Juvenile Myoclonic Epilepsy: Under-Appreciated and Under-Diagnosed R Renganathan, N Delanty

Total Page:16

File Type:pdf, Size:1020Kb

Juvenile Myoclonic Epilepsy: Under-Appreciated and Under-Diagnosed R Renganathan, N Delanty 78 Postgrad Med J: first published as 10.1136/pmj.79.928.78 on 1 February 2003. Downloaded from REVIEW Juvenile myoclonic epilepsy: under-appreciated and under-diagnosed R Renganathan, N Delanty ............................................................................................................................. Postgrad Med J 2003;79:78–80 Juvenile myoclonic epilepsy (JME) is a hereditary, AETIOPATHOGENESIS idiopathic, generalised epilepsy and is found in JME is an inherited disorder, but the exact mode of inheritance is not clear. There is a positive fam- 5%–11% of patients with epilepsy. It is characterised by ily history in 50% of cases or less. One study has myoclonic jerks, occasional generalised tonic-clonic confirmed a causative role of EJM1 in the patho- seizures, and sometimes absence seizures. JME genesis of idiopathic generalised seizures in the majority of German families of JME patients. This continues to be under-appreciated and study has refined a candidate region of 10.1 cM in under-diagnosed. Accurate diagnosis is important as it the chromosomal region 6p21 between the flank- usually responds well to treatment with appropriate ing loci HLA-DQ and D6s1019.3 However, some studies have revealed controversial results and anticonvulsants and misdiagnosis often results in genetic heterogeneity is suspected. Linkage to unnecessary morbidity. In addition lifelong therapy is chromosome 15 has at most a minor role in usually indicated as the natural history is one of relapse JME.4 Few studies have focused on pathological find- off treatment, even after a prolonged seizure-free ings in the brain of JME patients. Some studies period. suggest that microdysgenesis occurs more fre- .......................................................................... quently in epileptic patients with idiopathic gen- eralised epilepsy; if so, its pathological signifi- cance is unknown.5 n 1822, “myoclonus” was described as “a symptom associated with epilepsy” by CLINICAL FEATURES Pritchard.1 Delasiave in 1854 termed it “petit I JME may be responsible for about 10% of all epi- mal moteur”. In 1867, Herpin gave the first lepsies; exact figures may be higher as it is still an detailed description of a patient with juvenile under-diagnosed syndrome. Studies show similar myoclonic epilepsy (JME) calling the myoclonic prevalence in males and females.6 We commonly jerks “secousses”. In 1881, Gowers classified the http://pmj.bmj.com/ see patients with a non-specific diagnosis of a jerks among the generalised “auras” and consid- “seizure disorder” for many years before a defini- ered them to be epileptic. Unvericht described tive diagnosis is reached. progressive myoclonic epilepsy in 1901 but failed Eighty percent of patients with JME begin to recognise the existence of more benign having seizures between ages 12 and 18 with a variants. In 1957, Janz and Christian published mean age of onset of 14.6 years. The mean age of their article on 47 patients with “impulsive petit onset for GTCS is 15.5 years, absence seizures 11.5 mal”. Lund in 1975 introduced the term JME and 7 years, and myoclonic seizures 15.4 years. Earlier on September 28, 2021 by guest. Protected copyright. this term was soon admitted into the inter- onset is seen in photosensitive patients. Absence national classification system thereafter. seizures typically begin between ages 5 and 16 years. Myoclonic jerks follow between one and nine years later followed by GTCS a few months DEFINITION later. Approximately 3%–8% of childhood absence The original description by Janz and Christian epilepsies evolve into JME. distills the essential clinical features of this The most important element in the diagnosis of syndrome: “[epilepsy with] impulsive petit mal JME is the history. JME is still under-diagnosed appears around puberty and is characterised by because of lack of awareness of the syndrome by seizures with bilateral, single or repetitive ar- doctors who fail to ask patients about the See end of article for rhythmic, irregular myoclonic jerks, predomi- occurrence of myoclonic jerks and about precipi- authors’ affiliations nantly in the arms. Jerks may cause some patients tating factors.8 Atypical EEG findings in some ....................... to fall suddenly. No disturbance of consciousness patients also contribute to the misdiagnosis of 9 Correspondence to: is noticeable. Often there are GTCS [generalised patients with JME. Myoclonic jerks are seen in Dr R Renganathan, tonic-clonic seizures] and infrequent absences. 100% of cases of JME and are the sine qua non of Neurology Department, The seizures usually occur after awakening and diagnosis. They occur as the only seizure type in Cork University Hospital, are often precipitated by sleep deprivation. Cork, Ireland; about 3%–5% of JME patients. Myoclonic jerks [email protected] Interictal and ictal EEG [electroencephalo- gram(s)] have rapid generalised, often irregular Submitted 1 September spike waves and polyspike waves; there is no close ................................................. 2002 phase correlation between EEG spikes and jerks. Accepted Abbreviations: EEG, electroencephalogram; GTCS, 5 November 2002 Frequently the patients are photosensitive. Re- generalised tonic-clonic seizures; JME, juvenile myoclonic ....................... sponse to appropriate drugs is good”.2 epilepsy; MRI, magnetic resonance imaging www.postgradmedj.com Juvenile myoclonic epilepsy 79 are characterised by short, bilateral, and usually symmetric Postgrad Med J: first published as 10.1136/pmj.79.928.78 on 1 February 2003. Downloaded from synchronous muscle contractions predominantly involving Learning points the shoulders and arms. They can be single or repetitive and • JME is an idiopathic generalised epilepsy characterised by they are usually arrhythmic. The amplitude and the force of myoclonic jerks, generalised tonic-clonic seizures, and the jerks vary. Some jerks occur unilaterally. Sometimes myo- sometimes absence seizures. clonic seizures of JME are perceived only as a subjective elec- • JME is frequently under-diagnosed and under-appreciated. tric shock sensation inside the body. It is important to note • Myoclonic jerks are seen in 100% cases of JME and are the that consciousness is preserved. Common symptoms used to sine qua non of diagnosis. describe myoclonic jerks are shakes, clumsiness, twitches, and • JME responds to treatment with sodium valproate. Newer nervousness. Patients may not volunteer information about broad spectrum drugs such as topiramate, and possibly their myoclonus unless specifically asked. Sometimes, the levetiracetam, may also be of benefit. myoclonus is noticed only by the patient’s family. GTCS occur • Lifelong treatment is needed. in 90%–95% of patients with JME. GTCS are often preceded by a few minutes of generalised mild to moderate myoclonus of increasing frequency and intensity. GTCS occurring in JME cognitive functioning.14 Such patients may exhibit abnormal are often characterised by lack of sensory aura, symmetry, patterns of cortical activation that are associated with subtle remarkable violence, and a long duration of the tonic phase. cognitive dysfunction. However, magnetic resonance spectro- They occur predominantly after awakening. Some patients scopy and positron emission tomography studies are currently may describe a brief dizziness or a funny sensation in the head only research tools. beforehand. Absence seizures are a feature in 40% of patients. These sei- DIFFERENTIAL DIAGNOSIS zures are relatively infrequent, brief, and not associated with JME should be distinguished from hypnagogic myoclonus, automatisms. They may occur several times a day without cir- which is a normal phenomenon. The progressive myoclonic cadian variation. Severity is age dependent with absence epilepsies are symptomatic generalised epilepsies which are seizures of later onset (>10 years) being less severe. Seizures characterised by progressive neurological deterioration, de- of JME are often precipitated by sleep deprivation, fatigue, mentia, and ataxia. Epilepsy with grand mal seizures upon emotional stress, menses, and moderate to heavy intake of awakening is an important condition that should be alcohol. They tend to occur just after morning awakening. considered in the differential diagnosis. This syndrome is Thirty to forty percent of patients with JME are photosensi- closely related to JME, but myoclonic seizures are not present. tive. Seizures are precipitated by flashing strobe lights or flick- Non-epileptic seizures may sometimes resemble seizures of ering sunlight (for example, through a line of trees) in JME. patients with photosensitivity. Drugs such as cocaine and amitryptiline, which reduce the seizure threshold can precipi- tate seizures of JME. Physical examination is usually normal. MANAGEMENT Intelligence is preserved. The goal of pharmacological management is to render the individual seizure-free without side effects of the medication. INVESTIGATIONS Sodium valproate has traditionally been the drug of choice. An interictal EEG from a sleep deprived patient characteristi- Eighty five to ninety percent of patients with JME become cally shows discharges of diffuse bilaterally symmetrical and seizure-free with valproate monotherapy. All patients with synchronous 4–6 Hz polyspike and wave complexes lasting JME require lifelong treatment because seizures invariably http://pmj.bmj.com/ between 0.5–10 seconds; these may be predominantly seen return after withdrawal of therapy. Absence seizures alone over the
Recommended publications
  • Status Epilepticus Clinical Pathway
    JOHNS HOPKINS ALL CHILDREN’S HOSPITAL Status Epilepticus Clinical Pathway 1 Johns Hopkins All Children's Hospital Status Epilepticus Clinical Pathway Table of Contents 1. Rationale 2. Background 3. Diagnosis 4. Labs 5. Radiologic Studies 6. General Management 7. Status Epilepticus Pathway 8. Pharmacologic Management 9. Therapeutic Drug Monitoring 10. Inpatient Status Admission Criteria a. Admission Pathway 11. Outcome Measures 12. References Last updated: July 7, 2019 Owners: Danielle Hirsch, MD, Emergency Medicine; Jennifer Avallone, DO, Neurology This pathway is intended as a guide for physicians, physician assistants, nurse practitioners and other healthcare providers. It should be adapted to the care of specific patient based on the patient’s individualized circumstances and the practitioner’s professional judgment. 2 Johns Hopkins All Children's Hospital Status Epilepticus Clinical Pathway Rationale This clinical pathway was developed by a consensus group of JHACH neurologists/epileptologists, emergency physicians, advanced practice providers, hospitalists, intensivists, nurses, and pharmacists to standardize the management of children treated for status epilepticus. The following clinical issues are addressed: ● When to evaluate for status epilepticus ● When to consider admission for further evaluation and treatment of status epilepticus ● When to consult Neurology, Hospitalists, or Critical Care Team for further management of status epilepticus ● When to obtain further neuroimaging for status epilepticus ● What ongoing therapy patients should receive for status epilepticus Background: Status epilepticus (SE) is the most common neurological emergency in children1 and has the potential to cause substantial morbidity and mortality. Incidence among children ranges from 17 to 23 per 100,000 annually.2 Prevalence is highest in pediatric patients from zero to four years of age.3 Ng3 acknowledges the most current definition of SE as a continuous seizure lasting more than five minutes or two or more distinct seizures without regaining awareness in between.
    [Show full text]
  • Clinicians Using the Classification Will Identify a Seizure As Focal Or Generalized Onset If There Is About an 80% Confidence Level About the Type of Onset
    GENERALIZED ONSET SEIZURES Generalized onset seizures are not characterized by level of awareness, because awareness is almost always impaired. Generalized tonic-clonic: Immediate loss of Generalized epileptic spasms: Brief seizures with awareness, with stiffening of all limbs (tonic phase), flexion at the trunk and flexion or extension of the followed by sustained rhythmic jerking of limbs and limbs. Video-EEG recording may be required to face (clonic phase). Duration is typically 1 to 3 minutes. determine focal versus generalized onset. The seizure may produce a cry at the start, falling, tongue biting, and incontinence. Generalized typical absence: Sudden onset when activity stops with a brief pause and staring, Generalized clonic: Rhythmical sustained jerking of sometimes with eye fluttering and head nodding or limbs and/or head with no tonic stiffening phase. other automatic behaviors. If it lasts for more than These seizures most often occur in young children. several seconds, awareness and memory are impaired. Recovery is immediate. The EEG during these seizures Generalized tonic: Stiffening of all limbs, without always shows generalized spike-waves. clonic jerking. Generalized atypical absence: Like typical absence Generalized myoclonic: Irregular, unsustained jerking seizures, but may have slower onset and recovery and of limbs, face, eyes, or eyelids. The jerking of more pronounced changes in tone. Atypical absence generalized myoclonus may not always be left-right seizures can be difficult to distinguish from focal synchronous, but it occurs on both sides. impaired awareness seizures, but absence seizures usually recover more quickly and the EEG patterns are Generalized myoclonic-tonic-clonic: This seizure is like different.
    [Show full text]
  • Neuropathology Category Code List
    Neuropathology Page 1 of 27 Neuropathology Major Category Code Headings Revised 10/2018 1 General neuroanatomy, pathology, and staining 65000 2 Developmental neuropathology, NOS 65400 3 Epilepsy 66230 4 Vascular disorders 66300 5 Trauma 66600 6 Infectious/inflammatory disease 66750 7 Demyelinating diseases 67200 8 Complications of systemic disorders 67300 9 Aging and neurodegenerative diseases 68000 10 Prion diseases 68400 11 Neoplasms 68500 12 Skeletal Muscle 69500 13 Peripheral Nerve 69800 14 Ophthalmic pathology 69910 Neuropathology Page 2 of 27 Neuropathology 1 General neuroanatomy, pathology, and staining 65000 A Neuroanatomy, NOS 65010 1 Neocortex 65011 2 White matter 65012 3 Entorhinal cortex/hippocampus 65013 4 Deep (basal) nuclei 65014 5 Brain stem 65015 6 Cerebellum 65016 7 Spinal cord 65017 8 Pituitary 65018 9 Pineal 65019 10 Tracts 65020 11 Vascular supply 65021 12 Notochord 65022 B Cell types 65030 1 Neurons 65031 2 Astrocytes 65032 3 Oligodendroglia 65033 4 Ependyma 65034 5 Microglia and mononuclear cells 65035 6 Choroid plexus 65036 7 Meninges 65037 8 Blood vessels 65038 C Cerebrospinal fluid 65045 D Pathologic responses in neurons and axons 65050 1 Axonal degeneration/spheroid/reaction 65051 2 Central chromatolysis 65052 3 Tract degeneration 65053 4 Swollen/ballooned neurons 65054 5 Trans-synaptic neuronal degeneration 65055 6 Olivary hypertrophy 65056 7 Acute ischemic (hypoxic) cell change 65057 8 Apoptosis 65058 9 Protein aggregation 65059 10 Protein degradation/ubiquitin pathway 65060 E Neuronal nuclear inclusions 65100
    [Show full text]
  • Myoclonic Status Epilepticus in Juvenile Myoclonic Epilepsy
    Original article Epileptic Disord 2009; 11 (4): 309-14 Myoclonic status epilepticus in juvenile myoclonic epilepsy Julia Larch, Iris Unterberger, Gerhard Bauer, Johannes Reichsoellner, Giorgi Kuchukhidze, Eugen Trinka Department of Neurology, Medical University of Innsbruck, Austria Received April 9, 2009; Accepted November 18, 2009 ABSTRACT – Background. Myoclonic status epilepticus (MSE) is rarely found in juvenile myoclonic epilepsy (JME) and its clinical features are not well described. We aimed to analyze MSE incidence, precipitating factors and clini- cal course by studying patients with JME from a large outpatient epilepsy clinic. Methods. We retrospectively screened all patients with JME treated at the Department of Neurology, Medical University of Innsbruck, Austria between 1970 and 2007 for a history of MSE. We analyzed age, sex, age at seizure onset, seizure types, EEG, MRI/CT findings and response to antiepileptic drugs. Results. Seven patients (five women, two men; median age at time of MSE 31 years; range 17-73) with MSE out of a total of 247 patients with JME were identi- fied. The median follow-up time was seven years (range 0-35), the incidence was 3.2/1,000 patient years. Median duration of epilepsy before MSE was 26 years (range 10-58). We identified three subtypes: 1) MSE with myoclonic seizures only in two patients, 2) MSE with generalized tonic clonic seizures in three, and 3) generalized tonic clonic seizures with myoclonic absence status in two patients. All patients responded promptly to benzodiazepines. One patient had repeated episodes of MSE. Precipitating events were identified in all but one patient. Drug withdrawal was identified in four patients, one of whom had additional sleep deprivation and alcohol intake.
    [Show full text]
  • Neuronal Hyperexcitability in a Mouse Model of SCN8A Epileptic Encephalopathy
    Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy Luis F. Lopez-Santiagoa,1, Yukun Yuana,1, Jacy L. Wagnonb, Jacob M. Hulla, Chad R. Frasiera, Heather A. O’Malleya, Miriam H. Meislerb,c, and Lori L. Isoma,c,d,2 aDepartment of Pharmacology, University of Michigan, Ann Arbor, MI 48109; bDepartment of Human Genetics, University of Michigan, Ann Arbor, MI 48109; cDepartment of Neurology, University of Michigan, Ann Arbor, MI 48109; and dDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 Edited by William A. Catterall, University of Washington School of Medicine, Seattle, WA, and approved January 17, 2017 (received for review October 12, 2016) Patients with early infantile epileptic encephalopathy (EIEE) experi- include seizure onset between birth and 18 mo of age, mild to se- ence severe seizures and cognitive impairment and are at increased vere cognitive and developmental delay, and mild to severe risk for sudden unexpected death in epilepsy (SUDEP). EIEE13 [Online movement disorders (11, 13). Approximately 50% of patients are Mendelian Inheritance in Man (OMIM) # 614558] is caused by de nonambulatory and 12% of published cases (5/43) experienced novo missense mutations in the voltage-gated sodium channel gene SUDEP during childhood or adolescence (10, 13, 16, 17). SCN8A. Here, we investigated the neuronal phenotype of a mouse Almost all of the identified mutations in SCN8A are missense model expressing the gain-of-function SCN8A patient mutation, mutations. Ten of these mutations have been tested functionally in p.Asn1768Asp (Nav1.6-N1768D). Our results revealed regional transfected cells, and eight were found to introduce changes in the and neuronal subtype specificity in the effects of the N1768D muta- biophysical properties of Na 1.6 that are predicted to result in Scn8aN1768D/+ v tion.
    [Show full text]
  • Myoclonic Atonic Epilepsy Another Generalized Epilepsy Syndrome That Is “Not So” Generalized
    EDITORIAL Myoclonic atonic epilepsy Another generalized epilepsy syndrome that is “not so” generalized John M. Zempel, MD, Myoclonic atonic/astatic epilepsy (MAE), first described have shown predominant thalamic activation PhD well by Doose1 (pronounced dough sah: http://www. and default mode network deactivation.6–8 Even Tadaaki Mano, MD, PhD youtube.com/watch?v5hNNiWXV2wF0), is a general- Lennox-Gastaut syndrome, a devastating epileptic ized electroclinical syndrome with early onset charac- encephalopathy with EEG findings of runs of slow terized by myoclonic, atonic/astatic, generalized spike and wave and paroxysmal higher frequency Correspondence to tonic-clonic, and absence seizures (but not tonic activity, has fMRI correlates that are more focal than Dr. Zempel: [email protected] seizures) in association with generalized spike-wave expected in a syndrome with widespread EEG (GSW) discharges. Thought to have a genetic com- abnormalities.9,10 Neurology® 2014;82:1486–1487 ponent that has proven to be complicated,2 MAE EEG-fMRI is maturing as a research and clinical sometimes occurs in children who have otherwise technique. Recording scalp EEG in an electrically been developing normally and has variable outcome. hostile environment is not an easy task. Substantial MAE is typically treated with antiseizure medications technical artifacts, such as changing imaging gradients that are used for generalized epilepsy syndromes, with and ballistocardiogram (ECG-linked artifact observed perhaps a best response to valproate, felbamate, or the in the scalp electrodes), contaminate the EEG signal. ketogenic diet.3,4 However, the relatively distinctive EEG discharges in In this issue of Neurology®, Moeller et al.5 report patients with epilepsy have partially circumvented on the fMRI correlates of GSW discharges as mea- this problem.
    [Show full text]
  • “Seizures (Epilepsy)” a Seizure: Partial – Start in a Specific Part of the Brain, Not in the Whole Is a Symptom of an Electrical Disturbance in the Brain Brain
    “Seizures (Epilepsy)” A seizure: Partial – start in a specific part of the brain, not in the whole Is a symptom of an electrical disturbance in the brain brain. Unlike generalized seizures, partial seizures can have a Is a rare event warning before they occur (aura). Auras are actually a kind of Has a typical beginning (best clue for accurate diagnosis) seizure. There are several different kinds of partial seizures: Is involuntary simple (motor, sensory or psychological), complex, partial Lasts only a short time (90% complete in 90 seconds) seizure with secondary generalization. May cause post seizure impairments. Most seizures do not involve convulsions. Accurate seizure diagnosis by the health care provider is very The most common type of seizure is one mostly involving important because the medications used to treat seizures often vary loss of awareness. depending on the type. There are 20 types of seizures in the Seizures can be very subtle and hard to notice. International Classification of Seizures (over 2,000 types reported in the literature). Examples of post-seizure impairments: A detailed description of the seizure by the person observing the Post ictal confusion (length is individual) seizure is necessary for accurate diagnosing. Having a seizure while in Initial difficulty speaking the doctor’s office is very rare. Confusion about when, where, or what was just happening Memory disturbance which can last a while (behaving Seizure observation: - 3 important ones to make (in order of usual normally but can’t retain/absorb information) importance): Headache with some kinds of seizures What happened right as the seizure was beginning? What is epilepsy? What happened after the seizure was over? What happened during the seizure? Epilepsy is a condition where a person has “recurrent, unprovoked” seizures.
    [Show full text]
  • Reviews Familial Cortical Myoclonic Tremor and Epilepsy, an Enigmatic Disorder: from Phenotypes to Pathophysiology and Genetics
    Freely available online Reviews Familial Cortical Myoclonic Tremor and Epilepsy, an Enigmatic Disorder: From Phenotypes to Pathophysiology and Genetics. A Systematic Review 1 1 2,3 1* Tom van den Ende , Sarvi Sharifi , Sandra M. A. van der Salm & Anne-Fleur van Rootselaar 1 Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Academic Medical Center, Amsterdam, The Netherlands, 2 Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center, Utrecht, The Netherlands, 3 Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands Abstract Background: Autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE) is characterized by distal tremulous myoclonus, generalized seizures, and signs of cortical reflex myoclonus. FCMTE has been described in over 100 pedigrees worldwide, under several different names and acronyms. Pathological changes have been located in the cerebellum. This systematic review discusses the clinical spectrum, treatment, pathophysiology, and genetic findings. Methods: We carried out a PubMed search, using a combination of the following search terms: cortical tremor, myoclonus, epilepsy, benign course, adult onset, familial, and autosomal dominant; this resulted in a total of 77 studies (761 patients; 126 pedigrees) fulfilling the inclusion and exclusion criteria. Results: Phenotypic differences across pedigrees exist, possibly related to underlying genetic differences. A ‘‘benign’’ phenotype has been described in several Japanese families and pedigrees linked to 8q (FCMTE1). French patients (5p linkage; FCMTE3) exhibit more severe progression, and in Japanese/Chinese pedigrees (with unknown linkage) anticipation has been suggested. Preferred treatment is with valproate (mind teratogenicity), levetiracetam, and/or clonazepam. Several genes have been identified, which differ in potential pathogenicity. Discussion: Based on the core features (above), the syndrome can be considered a distinct clinical entity.
    [Show full text]
  • Managing Children with Epilepsy School Nurse Guide
    MANAGING CHILDREN WITH EPILEPSY SCHOOL NURSE GUIDE ACKNOWLEDGEMENTS TO THOSE WHO HAVE CONTRIBUTED TO THE NOTEBOOK Children’s Hospital of Orange County Melodie Balsbaugh, RN Sue Nagel, RN Giana Nguyen, CHOC Institutes Fullerton School District Jane Bockhacker, RN Orange Unified School District Andrea Bautista, RN Martha Boughen, RN Karen Hanson, RN TABLE OF CONTENTS I. EPILEPSY What is epilepsy? Facts about epilepsy Basic neuroanatomy overview Classification of epileptic seizures Diagnostic Tests II. TREATMENT Medications Vagus Nerve Stimulation Ketogenic Diet Surgery III. SAFETY First Aid IV. SPECIAL CONCERNS MedicAlert Helmets Driving Employment and the law V. EPILEPSY AT SCHOOL School epilepsy assessment tool Seizure record Teaching children about epilepsy lesson plan Creating your own individualized health care plan VI. RESOURCES/SUPPORT GROUPS VII. ACCESS TO HEALTHCARE CHOC Epilepsy Center After-Hours Care After Hours Health Care Advice Healthy Families California Kids MediCal CHOC Clinics Healthy Tomorrows VIII. REFERENCES EPILEPSY WHAT IS EPILEPSY? Epilepsy is a neurological disorder. The brain contains millions of nerve cells called neurons that send electrical charges to each other. A seizure occurs when there is a sudden and brief excess surge of electrical activity in the brain between nerve cells. This results in an alteration in sensation, behavior, and consciousness. Seizures may be caused by developmental problems before birth, trauma at birth, head injury, tumor, structural problems, vascular problems (i.e. stroke, abnormal blood vessels), metabolic conditions (i.e. low blood sugar, low calcium), infections (i.e. meningitis, encephalitis) and idiopathic causes. Children who have idiopathic seizures are most likely to respond to medications and outgrow seizures.
    [Show full text]
  • EFNS Guidelines for the Use of Intravenous Immunoglobulin In
    European Journal of Neurology 2008, 15: 893–908 doi:10.1111/j.1468-1331.2008.02246.x EFNS TASK FORCE/CME ARTICLE EFNS guidelines for the use of intravenous immunoglobulin in treatment of neurological diseases EFNS task force on the use of intravenous immunoglobulin in treatment of neurological diseases Members of the Task Force: I. Elovaaraa, S. Apostolskib, P. van Doornc, N. E. Gilhusd, A. Hietaharjue, J. Honkaniemif, I. N. van Schaikg, N. Scoldingh, P. Soelberg Sørenseni and B. Uddj aDepartment of Neurology and Rehabilitation, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland; bInstitute of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia; cDepartment of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands; dDepartment of Neurology, Haukeland University Hospital, Bergen, Norway; eDepartment of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland; fDepartment of Neurology, Vaasa Central Hospital, Vaasa, Finland; gDepartment of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; hUniversity of Bristol Institute Of Clinical Neuroscience, Frenchary Hospital UK Bristol, UK; iDepartment of Neurology, National University Hospital, Rigshospitalet, Copenhagen, Denmark; and jDepartment of Neurology and Rehabilitation, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland Keywords: Despite high-dose intravenous immunoglobulin (IVIG) is widely used in treatment of acute disseminated a
    [Show full text]
  • Evaluation of Behavior and Cognitive Function in Children with Myoclonic
    & The ics ra tr pe ia u Niimi et al., Pediat Therapeut 2013, 3:3 t i d c e s P DOI: 10.4172/2161-0665.1000159 Pediatrics & Therapeutics ISSN: 2161-0665 Case Report Open Access Evaluation of Behavior and Cognitive Function in Children with Myoclonic Astatic Epilepsy Taemi Niimi1, Yuji Inaba1, Mitsuo Motobayashi1, Takafumi Nishimura1, Naoko Shiba1, Tetsuhiro Fukuyama2, Tsukasa Higuchi3, and Kenichi Koike1 1Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan 2Department of Pediatric Neurology, Nagano Children’s Hospital, Azumino, Japan 3Department of General Pediatrics, Nagano Children’s Hospital, Azumino, Japan Abstract Background: Myoclonic astatic epilepsy (MAE) is an idiopathic and generalized childhood epileptic syndrome. Although several studies have reported on cognitive function and intellectual outcome in MAE, little is known about the behavioral problems associated with this disease. The aim of this study was to clarify behavior and cognitive function in children with MAE. Methods: Four children who were diagnosed as having MAE using the proposed criteria of the International Classification of Epilepsies were retrospectively analyzed using patient records with regard to clinical and neuropsychological findings such as age of seizure onset, semiology and severity of seizures, treatment course, behavioral problems, EEG findings, and WISC-III and Pervasive Developmental Disorders Autism Society Japan Rating Scale (PARS) scores that indicate the tendency of autistic behaviors. Results: Disease onset in our cohort ranged from 9 to 35 months of age. Seizures were controlled within 3-8 months over a follow-up period of 4-12 years. All patients had borderline normal intelligence (mean IQ: 75.8 at 5-7 years of age) and exhibited impaired coordination, clumsiness, hyperactivity or impulsivity, and impaired social interaction after improvement of seizures.
    [Show full text]
  • Epileptic Encephalopathy
    Epileptic Encephalopathy ศ. นพ. อนันตน์ ิตย ์ วิสทุ ธิพนั ธ์ Division of Neurology, Department of Pediatrics, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Scope of Talk • Overview of Epileptic Encephalopathy • Issues in epileptic encephalopathy • Frequently seen epileptic encephalopathy • Application to daily practice in reality • Q & A What is Epileptic Encephalopathy? Epileptic Encephalopathy • 1840: First described by West WJ from the letter to The Lancet describing “West syndrome” • 1955: Illingworth RS reported 12 cases of “sudden mental deterioration with convulsion in infancy” • 1966: Gastaut H “EE related to the concept that the underlying epileptic activity may contribute to the neurodevelopmental compromise noted in children with early onset, severe epilepsy and abundant spike and wave activities” Epileptic Encephalopathy • 1841 West syndrome • 1957 Landau-Kleffner syndrome • 1960 Lennox-Gastaut syndrome • 1987 Myoclonic-atonic (-astatic) epilepsy • 1971 Electrical Status Epilepticus during sleep (ESES) & Continuous Spikes and Waves during Sleep (CSWS) • 1976 Early Infantile Epileptic Encephalopathy (EIEE) • 1978 Severe Myoclonic Epilepsy in Infancy (SMEI) or Dravet syndrome • ………………………………………….. Epileptic Encephalopathy ILAE 2001: “A condition where the epileptiform abnormalities themselves are believed to contribute to the progressive disturbance of cerebral function” Single Insult Epileptic Encephalopathy or Cause Epilepsy Cognitive dysfunction Delayed Behavioral Development impairment Epileptic
    [Show full text]