Poverty Allieviation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optimization of Rocky Desertification Classification Model Based On
remote sensing Article Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic Chunhua Qian 1,2 , Hequn Qiang 2,3, Feng Wang 2 and Mingyang Li 1,* 1 School of Forestry, Nanjing Forestry University, Nanjing 210037, China; [email protected] 2 School of Smart Agricultural, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; [email protected] (H.Q.); [email protected] (F.W.) 3 School of Computer Science and Technology, Soochow University, Suzhou 215301, China * Correspondence: [email protected]; Tel.: +86-025-8542-7327 Abstract: Building a high-precision, stable, and universal automatic extraction model of the rocky desertification information is the premise for exploring the spatiotemporal evolution of rocky de- sertification. Taking Guizhou province as the research area and based on MODIS and continuous forest inventory data in China, we used a machine learning algorithm to build a rocky desertification model with bedrock exposure rate, temperature difference, humidity, and other characteristic factors and considered improving the model accuracy from the spatial and temporal dimensions. The results showed the following: (1) The supervised classification method was used to build a rocky desertifi- cation model, and the logical model, RF model, and SVM model were constructed separately. The accuracies of the models were 73.8%, 78.2%, and 80.6%, respectively, and the kappa coefficients were 0.61, 0.672, and 0.707, respectively. SVM performed the best. (2) Vegetation types and vegetation Citation: Qian, C.; Qiang, H.; Wang, seasonal phases are closely related to rocky desertification. After combining them, the model accuracy F.; Li, M. -
World Bank Document
World Bank-financed Guizhou Rural Development and Poverty Alleviation Project Public Disclosure Authorized Public Disclosure Authorized Social Assessment Report Public Disclosure Authorized Foreign Capital Project Management Center of Guizhou Provincial Poverty Alleviation & Development Office Public Disclosure Authorized May 2014 Contents Contents .................................................................................................................................................................. II List of Tables ........................................................................................................................................................ IV List of Figures ........................................................................................................................................................ V Abstract ..................................................................................................................................................................... i 1 Foreword .......................................................................................................................................................... 1 1.1 Background of the Project ....................................................................................................................... 1 1.2 Tasks of SA ................................................................................................................................................ 1 1.3 Scope of SA ............................................................................................................................................. -
Preliminary Investigation of the Potential for Using the Cs Technique
Sediment Dynamics for a Changing Future (Proceedings of the ICCE symposium held at 149 Warsaw University of Life Sciences - SGGW, Poland, 14–18 June 2010). IAHS Publ. 337, 2010. Preliminary investigation of the potential for using the 137Cs technique to date sediment deposits in karst depressions and to estimate rates of soil loss from karst catchments in southwest China X. B. ZHANG1,2, X. Y. BAI1 & A. B. WEN1 1 Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Sichuan 610041, China [email protected] 2 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, China Abstract Soil erosion plays an important role in land desertification in the karst mountain areas of southwest China, but reliable data on rates of surface soil loss in the area are very limited. Hill-depressions are common landforms in the karst areas. The 137Cs technique was used to date the sediment deposits in six karst depressions, to estimate average rates of surface soil loss from their catchments. The estimates of soil loss rates obtained from this study evidenced considerable variability. A value of 1.0 t km-2 year-1 was obtained for a catchment under original dense karst forest, but the erosion rates ranged between 19.3 t km-2 year-1 and 48.7 t km-2 year-1 in four catchments under secondary forest or grasses, where the original forest cover had been removed in the Ming and Qing dynasties, several hundred years ago. The highest rate of 1643 t km-2 year-1 was obtained for a catchment underlain by clayey carbonate rocks, where the soil cover was thicker and more extensive than in the other catchments and extensive land reclamation for cultivation had occurred during the period 1979–1981, immediately after the Cultural Revolution. -
Introduction to a Sewage Treatment Pilot Project
Introduction to A Sewage Treatment Pilot Project with VGT in Caixin Village, Puding County, Guizhou Province, Southwest China Ziyuan Feng Guangzhou Vetiver Grass Industry Science and Technology Co. Ltd. Hanping Xia South China Botanical Garden, Chinese Academy Sciences Yuan Xiong The People’s Government of Anshun City June 2016 Project organizer: Agriculture Commission of Guizhou Province Project co-organizer: Agriculture Commission of Anshun City, Guizhou Province Project supervision unit: Agricultural Bureau of Puding Country, Guizhou Province Project construction unit : Guangzhou Vetiver Industry Science and Technology Co. Ltd. Project contents: 1. Integrated wastewater treatment system (60 m3/d) 2. Sewage pipe network collection system with a total length of 3000 m 3. Total project investment: 1.5 million Yuan Project completion date: November 2015 Project Profile • Caixin village is located in the Shawan Development Zone, Chengguan Town, Puding County, belonging to an economic tourism development demonstration site of municipal orchards; • The village is 6 kilometers away from the county town and 1.5 kilometers away from the drinking water source, "Yelang Lake" reservoir of Anshun City; • The whole village has a total of 129 households, of which 400 people are permanent residents; about 20 mu of fishing pond, 1000 mu (15 mu = 1 ha) of vineyard and 5 peasant-restaurants are built nearby. This village is one place of vacationlands for country or town residents; • Sewage treatment capacity of this project is 60 m3/day, and “biochemical reaction integrated system of ecological three- dimensional micro-circulation” is adopted in this project; • The project was funded by Agriculture Commission of Guizhou Province and Mayor’s Foundation of Anshun City. -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Spatial Correlation Between Type of Mountain Area and Land Use Degree in Guizhou Province, China
sustainability Article Spatial Correlation between Type of Mountain Area and Land Use Degree in Guizhou Province, China Yuluan Zhao 1,2 and Xiubin Li 2,* 1 School of Geographic and Environmental Sciences, Guizhou Normal University, Guiyang 550001, China; [email protected] 2 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China * Correspondence: [email protected]; Tel.: +86-10-6488-9297 Academic Editors: Fausto Cavallaro and Marc A. Rosen Received: 17 May 2016; Accepted: 24 August 2016; Published: 29 August 2016 Abstract: A scientific definition of the type of mountain area and an exploration of the spatial correlation between different types of mountain areas and regional land use at the county level are important for reasonable land resource utilization and regional sustainable development. Here, a geographic information system was used to analyze digital elevation model data and to define the extent of mountainous land and types of mountain areas in Guizhou province. Exploratory spatial data analysis was used to study the spatial coupling relation between the type of mountain area and land use degree in Guizhou province at the county level. The results were as follows: (1) Guizhou province has a high proportion of mountainous land, with a ratio of mountainous land to non-mountainous land of 88:11. The county-level administrative units in Guizhou province were exclusively mountainous, consisting of eight semi mountainous counties, nine quasi mountainous counties, 35 apparently mountainous counties, 13 type I completely mountainous counties, and 23 type II completely mountainous counties; (2) The land use degree at the county level in Guizhou province have remarkable spatial differentiation characteristics. -
ISO 639-3 Registration Authority Request for New Language Code
ISO 639-3 Registration Authority Request for New Language Code Element in ISO 639-3 This form is to be used in conjunction with a “Request for Change to ISO 639-3 Language Code” form Date: 2011-6-17 Name of Primary Requester: Cathryn Yang E-mail address: cathryn underscore yang at sil dot org Names, affiliations and email addresses of additional supporters of this request: SIL East Asia 53 Hao, Qing Nian Lu Yan Chang Xian, 18th Floor, Block B, Bin Jiang Da Sha, Kunming, China, Postal Code: 650051 Associated Change request number : 2011-054 (completed by Registration Authority) Tentative assignment of new identifier : gqu (completed by Registration Authority) PLEASE NOTE: This completed form will become part of the public record of this change request and the history of the ISO 639-3 code set. Use Shift-Enter to insert a new line in a form field (where allowed). 1. NAMES and IDENTIFICATION a) Preferred name of language for code element denotation: Qau b) Autonym (self-name) for this language: klau55 c) Common alternate names and spellings of language, and any established abbreviations: Gao, Aqao d) Reason for preferred name: Qau is used in the current Ethnologue, and in use by the academic community e) Name and approximate population of ethnic group or community who use this language (complete individual language currently in use): Qau 2000 f) Preferred three letter identifier, if available: qau Your suggestion will be taken into account, but the Registration Authority will determine the identifier to be proposed. The identifiers is not intended to be an abbreviation for a name of the language, but to serve as a device to identify a given language uniquely. -
Running Away Is the Best? Ecological Resettlement of Ethnic Minorities in Guizhou, China
Running Away is the Best? Ecological Resettlement of Ethnic Minorities in Guizhou, China Jiaping Wu* Central Queensland University This paper investigates ecological resettlement of ethnic minorities in China, us- ing Guizhou as a case study. Guizhou has the most multicultural population in China, where ethnic minorities account for 35.7% of the total population in 2010. Its regional development has been characterized by interactions of ethnic minorities with their vulnerable, karst environment. The natural environment has been increasingly degraded, and the livelihood of rural people has substantially deteriorated. A large-scale ecological resettlement has been planned and imple- mented in Guizhou with intentions of both poverty alleviation and environmen- tal conservation. This paper contextualizes the displacement, which involves a population of over two million ethnically diverse people, over half of which are ethnic minorities. The discussion includes environmental change and economic and cultural contexts in which the displacement occurs. Keywords: environmental degradation; ethnic minorities; environmental resettle- ment; China China’s remarkable economic growth has been accompanied with profound social and environmental changes. These changes include increase in regional disparity and large-scale rural to urban migration. The most common migratory pattern was one in which men left their families in the rural villages in central and western re- gions to work in factories and construction sites in cities in coastal areas. This migra- tion continues to grow phenomenally, and in the meantime, patterns of migration have become increasingly complex and diverse. Environmental migration has been prominent, even though the extent of the migration being driven by environmental change and the ‘voluntary’ nature of the movement/relocation are questionable (see Oliver-Smith, 2012; Xue et al., 2013). -
Minimum Wage Standards in China August 11, 2020
Minimum Wage Standards in China August 11, 2020 Contents Heilongjiang ................................................................................................................................................. 3 Jilin ............................................................................................................................................................... 3 Liaoning ........................................................................................................................................................ 4 Inner Mongolia Autonomous Region ........................................................................................................... 7 Beijing......................................................................................................................................................... 10 Hebei ........................................................................................................................................................... 11 Henan .......................................................................................................................................................... 13 Shandong .................................................................................................................................................... 14 Shanxi ......................................................................................................................................................... 16 Shaanxi ...................................................................................................................................................... -
Announcement of Annual Results for the Year Ended 31 December 2020
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. ANNOUNCEMENT OF ANNUAL RESULTS FOR THE YEAR ENDED 31 DECEMBER 2020 The board of directors (the “Board”) of Bank of Guizhou Co., Ltd. (the “Bank”) is pleased to announce the audited annual results (the “Annual Results”) of the Bank for the year ended 31 December 2020. This results announcement, containing the full text of the 2020 annual report of the Bank, complies with the relevant content requirements of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited in relation to preliminary announcements of annual results. The Board and the audit committee of the Board have reviewed and confirmed the Annual Results. This results announcement is published on the websites of The Stock Exchange of Hong Kong Limited (www.hkexnews.hk) and the Bank (www.bgzchina.com). The annual report for the year ended 31 December 2020 will be dispatched to the shareholders of the Bank and will be available on the above websites in due course. By order of the Board Bank of Guizhou Co., Ltd. XU An Executive Director Guiyang, the PRC, 30 March 2021 As of the date of this announcement, the Board of the Bank comprises Mr. XU An as executive Director; Ms. -
Soil Erosion Evolution and Spatial Correlation Analysis in a Typical Karst Geomorphology Using RUSLE with GIS
Solid Earth, 8, 721–736, 2017 https://doi.org/10.5194/se-8-721-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS Cheng Zeng1,2,3, Shijie Wang1,3, Xiaoyong Bai1,3, Yangbing Li2, Yichao Tian1,3, Yue Li4, Luhua Wu1,3, and Guangjie Luo3,5 1State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guiyang 550081, Guizhou Province, PR China 2School of Geographyical and Environmental Sciences, Guizhou Normal University, Guiyang 550001, China 3Puding Karst Ecosystem Observation and Research Station, Chinese Academy of Sciences, Puding 562100, Guizhou Province, PR China 4Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 5Institute of Agricultural Ecology and Rural Development, Guizhou Normal College, Guiyang 550018, China Correspondence to: Xiaoyong Bai ([email protected]) Received: 6 January 2017 – Discussion started: 16 January 2017 Revised: 27 May 2017 – Accepted: 30 May 2017 – Published: 3 July 2017 Abstract. Although some scholars have studied soil erosion soil erosion significantly differ among the various lithologi- in karst landforms, analyses of the spatial and temporal evo- cal distribution belts. (4) The soil erosion rate decreased in lution of soil erosion and correlation analyses with spatial the rocky desertification regions, to below moderate levels, elements have been insufficient. The lack of research has led but increased in the severe rocky desertification areas. The to an inaccurate assessment of environmental effects, espe- temporal and spatial variations in soil erosion gradually de- cially in the mountainous area of Wuling in China. -
Chinaxiv:202104.00080V1 Districts
ChinaXiv合作期刊 贵州省野生苦苣苔科物种多样性与地理分布 黄梅,李美君,黄红,张金权,白新祥* (贵州大学 林学院,贵阳 550025) 摘 要:本研究在建立贵州省野生苦苣苔科植物名录和地理分布数据库的基础上,对其物种多样性 及地理分布格局进行研究。通过文献资料结合实地调查,从物种组成、特有性、水平分布、垂直分 布和相似性等方面进行分析,最后采用筛除算法确定贵州苦苣苔科植物分布的热点地区。结果表明: 贵州省苦苣苔科植物共计2 族8 亚族28 属153 种(含种下等级),分布在75 个县级行政区,有128/45 个中国/贵州特有种,垂直分布以900~1 300 m 海拔段最为丰富。通过计算省级相似性系数,发现贵 州与广西的相似程度最高,最后筛选得到10 个热点县,共代表了75%的苦苣苔科植物。贵州省为典 型的喀斯特高原山地,苦苣苔科植物种类丰富,尤其是广义马铃苣苔属、广义报春苣苔属、广义石 山苣苔属和蛛毛苣苔属等,有着较高的物种多样性和区域特有性。本研究可以为贵州省苦苣苔科植 物资源保护和持续利用提供理论参考。 关键词:苦苣苔科,贵州省,相似性系数,热点地区,垂直分布,水平分布 中图分类号:Q944 文献标识码:A Species diversity and geographic distribution of wild Gesneriaceae in Guizhou HUANG Mei, LI Meijun, HUANG Hong, ZHANG Jinquan, BAI Xinxiang* (College of Forestry, Guizhou University, Guiyang 550025, China) Abstract: In this study, the species diversity and geographical distribution pattern of wild Gesneriaceae in Guizhou Province were studied based on the establishment of a list and geographical distribution database of wild Gesneriaceae in Guizhou Province. Through the literature and a field investigation, the species composition, endemism, horizontal distribution, vertical distribution and similarity were analysed. Finally, the hotspots of Gesneriaceae in Guizhou were determined by a complementary algorithm. The results were as follows: There are 153 species (including subspecies) of Gesneriaceae in Guizhou Province, belonging to 2 tribes, 8 subtribes, and 28 genera. These plants are distributed among 75 county-level administrative chinaXiv:202104.00080v1 districts. There are 128 species endemic to China and 45 endemic to Guizhou, and the vertical distribution is the most abundant at altitudes of 900-1 300 m. The calculation of the provincial similarity coefficient showed that Guizhou and Guangxi had the highest similarity. Finally, 10 hot spots were selected, representing 75% of the Gesneriaceae plants. Guizhou Province is a typical karst plateau mountainous area that is rich in species of Gesneriaceae, especially Oreocharis, Primulina, Petrocodon and Paraboea, which have high species diversity and regional specificity.