Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton

Total Page:16

File Type:pdf, Size:1020Kb

Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton viruses Review Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton Monica Miranda-Saksena 1,* ID , Christopher E. Denes 1 ID , Russell J. Diefenbach 2 ID and Anthony L. Cunningham 1,* ID 1 Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead NSW 2145, Australia; [email protected] 2 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney NSW 2109, Australia; [email protected] * Correspondence: [email protected] (M.M.S.); [email protected] (A.L.C.); Tel.: +612-8627-3624 (M.M.S.) Received: 24 January 2018; Accepted: 20 February 2018; Published: 23 February 2018 Abstract: Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons. Keywords: herpes simplex virus; neurons; axonal transport; cytoskeleton; microtubules; actin 1. Introduction Viruses are acellular, obligate intracellular parasites that can only reproduce within living hosts, and hence have evolved to utilize different mechanisms of viral reproduction. All the viruses have a capsid, which contains either double-stranded or single-stranded DNA or RNA. The shape of the capsid itself varies between viruses, and capsids are either enclosed within an envelope or naked (lacking an envelope). In order to reproduce, the virus must enter the host cell. Once inside the cell, the virus may use the host cell cytoskeleton, that is the actin and microtubule networks, for navigation through the cell cytoplasm [1,2]. The viral life cycle begins with the attachment of the virus to the host cell membrane, which allows for the virus or viral particles to enter the cell. The viral genome then needs to be translocated to the nucleoplasm or cytoplasm where replication of the viral genome, and the synthesis of viral proteins, takes place. These then move to sites where assembly of viral particles occurs, and finally the virus is transported back to the cell plasma membrane. This process usually involves the virus using the cell’s secretory pathways and the cytoskeleton, which are important for long distance transport of cellular cargo and organelles [1,3]. 2. Herpes Simplex Viruses The herpes viruses are DNA viruses able to cause lytic and latent infections in both human and animal populations. All of the herpesviruses (more than 100 known viruses) share a common virion morphology and a group of conserved genes that are required for virus replication [4]. Herpes simplex Viruses 2018, 10, 92; doi:10.3390/v10020092 www.mdpi.com/journal/viruses Viruses 2018, 10, 92 2 of 20 Viruses 2018, 10, x FOR PEER REVIEW 2 of 19 virus type 1 and 2 (HSV-1 and HSV-2) are human neuroinvasive pathogens and are amongst the most amongstcommonly the studied most memberscommonly of thestudied alphaherpesviruses. members of Thethe spreadalphaherpesviruses. of alphaherpesviruses The spread through of alphaherpesvirusesthe peripheral nervous through system the is criticalperipheral for establishingnervous system a life-long is critical infection for establishing within sensory a life-long neurons infectionof the host. within HSV-1 sensory is approximately neurons of 225the nmhost. in HSV-1 diameter is andapproximately consists of 225 four nm layers: in diameter the episomal and consistsDNA genome, of four capsid, layers: tegumentthe episomal and DNA envelope genome, [5]. At capsid, the center tegument is a large and linear envelope double-stranded [5]. At the center DNA is(dsDNA) a large linear genome double-stranded (152 kbp) that codes DNA for (dsDNA) more than genome 80 open (152 reading kbp) that frames codes (ORFs) for more enclosed than within80 open a readingT = 16 icosahedral frames (ORFs) capsid. enclosed Surrounding within the a capsidT = 16 isicosahedral a dense proteinaceous capsid. Surrounding layer called the the capsid tegument is a denseconsisting proteinaceous of 23 tegument layer called proteins the that tegument link the consisting capsid to of the 23 host tegument cell-derived proteins lipid-bilayer that link the envelope capsid tocontaining the host cell-derived 16 different lipid-bilayer membrane proteins envelope [6 containing–8]. 16 different membrane proteins [6–8]. Primary HSV-1 infection is usually established within the stratifiedstratified squamous epithelium (epidermis) of the oral and anogenitalanogenital mucosamucosa andand isis commonlycommonly asymptomaticasymptomatic (Figure(Figure1 1).). UponUpon infectioninfection of of sensory sensory nerves nerves innervating innervating the the skin skin or or mucosa, the the virus undergoes retrograde axonal transporttransport to to the the neuronal neuronal cell cell body body where where it can establish a life-long latent infection within the trigeminaltrigeminal and dorsal rootroot gangliaganglia (DRG)(DRG) [9[9,10].,10]. AfterAfter reactivation, reactivation, anterograde anterograde transport transport of of HSV-1 HSV-1 is isusually usually directed directed towards towards the the peripheral peripheral epithelial epithelial cells cells where where it typically it typically presents presents as mild as oralmild or oral labial or labiallesions lesions in an immunocompetent in an immunocompetent host (Figure host1 )[(Fig11ure]. In 1) neonates [11]. In or neonates immunocompromised or immunocompromised individuals, individuals,however, lesions however, are morelesions severe are more and severe persistent, and persistent, often causing often serious causing and serious life-threating and life-threating diseases, diseases,such as herpes such as simplex herpes encephalitis simplex encephalitis and disseminated and disseminated herpes. Even herpes. in immunocompetent Even in immunocompetent individuals, individuals,HSV-1 keratitis, HSV-1 which keratitis, is an infection which is of an the infection cornea in of the the eye, cornea can result in the in eye, blindness can result [12]. in Prior blindness genital [12].infection Prior with genital HSV-2 infection also enhances with HSV-2 HIV also acquisition enhances 3–5 HIV fold acquisition [13]. 3–5 fold [13]. Figure 1. HerpesHerpes simplex simplex virus virus type type 1 1 (HSV-1) (HSV-1) life cycle in the human host. After After primary primary infection in thethe epidermis,epidermis, HSV-1 HSV-1 enters enters sensory sensory nerves nerves innervating innervating the skin the or skin mucosa or andmucosa undergoes and undergoes retrograde retrogradeaxonal transport axonal to transport the neuronal to the cell neuronal body where cell itbody establishes where ait life-longestablishes latent a life-long infection latent within infection sensory withinneurons. sensory During neurons. reactivation, During HSV-1 reactivation, travels via anterogradeHSV-1 travels axonal via transport anterograde towards axonal the peripheraltransport towardsepidermis the to peripheral cause recurrent epidermis herpes to orcause to be recu asymptomaticallyrrent herpes or to shed. be asymptomatically shed. 3. Dorsal Root Ganglia Neurons Sensory DRG neurons have pseudounipolar axons that bifurcate outside the DRG to innervate the spinal cord and the epithelium (Figure 1). DRG neurons are encapsulated by a glial cell sheath, which is formed from closely applied satellite cells, which are in turn encased in a basal lamina [14]. The neuron-satellite cell unit is separated from other similar units by collagen fibrils and other Viruses 2018, 10, 92 3 of 20 3. Dorsal Root Ganglia Neurons Sensory DRG neurons have pseudounipolar axons that bifurcate outside the DRG to innervate the spinal cord and the epithelium (Figure1). DRG neurons are encapsulated by a glial cell sheath, which is formed from closely applied satellite cells, which are in turn encased in a basal lamina [14]. The neuron-satellite cell unit is separated from other similar units by collagen fibrils and other extracellular matrix molecules. The structure of a DRG neuron consists of a cell body connected to the axon by the axon hillock (Figure1). The cell body contains the nucleus, which is where viral DNA replication, transcription, and capsid assembly takes place during HSV-1 infection (Figure1). The axon serves to conduct the transmission of action potentials from the cell body to synapse. It also provides a physical conduit for the transport of essential biological materials from the cell body to the synapse, which is necessary for the function and viability of neurons. The axon hillock is a specialized neck region that contains key organelles and a specialized dense cytoskeletal organization, which controls the axonal transport of proteins and mRNA. The axon hillock also forms a barrier, where organelles such as Golgi bodies and lysosomes accumulate in
Recommended publications
  • Structure and Expression of Class II Defective Herpes Simplex Virus
    JOURNAL OF VIROLOGY, Aug. 1982, p. 574-593 Vol. 43, No. 2 0022-538X/82/080574-20$02.00/0 Structure and Expression of Class II Defective Herpes Simplex Virus Genomes Encoding Infected Cell Polypeptide Number 8 HILLA LOCKER,1t NIZA FRENKEL,l* AND IAN HALLIBURTON2 Department ofBiology, The University of Chicago, Chicago, Illinois 60637,1 and Department of Microbiology, University ofLeeds, Leeds, England' Received 12 February 1982/Accepted 13 May 1982 Defective genomes present in serially passaged virus stocks derived from the tsLB2 mutant of herpes simplex virus type 1 were found to consist of repeat units in which sequences from the UL region, within map coordinates 0.356 and 0.429 of standard herpes simplex virus DNA, were covalently linked to sequences from the end of the S component. The major defective genome species consisted of repeat units which were 4.9 x 106 in molecular weight and contained a specific deletion within the UL segment. These tsLB2 defective genomes were stable through more than 35 sequential virus passages. The ratios of defective virus genomes to helper virus genomes present in different passages fluctuated in synchrony with the capacity of the passages to interfere with standard virus replication. Cells infected with passages enriched for defective genomes overpro- duced the infected cell polypeptide number 8, which had previously been mapped within the UL sequences present in the tsLB2 defective genomes. In contrast, the synthesis of most other infected cell polypeptides was delayed and reduced. The abundant synthesis of infected cell polypeptide number 8 followed the , regula- tory pattern, as evident from kinetic studies and from experiments in which cycloheximide, canavanine, and phosphonoacetate were used.
    [Show full text]
  • Comprehensive Analyses of 723 Transcriptomes Enhance Genetic and Biological Interpretations for Complex Traits in Cattle
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle Lingzhao Fang,1,2,3,4,8 Wentao Cai,2,5,8 Shuli Liu,1,5,8 Oriol Canela-Xandri,3,4,8 Yahui Gao,1,2 Jicai Jiang,2 Konrad Rawlik,3 Bingjie Li,1 Steven G. Schroeder,1 Benjamin D. Rosen,1 Cong-jun Li,1 Tad S. Sonstegard,6 Leeson J. Alexander,7 Curtis P. Van Tassell,1 Paul M. VanRaden,1 John B. Cole,1 Ying Yu,5 Shengli Zhang,5 Albert Tenesa,3,4 Li Ma,2 and George E. Liu1 1Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA; 2Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA; 3The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, United Kingdom; 4Medical Research Council Human Genetics Unit at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, United Kingdom; 5College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; 6Acceligen, Eagan, Minnesota 55121, USA; 7Fort Keogh Livestock and Range Research Laboratory, Agricultural Research Service, USDA, Miles City, Montana 59301, USA By uniformly analyzing 723 RNA-seq data from 91 tissues and cell types, we built a comprehensive gene atlas and studied tissue specificity of genes in cattle. We demonstrated that tissue-specific genes significantly reflected the tissue-relevant biol- ogy, showing distinct promoter methylation and evolution patterns (e.g., brain-specific genes evolve slowest, whereas testis- specific genes evolve fastest).
    [Show full text]
  • THE ROLE of the HERPES SIMPLEX VIRUS TYPE 1 UL28 PROTEIN in TERMINASE COMPLEX ASSEMBLY and FUNCTION by Jason Don Heming Bachelor
    THE ROLE OF THE HERPES SIMPLEX VIRUS TYPE 1 UL28 PROTEIN IN TERMINASE COMPLEX ASSEMBLY AND FUNCTION by Jason Don Heming Bachelor of Science, Clarion University of Pennsylvania, 2004 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Jason Don Heming It was defended on April 18, 2013 and approved by Michael Cascio, Associate Professor, Bayer School of Natural and Environmental Sciences James Conway, Associate Professor, Department of Structural Biology Neal DeLuca, Professor, Department of Microbiology and Molecular Genetics Saleem Khan, Professor, Department of Microbiology and Molecular Genetics Dissertation Advisor: Fred Homa, Associate Professor, Department of Microbiology and Molecular Genetics ii Copyright © by Jason Don Heming 2013 iii THE ROLE OF THE HERPES SIMPLEX VIRUS TYPE 1 UL28 PROTEIN IN TERMINASE COMPLEX ASSEMBLY AND FUNCTION Jason Don Heming, PhD University of Pittsburgh, 2013 Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. Cleavage and packaging of replicated, concatemeric viral DNA into newly assembled capsids is critical to virus proliferation and requires seven viral genes: UL6, UL15, UL17, UL25, UL28, UL32, and UL33. Analogy with the well-characterized cleavage and packaging systems of double-stranded DNA bacteriophage suggests that HSV-1 encodes for a viral terminase complex to perform these essential functions, and several studies have indicated that this complex consists of the viral UL15, UL28, and UL33 proteins.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • High-Throughput Discovery of Novel Developmental Phenotypes
    High-throughput discovery of novel developmental phenotypes The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dickinson, M. E., A. M. Flenniken, X. Ji, L. Teboul, M. D. Wong, J. K. White, T. F. Meehan, et al. 2016. “High-throughput discovery of novel developmental phenotypes.” Nature 537 (7621): 508-514. doi:10.1038/nature19356. http://dx.doi.org/10.1038/nature19356. Published Version doi:10.1038/nature19356 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32071918 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2017 March 14. Published in final edited form as: Nature. 2016 September 22; 537(7621): 508–514. doi:10.1038/nature19356. High-throughput discovery of novel developmental phenotypes A full list of authors and affiliations appears at the end of the article. Abstract Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from mouse knockouts of these genes have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms #Corresponding author: [email protected].
    [Show full text]
  • Herpes Simplex Virus 1 ICP8 Mutant Lacking Annealing Activity Is Deficient for Viral DNA Replication
    Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication Savithri Weerasooriyaa,1, Katherine A. DiScipioa,b,1, Anthar S. Darwisha,b, Ping Baia, and Sandra K. Wellera,2 aDepartment of Molecular Biology and Biophysics, University of Connecticut School of Medicine, Farmington, CT 06030; and bMolecular Biology and Biochemistry Graduate Program, University of Connecticut School of Medicine, Farmington, CT 06030 Edited by Jack D. Griffith, University of North Carolina, Chapel Hill, NC, and approved December 4, 2018 (received for review October 13, 2018) Most DNA viruses that use recombination-dependent mechanisms culating in patient populations (18–22). Additionally, it has long to replicate their DNA encode a single-strand annealing protein been recognized that viral replication intermediates are com- (SSAP). The herpes simplex virus (HSV) single-strand DNA binding posed of complex X- and Y-branched structures as evidenced by protein (SSB), ICP8, is the central player in all stages of DNA electron microscopy (10, 16) and pulsed-field gel electrophoresis replication. ICP8 is a classical replicative SSB and interacts physi- (15, 23, 24). ′ ′ cally and/or functionally with the other viral replication proteins. The HSV exo/SSAP, composed of a 5 -to-3 exonuclease Additionally, ICP8 can promote efficient annealing of complemen- (UL12) and an SSAP (ICP8), is capable of promoting strand ex- tary ssDNA and is thus considered to be a member of the SSAP change in vitro (25, 26). More recently, we have shown that HSV infection stimulates single-strand annealing (27), and ICP8 has family. The role of annealing during HSV infection has been been reported to promote recombineering in transfected cells difficult to assess in part, because it has not been possible to (28).
    [Show full text]
  • Type of the Paper (Article
    Viruses 2018 – Breakthroughs in Viral Replication Faculty of Biology University of Barcelona Spain 7 – 9 February 2018 Conference Chair Eric O. Freed Conference Co-Chair Albert Bosch Organised by Conference Secretariat Antonio Peteira Man Luo George Andrianou Nikoleta Kiapidou Kristjana Xhuxhi Pablo Velázquez Lucia Russo Sara Martínez Lynn Huang Sarai Rodríguez Viruses 2018 – Breakthroughs in Viral Replication 1 CONTENTS Abridged Programme 5 Conference Programme 6 Welcome 13 General Information 15 Abstracts – Session 1 25 General Topics in Virology Abstracts – Session 2 45 Structural Virology Abstracts – Session 3 67 Virus Replication Compartments Abstracts – Session 4 89 Replication and Pathogenesis of RNA viruses Abstracts – Session 5 105 Genome Packaging and Replication/Assembly Abstracts – Session 6 127 Antiviral Innate Immunity and Viral Pathogenesis Abstracts – Poster Exhibition 147 List of Participants 297 Viruses 2018 – Breakthroughs in Viral Replication 3 Viruses 2018 – Breakthroughs in Viral Replication 7 – 9 February 2018, Barcelona, Spain Wednesday Thursday Friday 7 February 2018 8 February 2018 9 February 2018 S3. Virus S5. Genome Check-in Replication Packaging and Compartments Replication/Assembly Opening Ceremony S1. General Topics in Virology Morning Coffee Break S1. General Topics S3. Virus S5. Genome in Virology Replication Packaging and Compartments Replication/Assembly Lunch S2. Structural S4. Replication and S6. Antiviral Innate Virology Pathogenesis of Immunity and Viral RNA Viruses Pathogenesis Coffee Break Apéro and Poster Coffee Break Session S2. Structural S6. Antiviral Innate Virology Immunity and Viral Afternoon Conference Group Pathogenesis Photograph Closing Remarks Conference Dinner Wednesday 7 February 2018: 08:00 - 12:30 / 14:00 - 18:00 / Conference Dinner: 20:30 Thursday 8 February 2018: 08:30 - 12:30 / 14:00 - 18:30 Friday 9 February 2018: 08:30 - 12:30 / 14:00 - 18:15 Viruses 2018 – Breakthroughs in Viral Replication 5 Conference Programme Wednesday 7 February 08:00 – 08:45 Check-in 08:45 – 09:00 Opening Ceremony by Eric O.
    [Show full text]
  • Identification of Conserved Genes Triggering Puberty in European Sea
    Blázquez et al. BMC Genomics (2017) 18:441 DOI 10.1186/s12864-017-3823-2 RESEARCHARTICLE Open Access Identification of conserved genes triggering puberty in European sea bass males (Dicentrarchus labrax) by microarray expression profiling Mercedes Blázquez1,2* , Paula Medina1,2,3, Berta Crespo1,4, Ana Gómez1 and Silvia Zanuy1* Abstract Background: Spermatogenesisisacomplexprocesscharacterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species. Results: European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty.
    [Show full text]
  • An Exploration of the Interplay Between HSV-1 and the Non-Homologous End Joining Proteins PAXX and DNA-Pkcs
    An exploration of the interplay between HSV-1 and the non-homologous end joining proteins PAXX and DNA-PKcs Benjamin James Trigg Gonville and Caius College This dissertation is submitted for the degree of Doctor of Philosophy September 2017 2. Abstract An exploration of the interplay between HSV-1 and the non-homologous end joining proteins PAXX and DNA-PKcs Benjamin James Trigg Abstract DNA damage response (DDR) pathways are essential in maintaining genomic integrity in cells, but many DDR proteins have other important functions such as in the innate immune sensing of cytoplasmic DNA. Some DDR proteins are known to be beneficial or restrictive to viral infection, but most remain uncharacterised in this respect. Non-homologous end joining (NHEJ) is a mechanism of double stranded DNA (dsDNA) repair that functions to rapidly mend broken DNA ends. The NHEJ machinery is well characterised in the context of DDR but recent studies have linked the same proteins to innate immune DNA sensing and, hence, anti-viral responses. The aim of this thesis is to further investigate the interplay between herpes simplex virus 1 (HSV-1), a dsDNA virus, and two NHEJ proteins, DNA protein kinase catalytic subunit (DNA- PKcs) and paralogue of XRCC4 and XLF (PAXX). PAXX was first described in the literature as a NHEJ protein in 2015, but whether it has any role in the regulation of virus infection has not been established. Here we show that PAXX acts as a restriction factor for HSV-1 because PAXX-/- (KO) cells produce a consistently higher titre of HSV-1 than the respective wild type (WT) cells.
    [Show full text]
  • (Infected Cell Protein 8) of Herpes Simplex Virus L*
    THEJOURNAL OF BIOLOGICAL CHEMISTRY Vol. 262, No. 9, Issue of March 25, pp. 4260-4266, 1987 0 1987 by The American Society of Biological Chemists, Inc Printed in U.S. A. Interaction between theDNA Polymerase and Single-stranded DNA- binding Protein (Infected Cell Protein 8) of Herpes Simplex Virus l* (Received for publication, September 22, 1986) Michael E. O’DonnellS, Per EliasQ,Barbara E. Funnellll, and I. R. Lehman From the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305 The herpes virus-encoded DNA replication protein, ICP8 completely inhibits replication of singly primed ssDNA infected cell protein 8 (ICPS), binds specifically to templates by the herpespolymerase. On the other hand, ICP8 single-stranded DNA with a stoichiometry of one ICPS strongly stimulates replication of duplex DNA. It does so, molecule/l2 nucleotides. In the absence of single- however, onlyin the presence of anuclear extract from stranded DNA, it assembles into long filamentous herpes-infected cells. structures. Binding of ICPS inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed EXPERIMENTALPROCEDURES single-stranded DNA circles. In contrast, ICPS greatly Materials-DNase I and venom phosphodiesterase were obtained stimulates replication of circular duplex DNA by the from Worthington. The syntheticoligodeoxynucleotide (44-mer) was polymerase. Stimulation occurs only in the presence of synthesized by the solid-phase coupling of protected phosphoramidate a nuclear extract from herpes-infected cells. Appear- nucleoside derivatives (11).3H-Labeled #X ssDNA was a gift from ance of the stimulatory activity in nuclear extracts Dr. R. Bryant (this department). pMOB45 (10.5 kilobases) linear coincides closely with the time of appearance of her- duplex plasmid DNA was a gift from Dr.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]