Lockout Tagout at a Glance

Total Page:16

File Type:pdf, Size:1020Kb

Lockout Tagout at a Glance 4/9/2015 Lockout/Tagout Beyond the Products: A Roadmap to a Sustainable Lockout Program Edwin Ojeda Lockout Tagout at a Glance Lockout • Physically ensuring a machine is inoperable while repairs or adjustments are made with the use of a padlock and a suitable device. Tagout • Clearly communicating to workers that the equipment is being serviced with labels and tags when lockout is not a viable option. When it comes to your lockout program, your employees are the priority. They face equipment challenges everyday on the shop floor and deserve protection they can trust. The Intent Behind Lockout Tagout – Protecting Employees OSHA’s intent was to protect: • General industry workers performing servicing and/or maintenance on machines or equipment and who are exposed to the unexpected energization, startup or release of hazardous energy. OSHA 29CFR1910.147 1 4/9/2015 Regulatory Basics – U.S. OSHA 29CFR OSHA 29CFR ANSI 1910.147 1910.333 Z244.1-2003 Control of Hazardous LOTO & Alternative Electrical Safety Energy Methods It’s Not Just the United States Canada • CSA Z460:2013 • Control of Hazardous Energy Europe • 2006/42/EC – Machine Directive • 2009/104/EC – Work Directive International • IEC 60204 – Safety of Machinery (Electrical) • ISO 14118 – Prevention of Unexpected Start-Up The Key to Sustainability Your Six Steps to LOTO Compliance 2 4/9/2015 Six Steps in Creating a Sustainable Solutions STEP 1 STEP 2 STEP 3 Develop and Create and post Identify and mark document your written, equipment- all energy control energy control specific lockout points policy/program procedures STEP 4 STEP 5 STEP 6 Train your team: Equip your team Sustainability – communicate your with proper lockout Annual audit, review, policy and program tools and warning employee and devices management buy in, customization Develop and Document Your Energy Control Program • Your written lockout program establishes and explains the elements of your program • These need to not only take into account OSHA guidelines, but also: ANSI best practice standards for lockout tagout Employees understanding • A program is only as effective as its ability to be implemented within the facility • Programs should be fluid, continuously reviewed and collaborative with employees from all levels of your facility Create and Post Written Procedures • Bare minimum requirements include machine-specific lockout procedures with the necessary steps for safely controlling hazardous energy • Best practice visual procedures are becoming the rule, rather than the exception, within all industries because they clearly indicate isolation points, energy sources and more • With visual reinforcement, employees are more likely to perform the required steps to keep them safe 3 4/9/2015 Identify and Mark All Energy Control Points • Locate and identify all energy control points, including valves, switches, breakers and plugs, with permanently placed and standardized labels or tags • These labels and tags should be consistent with your equipment-specific procedures Training Your Team – Communicating Your Program and Vision • Communicate the contents of the program, but also your vision for your program • Lockout training includes regulatory requirements and your specific program, procedures, devices and more! • Training should be provided for: Authorized : Those who perform the lockout on machinery and equipment for maintenance Affected : Those who do not perform lockout requirements, but use the machinery that is receiving maintenance Other : Any employee who does not use the machinery, but who is in the area where a piece of equipment is receiving maintenance Equip Your Team With the Proper Devices, Tags and More! • Equip your employees with the proper lockout tools and warning devices • There are many products on the market, and selecting the best-fit solution for your equipment is the key to employee safety • Employees should be trained on how to use devices 4 4/9/2015 The 6 th Step: Sustainability Enacting Change and Making it Stick Program Sustainability • Sustainability in your lockout program goes beyond your annual audit and is embedded in your safety culture Act Plan • You should incorporate sustainability into each previously mentioned step Check Do • Use PLAN-DO-CHECK-ACT methodology to continuously improve your program The Roadmap to Sustainability: Implementation • Deploy in other • Develop plan areas of the • Educate those organization involved • Evaluate Act Plan Check Do • Audit and • Simplify improve • Standardize • Sustain 5 4/9/2015 Using Plan-Do-Check-Act • Deploy in other • Develop plan areas of the • Educate those organization involved • Evaluate Act Plan Check Do • Audit and • Simplify improve • Standardize • Sustain Develop a Plan • Create a LOTO Program • Standardize: Act Plan Select based templates for your lockout procedures Select devices Select depots / restocking Check Do • Revise process to optimize efficiency based on results Put the Plan into Action • Have a LOTO program (aligned with other programs) Act Plan • Have a policy statement (LOTO/Safety) • Training (affected, authorized, other) Check Do • Ensure that tools are readily available and identifiable Procedures Devices “Generic Forms” 6 4/9/2015 Measure & Report – Is it Working? • Conduct periodic inspections on: Employee knowledge Procedure comprehension Procedure accuracy Act Plan • Availability: Procedures LOTO equipment Training Check Do • Employee attitudes toward safety culture • Make adjustments where appropriate React to Findings: Keep, Change, Etc. • Deploy to the rest of the organization: Phased, Contractors, Temp Employees • Identify areas of progress and opportunity: Act Plan New equipment/hazards Improved/generic forms (interim measures, link forms – confined space, etc.) New technologies (track & integrate Check Do periodic inspections into PM schedules, equipment depots, etc.) • Identify methods for sustainability: Product ID & stocking Shadow boards Pre-identified hazard zones Quick Employee Wins to Kick Start Your Program Services Support • Bring in other, skilled people who may be less familiar with the factory floor arrangements • Invest, plan, perform hazardous energy & risk assessments to identify the organizations needs proactively • Continuously identify and recognize those employees who are proactively approaching LOTO safety 7 4/9/2015 Quick Employee Wins to Kick Start Your Program Work Efficiency Support • Lockout devices, locks and tags • Shared lock boxes at near equipment • Floor marking • Visual signage and labeling • Printers and consumables • Signs • Tagging (lockout, maintenance, waste, etc.) • Shadow boards The Lockout Tagout Scavenger Hunt Machine-Specific Procedures • Are your employees trained on them? Fully Stocked Lockout Tagout Stations • Are they updated? Permanent Identification Labels • Are they easily identified? Locks, Tags & Devices • Were they easy to find and the proper devices for the types of equipment? Tutorial or Training Posters • Do these align with your employee training? Corporate Safety Messaging • Could your employees easily define these? 8.
Recommended publications
  • Permits-To-Work in the Process Industries
    SYMPOSIUM SERIES NO. 151 # 2006 IChemE PERMITS-TO-WORK IN THE PROCESS INDUSTRIES John Gould Environmental Resources Management, Suite 8.01, 8 Exchange Quay, Manchester M5 3EJ; [email protected] The paper presents the collective results from a number of Safety Management System audits. The audit protocol is based on the Health and Safety Executive pub- lication ‘Successful health and safety management’ and takes into account formal (written) and informal procedures as well as their implementation. Focused on permit-to-work systems, these have shown a number of common failings. The most common failure in implementing a permit-to-work system is the issue of too many permits. However, the audit protocol considers the whole risk control system. The failure to ‘close’ the management loop with an effective regular review process is the largest obstacle to an effective permit system. INTRODUCTION ‘Permits save lives – give them proper attention’. This is a startling statement made by the Health and Safety Executive (HSE) in its free leaflet IND(G) 98 (Rev 3) PTW systems. The leaflet goes on to state that two thirds of all accidents in the chemical industry are main- tenance related, with the permit-to-work (PTW) failures being the largest single cause. Given these facts, it comes as no surprise that PTW systems are a key part in the provision of a safe working environment. Over the past four years Environmental Resources Management (ERM) has been auditing PTW systems as part of its key risk control systems audits. Numerous systems have been evaluated from a wide rage of industries, covering personal care products man- ufacturing to refinery operations.
    [Show full text]
  • Mediating Role of Psychosocial Hazard: an Integrated Modelling Approach
    International Journal of Environmental Research and Public Health Article Impact of Safety Culture on Safety Performance; Mediating Role of Psychosocial Hazard: An Integrated Modelling Approach Gehad Mohammed Ahmed Naji 1,*, Ahmad Shahrul Nizam Isha 1, Mysara Eissa Mohyaldinn 2, Stavroula Leka 3 , Muhammad Shoaib Saleem 1, Syed Mohamed Nasir Bin Syed Abd Rahman 4 and Mohammed Alzoraiki 5 1 Department of Management & Humanities, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; [email protected] (A.S.N.I.); [email protected] (M.S.S.) 2 Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; [email protected] 3 Cork University Business School, University College Cork, T12 K8AF Cork, Ireland; [email protected] 4 Petronas Group Technology Solutions, Bandar Baru Bangi 43000, Selangor, Malaysia; [email protected] 5 Department of Technology Management and Business, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia; [email protected] * Correspondence: [email protected] Abstract: We conceptualize that safety culture (SC) has a positive impact on employee’s safety performance by reducing their psychosocial hazards. A higher level of safety culture environment reduces psychosocial hazards by improving employee’s performance toward safety concerns. The Citation: Naji, G.M.A.; Isha, A.S.N.; purpose of this study was to evaluate how psychosocial hazard mediates the relationship between Mohyaldinn, M.E.; Leka, S.; Saleem, safety culture and safety performance. Data were collected from 380 production employees in M.S.; Rahman, S.M.N.B.S.A.; three states of Malaysia from the upstream oil and gas sector.
    [Show full text]
  • Safety at Work Permit-To-Work Systems… Electronic Or Paper?
    Safety at Work Permit-to-work systems… electronic or paper? First of all let’s be clear about what we mean by an electronic permit-to-work system. There is widespread misunderstanding and confusion about this term. Some folk understand this to mean that it simply refers to the use of a computer as a means of generating and printing a paper permit, rather than having to rely on doing this work entirely by hand, in effect, merely an “electronic form” of a paper permit. Whereas, in reality, an electronic permit to work system, like aSap’s PCMS (www.safetyapplication.com) is something entirely more relevant to modern business needs. By harnessing the power and ease of use of modern technology and advanced application software development, aligned with best safety practice and risk assessment techniques, the advantages offered by this particular electronic permit-to-work system transcends the simple process of raising and issuing of permits. Just as importantly, it provides the necessary interface and means of access to a whole spectrum of safety-related management information, as well as providing the impetus and behaviour to underpin an effective and efficient safety culture and operational regime. A far cry, indeed, from the obviously inherent limitations of a paper-based system. “An electronic permit to So why change from a paper based system? A sentiment often work system, like aSap’s expressed runs along the lines of: “We’ve managed with our PCMS, is something entirely paper-based system for years, why should we change?” or, “If more relevant to modern it’s not broken, why fix it?” These are perfectly reasonable business needs.” opinions if the business is small and relatively simple to run.
    [Show full text]
  • Safety Culture Maturity and Risk Management Maturity in Industrial Organizations
    Safety Culture Maturity and Risk Management Maturity in Industrial Organizations Anastacio P. Goncalves*, Gabriel Kanegae*, Gustavo Leite* * Production Engineering, School of Engineering, Bahia Federal University Email: [email protected], [email protected], [email protected] Abstract This article presents research about safety culture maturity and safety management maturity in three different types of organizations in Bahia, Brazil. The model and the questionnaire developed by Gonçalves Filho et al (2010) were used to identify both the maturity of safety culture and safety management maturity. The questionnaire was answered by 346 workers of 28 companies : 17 petrochemical, 5 footwear and 6 cable TV. The study also identified the safety management maturity, which revealed that higher levels of safety management maturity tended to display the features associated with higher levels of safety culture maturity. The results demonstrated that petrochemical companies are in a more advanced safety culture maturity stage than footwear industries as well as cable TV companies; the petrochemical ones are also more advanced relating risk management maturity than footwear and cable TV companies. These results indicate that safety culture can contribute for risk management to prosper. Keywords: safety culture; risk management; maturity. 1 Introduction Existing cultural issues in organizations can cause significant impediment or obstacles to the changes required for the implementation of a Risk management System (SMS). Therefore, it is essential to understand the maturity of the existing safety culture in a company in order to prepare the planning of changes, when necessary. An established safety culture is crucial for the development, success and good performance of the SMS (Choudhry et al., 2007; Ek et al., 2007; Hudson, 2003), because it is in a context where safety culture exists that attitudes and behavior of individuals in relation to safety are developed and persist (Mearns et al., 2003).
    [Show full text]
  • Issue of Compliance with Use of Personal Protective Equipment Among Wastewater Workers Across the Southeast Region of the United States
    International Journal of Environmental Research and Public Health Article Issue of Compliance with Use of Personal Protective Equipment among Wastewater Workers across the Southeast Region of the United States Tamara Wright 1, Atin Adhikari 2,* , Jingjing Yin 2, Robert Vogel 2, Stacy Smallwood 1 and Gulzar Shah 1 1 Department of Health Policy and Community Health, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA; [email protected] (T.W.); [email protected] (S.S.); [email protected] (G.S.) 2 Department of Biostatistics, Epidemiology, and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA; [email protected] (J.Y.); [email protected] (R.V.) * Correspondence: [email protected] Received: 28 April 2019; Accepted: 3 June 2019; Published: 5 June 2019 Abstract: Wastewater workers are exposed to different occupational hazards such as chemicals, gases, viruses, and bacteria. Personal protective equipment (PPE) is a significant factor that can reduce or decrease the probability of an accident from hazardous exposures to chemicals and microbial contaminants. The purpose of this study was to examine wastewater worker’s beliefs and practices on wearing PPE through the integration of the Health Belief Model (HBM), identify the impact that management has on wastewater workers wearing PPE, and determine the predictors of PPE compliance among workers in the wastewater industry. Data was collected from 272 wastewater workers located at 33 wastewater facilities across the southeast region of the United States. Descriptive statistical analysis was conducted to present frequency distributions of participants’ knowledge and compliance with wearing PPE.
    [Show full text]
  • Creating Culture
    CREATING FOOD SAFTEY CULTURE EMPOWER YOUR TEAM Protect your customers, your business SET THE and the restaurant industry by prioritizing STANDARD food safety. FIND YOUR SYSTEM ServSafe.com ServSafe.com 1 CREATING FOOD SAFETY CULTURE Large industry, large responsibility ith 2016 sales expected to reach $783 billion, the restaurant industry is big Wbusiness. According to the 2016 National Restaurant Association Forecast, the in- dustry is projected to provide a record 14.4 million jobs this year, and the momentum continues into the next decade. Specifically, jobs that combine food preparation and service are projected to rise more than 15 percent between 2016 and 2026, a gain of 504,000 positions. Last year, two in five restaurant operators said they plan to devote more resources to employee training. After all, great employees are informed employees. According to the Center for Disease Control, roughly one in six Americans gets sick from a foodborne illness annually. When food safety procedures are correctly followed and entrenched in a business’ culture, error rate is reduced, return on investment is greater, employee empowerment soars and your reputation is intact. 14.4 million That being said, culture is complex. A set of shared attitudes, values, goals and practices Number of jobs that characterizes an organization doesn’t fall the industry is 15% into place overnight. Reflection, planning and projected to Projected job investment must occur, and senior leadership provide this year. growth from 2016- must want, lead and reinforce the cultural shift. 2026 for jobs In this paper, we’re delving into the importance of combining food creating comprehensive food safety culture that prep and service.
    [Show full text]
  • STUDENT MANUAL Basic Principles in Occupational Hygiene
    STUDENT MANUAL Basic Principles in Occupational Hygiene July 2019 This course is offered by the Occupational Hygiene Training Association and available free of charge though the OHTA website ohtatraining.org. Copyright information This student manual is provided under the Creative Commons Attribution - NoDerivs licence agreement. It can only be reproduced in its entirety without change, unless with the prior written permission of OHTA. Occupational Hygiene Training Association, 5/6 Melbourne Business Court Millennium Way, Pride Park, Derby, DE24 8LZ Email: [email protected] TABLE OF CONTENTS ACKNOWLEDGEMENTS i 1 INTRODUCTION 1 1.1 HISTORY 3 1.2 THE IMPORTANCE OF OCCUPATIONAL HYGIENE 6 2 HUMAN PHYSIOLOGY AND INDUSTRIAL DISEASES 8 2.1 SKIN 8 2.1.1 Dermatitis 9 2.1.2 Physical damage 10 2.1.3 Biological agents 10 2.1.4 Cancer 11 2.1.5 Other effects 11 2.2 MUSCULOSKELETAL SYSTEM 11 2.3 NERVOUS SYSTEM 12 2.4 ENDOCRINE SYSTEM 14 2.5 THE CIRCULATORY SYSTEM 15 2.5.1 The blood 17 2.6 RESPIRATORY SYSTEM 18 2.7 THE GASTROINTESTINAL TRACT 21 2.8 THE LIVER 22 2.9 URINARY SYSTEM 23 2.10 THE EYE 23 3 FUNDAMENTALS OF TOXICOLOGY 25 3.1 INTRODUCTION 25 3.2 TERMS 25 3.3 BASIC CONCEPTS 26 3.3.1 Physical form 27 3.3.2 Dose 27 3.3.3 Route of entry / absorption 28 3.3.4 Metabolism 29 3.3.5 Excretion 29 3.3.6 Response to toxins 30 3.4 STAGES OF TOXICOLOGICAL EVALUATION 30 3.4.1 What adverse effects can a chemical cause? 30 3.4.2 Are the effects seen in animals relevant to man? 31 3.5 SAFETY DATA SHEETS 31 4 EXAMPLES OF HAZARDOUS SUBSTANCES / PROCESSES 33
    [Show full text]
  • Safety Culture Definition and Enhancement Process Safety Culture Definition Contents and Enhancement Process
    civil air navigation services organisation Safety Culture Definition and Enhancement Process Safety Culture Definition Contents and Enhancement Process 1_ Background_p3 2_ Safety Culture Definition and Elements_p3 2.1_ Proposed Safety Culture Definition_p3 2.2_ Safety Culture versus Safety Climate_p3 2.3_ Proposed Safety Culture Elements_p4 3_ Systematic Safety Culture Enhancement Process_p6 3.1_ Define the Safety Culture_p7 3.2_ Identify Drivers of a Safety Culture_p8 3.3_ Measuring the Safety Culture_p9 3.4_ Evaluating the Measures_p10 3.5_ Improving the Safety Culture_p10 3_ Conclusions_p11 © Copyright CANSO 2008. All rights reserved. No part of this publication may be reproduced, or transmitted in any form, without the prior permission of CANSO. This document has been developed through the collective contributions of CANSO members. The views and recommendations expressed in this publication do not necessarily reflect those of individual CANSO members. We have endeavoured to ensure the integrity of this publication insofar as possible. However, please note that the responsibility for the quality, accuracy, and verification of the data and results in this report rests with participating ANSPs. All recommendations are made without any warranty or guarantee on the part of the contributors or CANSO. CANSO disclaims any liability in connection with the use of this publication or any aspect thereof. Safety Culture Definition 2_3 and Enhancement Process 1 Background The detailed work plan for Year One for address the fact that a safety culture is the CANSO Safety Culture Workgroup (CSCWG) demonstrated through attitudes, accepted norms identified a number of activities. Two key and behaviours. It is about how things work and deliverables for the year are: “the way things are done around here.” Finally, the safety culture definition should 1.
    [Show full text]
  • Identifying Safety Culture Deficiencies in Facilities with the Potential for High Consequence/Low Probability Events
    Identifying Safety Culture Deficiencies in Facilities with the Potential for High Consequence/Low Probability Events Alek Hamparian and Mardy Kazarians Kazarians & Associates, Inc. 100 West Broadway, Suite 970, Glendale, California [email protected] Presenter E-mail: [email protected] Abstract One of the key underlying causes of most major accidents can be traced to deficiencies within the organization’s safety culture. The Chemical Safety Board (CSB) has directly identified safety culture deficiencies in their recent investigations including the March 2005 BP Texas City accident and the June 2013 Williams Geismar Olefins Plant accident. There are many reasons as to why safety culture deficiencies exist within an organization and are not identified and corrected by those working within the organization. An example could be Drift to Danger that is often addressed in Resilience Engineering related discussion. Another concern is that high consequence/low probability events are rare, which results in a low risk perception by employees within systems that have the potential for severe events. One could argue that full compliance with current PSM regulations should be sufficient and would have prevented the major events that have drawn industry’s attention. However, organizations, especially those that handle highly hazardous materials, should strive to go beyond compliance. This is because regulations are designed as minimum requirements and in principle cannot cover all possibilities. Additionally, all organizations should strive in gaining knowledge (i.e., don’t know what you don’t know) to improve their operation and safety. Implementation of a well-designed safety culture program that includes periodic assessment and continuous improvement can address this concern.
    [Show full text]
  • Lockout/Tagout)
    OCCUPATIONAL HEALTH AND SAFETY PROGRAM CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT) TABLE OF CONTENTS INTRODUCTION ..................................................................................................................................................................... 2 PURPOSE ............................................................................................................................................................................... 2 SCOPE .................................................................................................................................................................................... 2 ACRONYMS/DEFINITIONS ................................................................................................................................................... 3 RESPONSIBILITIES ............................................................................................................................................................... 4 PROGRAM ELEMENTS ......................................................................................................................................................... 5 PROGRAM REVIEW ............................................................................................................................................................ 11 RECORDKEEPING .............................................................................................................................................................. 11 REFERENCES .....................................................................................................................................................................
    [Show full text]
  • CONTRACTOR INDUCTION HANDBOOK Minimum Health & Safety Standard for Contractors VERSION: 2015 – 02
    CONTRACTOR INDUCTION HANDBOOK Minimum Health & Safety Standard for contractors VERSION: 2015 – 02 CONTENT 1 Introduction .................................................................................................................. 3 2 Welcome to Sodexo ..................................................................................................... 3 3 Health and Safety Policy .............................................................................................. 4 4 Work Health and Safety Responsibilities ..................................................................... 5 5 Sodexo Code of Conduct ............................................................................................. 6 6 Sodexo’s safety guidelines ........................................................................................... 7 7 Site Rules and conditions of entry ................................................................................ 8 8 Risk Management ........................................................................................................ 8 9 Hazard identification, risk assessment and control ...................................................... 8 10 Hazard reporting ....................................................................................................... 8 11 Job Hazard Analysis ................................................................................................. 9 12 Incident and non-conformance management ........................................................... 9 13 Emergency
    [Show full text]
  • Development of Fatigue, Accident Experiences and Safety Culture Relationships to the Risk of Fishing Perception on the Accidents of Fishing Vessel Small and Medium
    MATEC Web of Conferences 204, 03010 (2018) https://doi.org/10.1051/matecconf/201820403010 IMIEC 2018 Development of fatigue, accident experiences and safety culture relationships to the risk of fishing perception on the accidents of fishing vessel small and medium Septi Nurindah Sari1,*, Ratna Sari Dewi1, and Adithya Sudiano1 1Industrial Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, 60111 Surabaya, Indonesia Abstract. Working at sea is associated with many challenges and risk in the job, such as a high workload, inappropriate working hours, minimum time for hanging out with family and increasing the risk of accidents. When an accident occurs, the perception of the risk of occupational accidents seafarers increased so that all workers start to think about their safety. Fatigue is one of the factors that can affect the seafarer safety. Fatigue among the seafarers is affected by lack of sleep duration and low sleep quality. Besides fatigue, accidental experiences can also influence risk perceptions. When the workers themselves or their friends see or experience an accident, it is likely to increase the risk of accidents perception among the workers. In addition to fatigue and accident experience, safety culture can also affect the perception of risk. Safety training, hazard identification and risk assessment, safety awareness and incident reporting are several factors that can be used to assess the safety culture. Therefore, the aim of this study is to examine the influence of fatigue, sleep quality, accident experiences and safety culture on the risk perception of fishermans who works at the Indonesian maritime territoires. 1 Introduction Working at sea is associated with many challenges and risk in the job, such as a high workload, working hours are not appropriate, and least time hanging out with family and increasing the risk of accidents [1].
    [Show full text]