Morphine and Heroin Differentially Modulate in Vivo Hippocampal LTP in Opiate-Dependent Rat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional D
J Mol Cell Cardiol 32, 2187–2193 (2000) doi:10.1006/jmcc.2000.1241, available online at http://www.idealibrary.com on An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional -Opioid Receptor Claire L. Neilan1, Erin Kenyon1, Melissa A. Kovach1, Kristin Bowden1, William C. Claycomb2, John R. Traynor3 and Steven F. Bolling1 1Department of Cardiac Surgery, University of Michigan, B558 MSRB II, Ann Arbor, MI 48109-0686, USA, 2Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, LA 70112, USA and 3Department of Pharmacology, University of Michigan, 1301 MSRB III, Ann Arbor, MI 48109-0632, USA (Received 17 March 2000, accepted in revised form 30 August 2000, published electronically 25 September 2000) C. L. N,E.K,M.A.K,K.B,W.C.C,J.R.T S. F. B.An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional -Opioid Receptor. Journal of Molecular and Cellular Cardiology (2000) 32, 2187–2193. The present study characterizes opioid receptors in an immortalized myocyte cell line, HL-1. Displacement of [3H]bremazocine by selective ligands for the mu (), delta (), and kappa () receptors revealed that only the -selective ligands could fully displace specific [3H]bremazocine binding, indicating the presence of only the -receptor in these cells. Saturation binding studies with the -antagonist naltrindole 3 afforded a Bmax of 32 fmols/mg protein and a KD value for [ H]naltrindole of 0.46 n. The binding affinities of various ligands for the receptor in HL-1 cell membranes obtained from competition binding assays were similar to those obtained using membranes from a neuroblastoma×glioma cell line, NG108-15. -
Methadone Hydrochloride Tablets, USP) 5 Mg, 10 Mg Rx Only
ROXANE LABORATORIES, INC. Columbus, OH 43216 DOLOPHINE® HYDROCHLORIDE CII (Methadone Hydrochloride Tablets, USP) 5 mg, 10 mg Rx Only Deaths, cardiac and respiratory, have been reported during initiation and conversion of pain patients to methadone treatment from treatment with other opioid agonists. It is critical to understand the pharmacokinetics of methadone when converting patients from other opioids (see DOSAGE AND ADMINISTRATION). Particular vigilance is necessary during treatment initiation, during conversion from one opioid to another, and during dose titration. Respiratory depression is the chief hazard associated with methadone hydrochloride administration. Methadone's peak respiratory depressant effects typically occur later, and persist longer than its peak analgesic effects, particularly in the early dosing period. These characteristics can contribute to cases of iatrogenic overdose, particularly during treatment initiation and dose titration. In addition, cases of QT interval prolongation and serious arrhythmia (torsades de pointes) have been observed during treatment with methadone. Most cases involve patients being treated for pain with large, multiple daily doses of methadone, although cases have been reported in patients receiving doses commonly used for maintenance treatment of opioid addiction. Methadone treatment for analgesic therapy in patients with acute or chronic pain should only be initiated if the potential analgesic or palliative care benefit of treatment with methadone is considered and outweighs the risks. Conditions For Distribution And Use Of Methadone Products For The Treatment Of Opioid Addiction Code of Federal Regulations, Title 42, Sec 8 Methadone products when used for the treatment of opioid addiction in detoxification or maintenance programs, shall be dispensed only by opioid treatment programs (and agencies, practitioners or institutions by formal agreement with the program sponsor) certified by the Substance Abuse and Mental Health Services Administration and approved by the designated state authority. -
Medications to Treat Opioid Use Disorder Research Report
Research Report Revised Junio 2018 Medications to Treat Opioid Use Disorder Research Report Table of Contents Medications to Treat Opioid Use Disorder Research Report Overview How do medications to treat opioid use disorder work? How effective are medications to treat opioid use disorder? What are misconceptions about maintenance treatment? What is the treatment need versus the diversion risk for opioid use disorder treatment? What is the impact of medication for opioid use disorder treatment on HIV/HCV outcomes? How is opioid use disorder treated in the criminal justice system? Is medication to treat opioid use disorder available in the military? What treatment is available for pregnant mothers and their babies? How much does opioid treatment cost? Is naloxone accessible? References Page 1 Medications to Treat Opioid Use Disorder Research Report Discusses effective medications used to treat opioid use disorders: methadone, buprenorphine, and naltrexone. Overview An estimated 1.4 million people in the United States had a substance use disorder related to prescription opioids in 2019.1 However, only a fraction of people with prescription opioid use disorders receive tailored treatment (22 percent in 2019).1 Overdose deaths involving prescription opioids more than quadrupled from 1999 through 2016 followed by significant declines reported in both 2018 and 2019.2,3 Besides overdose, consequences of the opioid crisis include a rising incidence of infants born dependent on opioids because their mothers used these substances during pregnancy4,5 and increased spread of infectious diseases, including HIV and hepatitis C (HCV), as was seen in 2015 in southern Indiana.6 Effective prevention and treatment strategies exist for opioid misuse and use disorder but are highly underutilized across the United States. -
The Opioid Epidemic: What Labs Have to Do with It?
The Opioid Epidemic: What labs have to do with it? Ewa King, Ph.D. Associate Director of Health RIDOH State Health Laboratories Analysis. Answers. Action. www.aphl.org Overview • Overdose trends • Opioids and their effects • Analytical testing approaches • Toxicology laboratories Analysis. Answers. Action. www.aphl.org Opioid overdose crisis 1 Analysis. Answers. Action. www.aphl.org Opioid overdose crisis 2 Analysis. Answers. Action. www.aphl.org Opiates and Opioids • Opiates vs. Opioids • Opiates: Naturally occurring, derived from the poppy plant • Opioids: “Opiate-like” drugs in effects, not chemical structure Includes opiates • Narcotic analgesics • CNS depressants • DEA Schedule I or II controlled substances • Additive effect with other CNS depressant drugs Analysis. Answers. Action. www.aphl.org Efficacy of Opioids • How do opioids work? • Bind with opioid receptors • Brain, spinal cord, GI tract, and throughout the body • Pain, emotion, breathing, movement, and digestion Opioid Receptor Analysis. Answers. Action. www.aphl.org Effects of Opioids Physiological Psychological • Pain relief • Drowsiness/ sedation • Cough suppression • Mental confusion • GI motility • Loss of memory • Respiratory depression • Lethargy/ apathy • Pupillary constriction • Euphoria/ tranquility • Itching • Mood swings • Constipation • Depression • Dependence • Withdrawal • Dependence Analysis. Answers. Action. www.aphl.org Opiates 1 Opiates • Naturally occurring alkaloids Opium • Latex from the opium poppy plant Codeine: • Mild to moderate pain • Antitussive Morphine: • Severe pain • Metabolite of codeine and heroin Analysis. Answers. Action. www.aphl.org Opiates 2 Semi-synthetic Opiates: • Synthesized from a natural opiate Heroin: • Schedule I narcotic Hydrocodone (Vicodin): • Mild to moderate pain • Metabolizes to hydromorphone (Dilaudid) Oxycodone (Oxycontin/Percocet): • Moderate to severe pain • Metabolizes to oxymorphone (Opana) Analysis. Answers. Action. -
Information to Users
The direct and modulatory antinociceptive actions of endogenous and exogenous opioid delta agonists Item Type text; Dissertation-Reproduction (electronic) Authors Vanderah, Todd William. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 00:14:57 Link to Item http://hdl.handle.net/10150/187190 INFORMATION TO USERS This ~uscript }las been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely. event that the author did not send UMI a complete mannscript and there are missing pages, these will be noted Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginnjng at the upper left-hand comer and contimJing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. -
Intravta Deltorphin, but Not DPDPE, Induces Place Preference in Ethanoldrinking Rats
ALCOHOLISM:CLINICAL AND EXPERIMENTAL RESEARCH Vol. 38, No. 1 January 2014 Intra-VTA Deltorphin, But Not DPDPE, Induces Place Preference in Ethanol-Drinking Rats: Distinct DOR-1 and DOR-2 Mechanisms Control Ethanol Consumption and Reward Jennifer M. Mitchell, Elyssa B. Margolis, Allison R. Coker, Daicia C. Allen, and Howard L. Fields Background: While there is a growing body of evidence that the delta opioid receptor (DOR) modu- lates ethanol (EtOH) consumption, development of DOR-based medications is limited in part because there are 2 pharmacologically distinct DOR subtypes (DOR-1 and DOR-2) that can have opposing actions on behavior. Methods: We studied the behavioral influence of the DOR-1-selective agonist [D-Pen2,D-Pen5]- Enkephalin (DPDPE) and the DOR-2-selective agonist deltorphin microinjected into the ventral tegmental area (VTA) on EtOH consumption and conditioned place preference (CPP) and the physio- logical effects of these 2 DOR agonists on GABAergic synaptic transmission in VTA-containing brain slices from Lewis rats. Results: Neither deltorphin nor DPDPE induced a significant place preference in EtOH-na€ıve Lewis rats. However, deltorphin (but not DPDPE) induced a significant CPP in EtOH-drinking rats. In con- trast to the previous finding that intra-VTA DOR-1 activity inhibits EtOH consumption and that this inhibition correlates with a DPDPE-induced inhibition of GABA release, here we found no effect of DOR-2 activity on EtOH consumption nor was there a correlation between level of drinking and deltorphin-induced change in GABAergic synaptic transmission. Conclusions: These data indicate that the therapeutic potential of DOR agonists for alcohol abuse is through a selective action at the DOR-1 form of the receptor. -
Opioid Receptorsreceptors
OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors. -
Opiate/ Heroin Working Group Final Report
OPIATE/ HEROIN WORKING GROUP FINAL REPORT United States Attorney’s Offices For the Southern and Northern Districts of Mississippi February 28. 2017 HEROIN/OPIATE WORKING GROUP FINAL REPORT Law Enforcement and Data Group Recommendation No. 1: Implement a comprehensive data collection and dissemination program Recommendation No. 2: Heroin (Opiate) Involved Death Investigation Task Force Recommendation No. 3: Greater distribution and training on use of Naloxone Recommendation No. 4: Mandate greater reporting of overdoses and naloxone administration Recommendation No. 5: Expand and advertise availability of the dropbox program Medical Issues Group Recommendation No. 1: Adopt CDC Guidelines Recommendation No. 2: Continuing Medical Education Recommendation No. 3: Upgrades to the Prescription Monitoring Program Recommendation No. 4: Addiction Treatment Education Recommendation No. 5: Review Funding Issues for Alternative Treatments Recommendation No. 6: Limitations on Prescriptions Recommendation No. 7: Mandate increased use of PMP Recommendation No. 8: Change the definition of Pain Management Clinic Recommendation No. 9: IDs for Controlled Substance Prescriptions Treatment and Overdose Prevention Group Recommendation No. 1: More Funding for Treatment Recommendation No. 2: Youth/Juvenile Detention Systems Recommendation No. 3: Expand the availability and use of Vivitrol Recommendation No. 4: Drug Courts and Rentry programs Recommendation No. 5: Public Education and Awareness HEROIN/OPIATE WORKING GROUP FINAL REPORT The United States Attorney’s Offices for the Northern and Southern Districts of Mississippi convened an Opiate/Heroin Working Group in June 2016. At the initial meeting at the Mississippi Bureau of Narcotics (“MBN”) Headquarters, representatives from the medical, pharmaceutical, mental health, law enforcement, judiciary and many other specialties attended a full day symposium to begin the discussion about a comprehensive approach to the opiate and heroin crisis in the nation and in our state. -
Problems of Drug Dependence 1994: Proceedings of the 56Th Annual Scientific Meeting the College on Problems of Drug Dependence, Inc
National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Problems of Drug Dependence 1994: Proceedings of the 56th Annual Scientific Meeting The College on Problems of Drug Dependence, Inc. Volume I 152 U.S. Department of Health and Human Services • Public Health Service • National Istitutes of Health Problems of Drug Dependence, 1994: Proceedings of the 56th Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc. Volume I: Plenary Session Symposia and Annual Reports Editor: Louis S. Harris, Ph.D. NIDA Research Monograph 152 1995 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGMENT The College on Problems of Drug Dependence, Inc., an independent, nonprofit organization, conducts drug testing and evaluations for academic institutions, government, and industry. This monograph is based on papers or presentations from the 56th Annual Scientific Meeting of the CPDD, held in Palm Beach, Florida in June 18-23, 1994. In the interest of rapid dissemination, it is published by the National Institute on Drug Abuse in its Research Monograph series as reviewed and submitted by the CPDD. Dr. Louis S. Harris, Department of Pharmacology and Toxicology, Virginia Commonwealth University was the editor of this monograph. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. -
Drug Class Review Long-Acting Opioid Analgesics
Drug Class Review Long-Acting Opioid Analgesics 28:08.08 Opiate Agonists Transdermal Buprenorphine transdermal system (Butrans®) Fentanyl transdermal system (Duragesic®) Oral Buprenorphine oral buccal film (Belbuca®) Hydrocodone ER (Zohydro ER®, Hysingla ER®) Hydromorphone hydrochloride extended-release tablets (Exalgo®) Methadone tablets (Dolophine®) Morphine sulfate controlled-release tablets (MS Contin®, MorphaBond®) Morphine sulfate extended-release capsules (Kadian®) Oxycodone hydrochloride controlled-release tablets (OxyContin®) Oxymorphone hydrochloride extended-release (Opana ER®) Tapentadol extended-release oral tablets (Nucynta ER®) Tramadol hydrochloride extended-release capsule (Conzip, others) Tramadol hydrochloride extended-release tablet (biphasic) (Ultram ER, others) Combination Products Morphine sulfate and naltrexone extended-release capsules (Embeda®) Oxycodone ER/acetaminophen (Xartemis XR®) Final Report March 2016 Review prepared by: Vicki Frydrych, Clinical Pharmacist Melissa Archer, Clinical Pharmacist Justin Tran, PharmD Student Ryan Marcum, PharmD Student University of Utah College of Pharmacy Copyright © 2016 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved. Table of Contents Executive Summary ........................................................................................................................ 3 Introduction ..................................................................................................................................... 5 Table 1. Comparison -
Opioid Receptors in Immune and Glial Cells—Implications for Pain Control
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Repository of the Freie Universität Berlin REVIEW published: 04 March 2020 doi: 10.3389/fimmu.2020.00300 Opioid Receptors in Immune and Glial Cells—Implications for Pain Control Halina Machelska* and Melih Ö. Celik Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany Opioid receptors comprise µ (MOP), δ (DOP), κ (KOP), and nociceptin/orphanin FQ (NOP) receptors. Opioids are agonists of MOP, DOP, and KOP receptors, whereas nociceptin/orphanin FQ (N/OFQ) is an agonist of NOP receptors. Activation of all four opioid receptors in neurons can induce analgesia in animal models, but the most clinically relevant are MOP receptor agonists (e.g., morphine, fentanyl). Opioids can also affect the function of immune cells, and their actions in relation to immunosuppression and infections have been widely discussed. Here, we analyze the expression and the role of opioid receptors in peripheral immune cells and glia in the modulation of pain. All four opioid receptors have been identified at the mRNA and protein levels in Edited by: immune cells (lymphocytes, granulocytes, monocytes, macrophages) in humans, rhesus Sabita Roy, monkeys, rats or mice. Activation of leukocyte MOP, DOP, and KOP receptors was University of Miami, United States recently reported to attenuate pain after nerve injury in mice. This involved intracellular Reviewed by: 2+ Lawrence Toll, Ca -regulated release of opioid peptides from immune cells, which subsequently Florida Atlantic University, activated MOP, DOP, and KOP receptors on peripheral neurons. -
Changes in Spinal and Opioid Systems in Mice Deficient in The
The Journal of Neuroscience, November 1, 2002, 22(21):9210–9220 Changes in Spinal ␦ and Opioid Systems in Mice Deficient in the A2A Receptor Gene Alexis Bailey,1 Catherine Ledent,2 Mary Kelly,1 Susanna M. O. Hourani,1 and Ian Kitchen1 1Pharmacology Group, School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, GU2 7XH United Kingdom, and 2Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucle´ aire, Universite´ Libre de Bruxelles, B-1070 Brussels, Belgium A large body of evidence indicates important interactions be- but not in the brains of the knock-out mice. and ORL1 receptor tween the adenosine and opioid systems in regulating pain at both expression were not altered significantly. Moreover, a significant ␦ the spinal and supraspinal level. Mice lacking the A2A receptor reduction in -mediated antinociception and a significant increase gene have been developed successfully, and these animals were in -mediated antinociception were detected in mutant mice, shown to be hypoalgesic. To investigate whether there are any whereas -mediated antinociception was unaffected. Comparison compensatory alterations in opioid systems in mutant animals, we of basal nociceptive latencies showed a significant hypoalgesia in have performed quantitative autoradiographic mapping of , ␦, , knock-out mice when tested at 55°C but not at 52°C. The results and opioid receptor-like (ORL1) opioid receptors in the brains and suggest a functional interaction between the spinal ␦ and opioid spinal cords of wild-type and homozygous A2A receptor knock- and the peripheral adenosine system in the control of pain out mice. In addition, -, ␦-, and Ϫmediated antinociception pathways. using the tail immersion test was tested in wild-type and homozy- ␦ gous A2A receptor knock-out mice.