as in the innate immune sensing of cytoplasmic DNA. Some DDR proteins are known to be beneficial or restrictive to viral infection, but most remain uncharacterised in this respect. Non-homologous end joining (NHEJ) is a mechanism of double stranded DNA (dsDNA) repair that functions to rapidly mend broken DNA ends. The NHEJ machinery is well characterised in the context of DDR but recent studies have linked the same proteins to innate immune DNA sensing and, hence, anti-viral responses. The aim of this thesis is to further investigate the interplay between herpes simplex virus 1 (HSV-1), a dsDNA virus, and two NHEJ proteins, DNA protein kinase catalytic subunit (DNA- PKcs) and paralogue of XRCC4 and XLF (PAXX). PAXX was first described in the literature as a NHEJ protein in 2015, but whether it has any role in the regulation of virus infection has not been established. Here we show that PAXX acts as a restriction factor for HSV-1 because PAXX-/- (KO) cells produce a consistently higher titre of HSV-1 than the respective wild type (WT) cells.
    [Show full text]
  • (Infected Cell Protein 8) of Herpes Simplex Virus L*
    THEJOURNAL OF BIOLOGICAL CHEMISTRY Vol. 262, No. 9, Issue of March 25, pp. 4260-4266, 1987 0 1987 by The American Society of Biological Chemists, Inc Printed in U.S. A. Interaction between theDNA Polymerase and Single-stranded DNA- binding Protein (Infected Cell Protein 8) of Herpes Simplex Virus l* (Received for publication, September 22, 1986) Michael E. O’DonnellS, Per EliasQ,Barbara E. Funnellll, and I. R. Lehman From the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305 The herpes virus-encoded DNA replication protein, ICP8 completely inhibits replication of singly primed ssDNA infected cell protein 8 (ICPS), binds specifically to templates by the herpespolymerase. On the other hand, ICP8 single-stranded DNA with a stoichiometry of one ICPS strongly stimulates replication of duplex DNA. It does so, molecule/l2 nucleotides. In the absence of single- however, onlyin the presence of anuclear extract from stranded DNA, it assembles into long filamentous herpes-infected cells. structures. Binding of ICPS inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed EXPERIMENTALPROCEDURES single-stranded DNA circles. In contrast, ICPS greatly Materials-DNase I and venom phosphodiesterase were obtained stimulates replication of circular duplex DNA by the from Worthington. The syntheticoligodeoxynucleotide (44-mer) was polymerase. Stimulation occurs only in the presence of synthesized by the solid-phase coupling of protected phosphoramidate a nuclear extract from herpes-infected cells. Appear- nucleoside derivatives (11).3H-Labeled #X ssDNA was a gift from ance of the stimulatory activity in nuclear extracts Dr. R. Bryant (this department). pMOB45 (10.5 kilobases) linear coincides closely with the time of appearance of her- duplex plasmid DNA was a gift from Dr.
    [Show full text]
  • The Neural F-Box Protein NFB42 Mediates the Nuclear Export of the Herpes Simplex Virus Type 1 Replication Initiator Protein (UL9 Protein) After Viral Infection
    The neural F-box protein NFB42 mediates the nuclear export of the herpes simplex virus type 1 replication initiator protein (UL9 protein) after viral infection Chi-Yong Eom*, Won Do Heo†, Madeleine L. Craske†, Tobias Meyer†, and I. Robert Lehman*‡ Departments of *Biochemistry and †Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5307 Contributed by I. Robert Lehman, February 3, 2004 The neural F-box 42-kDa protein (NFB42) is a component of the in nonneural tissues (11). The factors required for ubiquitination SCFNFB42 E3 ubiquitin ligase that is expressed in all major areas of and subsequent degradation of target proteins are found the brain; it is not detected in nonneuronal tissues. We previously throughout the cell, including the cytosol, nucleus, endoplasmic identified NFB42 as a binding partner for the herpes simplex virus reticulum, and cell-surface membranes (9, 12). 1 (HSV-1) UL9 protein, the viral replication-initiator, and showed Because NFB42 is found primarily in the cytosol (11), whereas that coexpression of NFB42 and UL9 in human embryonic kidney the UL9 protein is located predominantly in the nucleus (13), it (293T) cells led to a significant decrease in the level of UL9 protein. was important to determine the mechanism that permits their We have now found that HSV-1 infection promotes the shuttling interaction. We report here that HSV-1 infection promotes the of NFB42 between the cytosol and the nucleus in both 293T cells shuttling of NFB42 between the cytosol and the nucleus in both and primary hippocampal neurons, permitting NFB42 to bind to the 293T cells and in primary hippocampal neurons, and that NFB42 phosphorylated UL9 protein, which is localized in the nucleus.
    [Show full text]
  • The Impact of Herpes Therapy on Genital and Systemic Immunology
    The impact of herpes therapy on genital and systemic immunology by Tae Joon Yi A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Immunology University of Toronto © Copyright by Tae Joon Yi 2013 The impact of herpes therapy on genital and systemic immunology Tae Joon Yi Doctor of Philosophy Department of Immunology University of Toronto 2013 Abstract HIV infects more than 34 million people globally. Herpes simplex virus type 2 (HSV-2) has been associated with a 3-fold increase in the rate of HIV acquisition, which may be due to physical breaks in the mucosal barrier during symptomatic episodes and/or an increased number of HIV target cells being exposed in the genital tract. Although clinical trials have demonstrated that herpes suppression in HIV uninfected individuals had no impact on HIV incidence, acyclovir was associated with a decrease in plasma HIV viral load and delayed disease progression in HSV-2 co-infected individuals. In addition, many HIV infected individuals display persistent systemic immune activation, which correlates with disease progression, despite successful antiretroviral therapy (ART). It is hypothesized that HSV could be one of the drivers of this activation. To further assess these relationships, my thesis focused on examining the impact of herpes therapy on genital tract immunology and systemic immune activation in HIV uninfected women and a comparison of systemic immune activation in individuals co-infected with HIV and HSV-2 on ART randomized to valacyclovir or placebo. A randomized, placebo-controlled, double-blinded, cross-over trial was conducted in HSV-2 infected, HIV uninfected, women using valacyclovir.
    [Show full text]
  • Multifunctional Viral Protein γ34.5 Manipulates Nucleolar Protein
    Meng et al. Cell Death and Disease (2018) 9:103 DOI 10.1038/s41419-017-0116-2 Cell Death & Disease ARTICLE Open Access Multifunctional viral protein γ34.5 manipulates nucleolar protein NOP53 for optimal viral replication of HSV-1 Wen Meng1, Shi-Chong Han1,Cui-CuiLi1, Hui-Jun Dong1 and Xiao-Jia Wang1 Abstract To ensure efficient virus replication, herpes simplex virus type 1 (HSV-1) encodes several viral proteins to counter host defense response upon infection. Among these proteins, the multifunctional viral protein γ34.5 crucially interferes with or disrupts several antiviral pathways at multiple levels. The current study shows that γ34.5 utilizes nucleolar protein NOP53 to facilitate the dephosphorylation of eukaryotic initiation factor eIF2α for efficient viral translation. Our study shows that: (1) ectopic expression of NOP53 greatly increases the intracellular and extracellular viral yields of HSV-1 (wild strain F) in type I interferon-deficient Vero cells, and more subtly promotes viral replication of γ34.5 deletion mutant virus HSV-1/Δγ34.5. (2) NOP53 is migrated from nuclei in HSV-1/F infected cells, but is redistributed incompletely after infection by either HSV-1/Δγ34.5 or ICP4 deletion mutant virus HSV-1/d120 (replication inadequate). Ectopic expression of γ34.5, consequently, induces cytoplasmic translocation of NOP53 in response to HSV-1/Δγ34.5 infection. (3) Increase of NOP53, in two forms of transient transfection and in vitro expression, attenuates the phosphorylation level of eIF2α in HSV-1/F infected cells, but fails to affect eIF2α phosphorylation induced by HSV-1/ Δγ34.5 infection. (4) Knockdown of NOP53, which impairs the specific interaction between γ34.5 and protein phosphatase PP1α, disrupts the ability of γ34.5 to maintain HSV-1 virulence.
    [Show full text]
  • Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton
    viruses Review Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton Monica Miranda-Saksena 1,* ID , Christopher E. Denes 1 ID , Russell J. Diefenbach 2 ID and Anthony L. Cunningham 1,* ID 1 Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead NSW 2145, Australia; [email protected] 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney NSW 2109, Australia; [email protected] * Correspondence: [email protected] (M.M.S.); [email protected] (A.L.C.); Tel.: +612-8627-3624 (M.M.S.) Received: 24 January 2018; Accepted: 20 February 2018; Published: 23 February 2018 Abstract: Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons. Keywords: herpes simplex virus; neurons; axonal transport; cytoskeleton; microtubules; actin 1.
    [Show full text]
  • Interactions Between Polyomavirus Large T Antigen and the Viral Replication Origin Dna: How and Why
    INTERACTIONS BETWEEN POLYOMAVIRUS LARGE T ANTIGEN AND THE VIRAL REPLICATION ORIGIN DNA: HOW AND WHY by Yu-Cai Peng Department of Microbiology and Immunology McGill University, Montreal April, 1999 A thesis submitted to the Faculty of Craduate Studies and Re3earch in partial fulfullmeat of the requirements of the degree of doctor of philosophy @Yu-Cai Peng, 1999 National Library Biblioth ue nationale 1+1 of Canada du Cana7 a Acquisitions and Acquisitions et Bibliographie Srvices services bibliographiques 395 Wellmgton Street 395, nie Weliingîm Ottawa ON KIA ON4 OrtawaON K1AON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive Licence ailowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfichelfilm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or othenvise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. TABLE OF CONTENTS Page Tableofcontents................................................... I Abstract .......................................................... VI Resumé........................................................... VI11 Acknowledgements ................................................. X Claim of contribution to kaowledge ................................... XI Listoffigures ...................................................... XllI Guidelines regarding doctoral thesis ................................... XV CHAPTER 1. INTRODUCTION .................................... 1 1. Overview: Life cycle of polyomavirus and simian virus 40 ..........
    [Show full text]
  • Noroviruses Subvert the Core Stress Granule Component G3BP1 to Promote Viral Vpg-Dependent Translation
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 8-12-2019 Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation Myra Hosmillo Jia Lu Michael R. McAllaster James B. Eaglesham Xinjie Wang See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Authors Myra Hosmillo, Jia Lu, Michael R. McAllaster, James B. Eaglesham, Xinjie Wang, Edward Emmott, Patricia Domingues, Yasmin Chaudhry, Tim J. Fitzmaurice, Matthew K.H. Tung, Marc Dominik Panas, Gerald McInerney, Nicolas Locker, Craig B. Wilen, and Ian G. Goodfellow RESEARCH ARTICLE Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation Myra Hosmillo1†, Jia Lu1†, Michael R McAllaster2†, James B Eaglesham1,3, Xinjie Wang1,4, Edward Emmott1,5,6, Patricia Domingues1, Yasmin Chaudhry1, Tim J Fitzmaurice1, Matthew KH Tung1, Marc Dominik Panas7, Gerald McInerney7, Nicolas Locker8, Craig B Wilen9*, Ian G Goodfellow1* 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom; 2Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States; 3Department of Microbiology, Harvard Medical School, Boston, United States; 4Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; 5Department of Bioengineering, Northeastern University, Boston, United States; 6Barnett Institute for Chemical
    [Show full text]