Late Paleozoic Sea Levels and Depositional Sequences Charles A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 2 Paleozoic Stratigraphy of the Grand Canyon
CHAPTER 2 PALEOZOIC STRATIGRAPHY OF THE GRAND CANYON PAIGE KERCHER INTRODUCTION The Paleozoic Era of the Phanerozoic Eon is defined as the time between 542 and 251 million years before the present (ICS 2010). The Paleozoic Era began with the evolution of most major animal phyla present today, sparked by the novel adaptation of skeletal hard parts. Organisms continued to diversify throughout the Paleozoic into increasingly adaptive and complex life forms, including the first vertebrates, terrestrial plants and animals, forests and seed plants, reptiles, and flying insects. Vast coal swamps covered much of mid- to low-latitude continental environments in the late Paleozoic as the supercontinent Pangaea began to amalgamate. The hardiest taxa survived the multiple global glaciations and mass extinctions that have come to define major time boundaries of this era. Paleozoic North America existed primarily at mid to low latitudes and experienced multiple major orogenies and continental collisions. For much of the Paleozoic, North America’s southwestern margin ran through Nevada and Arizona – California did not yet exist (Appendix B). The flat-lying Paleozoic rocks of the Grand Canyon, though incomplete, form a record of a continental margin repeatedly inundated and vacated by shallow seas (Appendix A). IMPORTANT STRATIGRAPHIC PRINCIPLES AND CONCEPTS • Principle of Original Horizontality – In most cases, depositional processes produce flat-lying sedimentary layers. Notable exceptions include blanketing ash sheets, and cross-stratification developed on sloped surfaces. • Principle of Superposition – In an undisturbed sequence, older strata lie below younger strata; a package of sedimentary layers youngs upward. • Principle of Lateral Continuity – A layer of sediment extends laterally in all directions until it naturally pinches out or abuts the walls of its confining basin. -
Grand Canyon National Park Centennial Paleontological Resource Inventory (Non-Sensitive Version)
Grand Canyon National Park Centennial Paleontological Resource Inventory (Non-Sensitive Version) Natural Resource Report NPS/GRCA/NRR—2020/2103 Vincent L. Santucci1 and Justin S. Tweet,2 editors 1National Park Service Geologic Resources Division 1849 “C” Street, NW Washington, D.C. 20240 2National Park Service 9149 79th St. S. Cottage Grove, Minnesota 55016 March 2020 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado Chapter 1. Introduction and Summary: The Paleontological Heritage of Grand Canyon National Park By Vincent L. Santucci1 1National Park Service Geologic Resources Division 1849 “C” Street, NW Washington, D.C. 20240 Throughout my life I have been bestowed the privilege of experiencing the world-renowned landscape and resources of the Grand Canyon from many perspectives and viewsheds (Figure 1-1). My first views were standing and taking photos from the many vantage points and overlooks along the North and South rims. I have enjoyed many hikes into the canyon with colleagues from the National Park Service (NPS) or with academic geologists and paleontologists. On a few occasions I ventured down and then back up the trails of the canyon with my children Sarah, Bethany, Luke, Jacob, Brianna and Abigail, often carrying one or more in my arms on the climb against gravity. I traversed by foot to the base of the canyon at Phantom Ranch and gained a greater appreciation for the geologic story preserved in the park strata. I have gazed intensely out the window of many commercial aircraft from above this geologic wonder of Earth, contemplating the geomorphic “grandeur” created over "Deep Time" and the artistry of processes perfected by “Mother Nature.” I pinch myself when I recall the opportunity when my friend Justin Tweet and I were granted permission to fly into the western portion of the Grand Canyon on a small NPS plane operated by a pilot from Lake Mead National Recreation Area. -
Paleogeographic Isolation of the Cretaceous To
Paleogeographic isolation of the Cretaceous to Eocene Sevier hinterland, east-central Nevada: Insights from U-Pb and (U-Th)/He detrital zircon ages of hinterland strata P. Druschke1,†, A.D. Hanson1, M.L. Wells1, G.E. Gehrels2, and D. Stockli3 1Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154, USA 2Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA 3Department of Geology, University of Kansas, Lawrence, Kansas 66045, USA ABSTRACT cover. Early Cretaceous (ca. 135 Ma) cool- The Late Cretaceous and Paleogene Sevier ing ages are potentially coeval with shorten- hinterland of central Nevada, located west of The Late Cretaceous to Paleogene Sevier ing along the central Nevada fold-and-thrust the foreland fold-and-thrust belt, has previously hinterland of east-central Nevada is widely belt, although ca. 80 Ma cooling ages within been interpreted as a region of high-elevation regarded as an orogenic plateau that has the Sheep Pass Formation are coeval with and low topographic relief, characterized by since undergone topographic collapse. New hinter land midcrustal extension. Together, broad, open folding (Armstrong, 1968, 1972; U-Pb detrital zircon age data consisting of these new data provide support for previous Gans and Miller, 1983; Miller and Gans, 1989; 1296 analyses from the Lower Cretaceous interpretations that the Sevier hinterland DeCelles, 2004). However, Upper Cretaceous Newark Canyon Formation and the Upper represents an ancient high-elevation oro- to Lower Eocene strata of east-central Nevada Cretaceous to Eocene Sheep Pass Formation genic plateau, and that the latest Cretaceous and adjacent Utah are widely interpreted as ex- indicate that Precambrian detrital zircon locally marks a transition from contraction tensional basin deposits (Winfrey, 1958, 1960; populations recycled from local Paleozoic to extension. -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks -
The Studies on Stratigraphy of the Carboniferous in Poland
Numer 6 (362) CZERWIEC 1983 przegląd ROK XXX/ 6EOL06/CZNY ORGAN PAŃSTWOWEJ SŁłJŻB'ł' GEOLOGICZNE'1 X MIĘDZYNARODOWY KONGRES X INTERNATIONAL CONGRESS STRATYGRAFII I GEOLOGII KARBONU OF CARBONIFEROUS STRATIGRAPHY AND GEOLOGY Madryt 1983 r. Madrid, 1983 W dniach 12-17 września 1983 r. odbędzie się w Ma drycie Międzynarodowy Kongres Stratygrafii i Geologii In the days 12-17 September 1983, the International Karbonu. Będzie on dziesiątym kongresem począwszy od Congress of Carboniferous Stratigraphy and Geology will 1927 r. Dotychczas Polacy uczestniczyli w ośmiu kongre be held in Madrid. It will be the tenth congress since 1927. sach, które odbyły się w Holandii, Francji, W. ·Brytanii, Up to now, Poles participated in eight of them, i.e. in the RFN i ZSRR. W dziewiątym kongresie w USA, Polacy nie ones in the Netherlands, France, Great Britain, FRG and brali udziału, przesiano natomiast artykuł z zakresu petro USSR. Our representative.y did not participate in . the IX grafii węgla kamiennego opublikowany w materiałach kon Congress in the [/SA but one paper on petrography of coal gresowych. has been submitted and published in the congress materials. Polacy biorący czynny udział w ośmiu kongresach wy Poles who took part in eight congresses read 27 papers głosili 27 referatów o 'różnej tematyce karbońskiej. covering various problems of the Carboniferous. W niniejszym okolicznościowym numerze „Przeglądu In this special issue of "Przegląd Geologiczny" are Geologicznego" zamieszczono artykuły specjalnie przygo published papers prepared for the X Congress. They present towane na ten kongres. Treścią ich są niektóre wyniki prac some results obtained at the first stage of research works stanowiących realizację pierwszego etapu badań przewidzia carried out within the frame of the International Geological nych w projekcie „Korelacja formacji węglonośnych" (Pro Correlation Programme ( IGCP) Project no. -
Cross-Section of Paleozoic Rocks of Western North Dakota
JolfN P. BLOEMLE N. D. Geological Survey NORTH DAKOTA GEOLOGICAL SURVEY WILSON M. LAIRD, State Geologist Miscel1aneous Series No. 34 CROSS-SECTION OF PALEOZOIC ROCKS OF WESTERN NORTH DAKOTA BY CLARENCE G. CARLSON Reprinted from Stratigraphic Cross Section of Paleozoic Rocks-Oklahoma to Saskatchewan, 1967: The American Association of Petroleum Geologists Cross Section Publication 5, p. 13-15, 1 Plate Grand Forks, North Dakota, 1967 NORTH DAKOTAI (Section E-F. Plate 5) C. G. CARLSON' Grand Forks, North Dakota INTRODUCTION which, in ascending order, are the Black Island, Icebox, The North Dakota segment of the cross section was and Roughlock. The Black Island generally consists of constructed with the base of the Spearfish Formation as clean quartzose sandstone, the Icebox of greenish-gray, noncalcareous shale, and the Roughlock of greenish-gray the datum. However, the Permian-Triassic boundary to brownish-gray, calcareous shale or siltstone. now is thought to be within redbeds of the Spearfish The Black Island and Icebox Formations can be Formation (Dow, 1964). If this interpretation is cor traced northward to Saskatchewan, but they have not rect, perhaps as much as 300 ft of Paleozoic rocks in been recognized as formations there and are included in well 3 and smaller thicknesses in wells I, 2, and 4-12 an undivided Winnipeg Formation. The Black Island are excluded from Plate 5. pinches out southwestward because of nondeposition Wells were selected which best illustrate the Paleozo along the Cedar Creek anticline, but the Icebox and ic section and its facies changes in the deeper part of Roughlock Formations, although not present on the the Williston basin. -
Paleozoic Evolution of the Appalachians
Paleozoic Evolution of the Appalachians: Tectonic Overview Three major tectonic episodes, all involving lateral accretion of terranes: deformation, terrane migration, accretion, and continental convergence 1. Ordovician Taconic Orogeny (~470-440 Ma) • collision of Laurentian margin with one or more magmatic arcs Shelburne Falls arc (475-470 Ma) and Bronson Hill arc (454-442 Ma) • or, continent-continent collision between Laurentia and proto-Andean region of Gondwana • slope & rise sediments thrust westward over shelf deposits 2. Devonian Acadian Orogeny (~420-360 Ma) • accretion of Avalon terrane southward continuation of Silurian Caledonian Orogeny (NW Europe) collision of Baltica with Laurentia to form Laurussia • deformation of Bronson Hill arc and sedimentary basins seaward of BH arc at least 3 pulses of deformation • oblique accretion of Avalon and other terranes(?) much strike-slip displacement but also subduction (coastal volcanics) • large mountains erosion creates thick clastic wedge (Catskills and Poccono Mtns.); thinned westward toward cratonic interior 3. Pennsylvansylvanian-Permian Alleghenian Orogeny (~325- 275 Ma) • collision with Gondwanaland consolidation of supercontinent Pangea • extensive zone of deformation New England - Georgia & Alabama (Appalachian Mtns.) - Oklahoma, Arkansas (Ouachita Mtns.) - Texas (Marathon Mtns.) • side-effects: deep crustal shear in Mass., formation of Narragansett rift basin basement block faulting in western interior, uplift of ancestral Rockies "TECTONIC CYCLES" • recorded by the creation of foreland basins sedimentation in eastern New York • associated with tectonic uplift and deformation due to the accretion of island arcs to the east in Massachusetts (first the Ordovician Taconic Orogeny followed by the Devonian Acadian Orogeny: Ordovician Taconic Orogeny (generalized succession in eastern NY) Age Environment Lithology Formation late Ordovician deltaic and molasse Queenston Fm. -
Dinantian Carbonate Development and Related Prospectivity of the Onshore Northern Netherlands
Dinantian carbonate development and related prospectivity of the onshore Northern Netherlands Nynke Hoornveld, 2013 Author: Nynke Hoornveld Supervisors: Bastiaan Jaarsma, EBN Utrecht Prof. Dr. Jan de Jager, VU University Amsterdam Master Thesis: Solid Earth, (450199 and 450149) 39 ECTS. VU University Amsterdam 01-06-2013 Dinantian carbonate development and related prospectivity of the onshore Northern Netherlands Nynke Hoornveld, 2013 Contents Contents……………………………………………………………………………………………………………………………………………..2 Abstract…………………………………………………………………………………………….………………………………………………..3 Introduction…………………………………………………………………………………………………………….…………………….……4 Geological History of the Netherlands relating to Dinantian development…………………………..……………..7 Tectonic history…………………………………………………………………………………………………………………………..9 Stratigraphy of the Carboniferous…………………………………………………………………………………………….16 Stratigraphic Nomenclature of the Netherlands……………………………………………………………….………23 Methods……………………………………………………………………………………………………………………………………….…..26 Seismic interpretation…………………………………………………………………………………………………………….…27 Time-depth conversion…………………………………………………………………………………………………….……...35 Well correlation……………………………………………………………………………………………………………………..…38 Carbonate production, precipitation and geometries, with a focus on the Dinantian……….………40 Results………………………………………………………………………………………………………………………………….…………..57 Well information, evaluation and reservoir development………………………………………………………..58 Geometry of the Dinantian carbonate build-ups in the Dutch Northern onshore…………..……….75 The geological history -
Geology of Michigan and the Great Lakes
35133_Geo_Michigan_Cover.qxd 11/13/07 10:26 AM Page 1 “The Geology of Michigan and the Great Lakes” is written to augment any introductory earth science, environmental geology, geologic, or geographic course offering, and is designed to introduce students in Michigan and the Great Lakes to important regional geologic concepts and events. Although Michigan’s geologic past spans the Precambrian through the Holocene, much of the rock record, Pennsylvanian through Pliocene, is miss- ing. Glacial events during the Pleistocene removed these rocks. However, these same glacial events left behind a rich legacy of surficial deposits, various landscape features, lakes, and rivers. Michigan is one of the most scenic states in the nation, providing numerous recre- ational opportunities to inhabitants and visitors alike. Geology of the region has also played an important, and often controlling, role in the pattern of settlement and ongoing economic development of the state. Vital resources such as iron ore, copper, gypsum, salt, oil, and gas have greatly contributed to Michigan’s growth and industrial might. Ample supplies of high-quality water support a vibrant population and strong industrial base throughout the Great Lakes region. These water supplies are now becoming increasingly important in light of modern economic growth and population demands. This text introduces the student to the geology of Michigan and the Great Lakes region. It begins with the Precambrian basement terrains as they relate to plate tectonic events. It describes Paleozoic clastic and carbonate rocks, restricted basin salts, and Niagaran pinnacle reefs. Quaternary glacial events and the development of today’s modern landscapes are also discussed. -
Risk Mitigation and Investability of a U-PHS Project in the Netherlands
energies Article Risk Mitigation and Investability of a U-PHS Project in The Netherlands Gert Jan Kramer 1,* , Twan Arts 2, Janos L. Urai 3,4 , Han Vrijling 5 and Jan M. H. Huynen 6 1 Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands 2 O-PAC Ontwikkelingsmij, Vrijthof 48, 6211 LE Maastricht, The Netherlands; [email protected] 3 Institute for Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, Lochnerstrasse 4-20, D-52056 Aachen, Germany; [email protected] 4 Geostructures—Consultancy for Structural Geology and Geomechanics, Hunnenweg 9, 6224 JN Maastricht, The Netherlands 5 Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; [email protected] 6 Sogecom B.V., Vrijthof 48, 6211 LE Maastricht, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-30-253-7948 Received: 13 July 2020; Accepted: 23 September 2020; Published: 28 September 2020 Abstract: We review the status of a 1.4 GW, 8 GWh underground pumped hydro storage (U-PHS) project in the southern Netherlands, which has been under development since the 1980s. Its history shows how the prospect of a large-scale U-PHS for The Netherlands (a country whose proverbial flatness prohibits PHS) has been attractive in every decade, based on proven technology in a subsurface location with validated properties, and solid analysis of its economics. Although the ongoing energy transition clearly requires massive electricity storage, (U-)PHS projects are challenging investment propositions, in The Netherlands, as elsewhere. This case study illustrates a point of general relevance, namely that although the project execution risk, related to uncertainty with respect to subsurface integrity, is very low, the transition risk, associated with the intrinsic uncertainties of an electricity system in transition, is significant. -
1 Correlation of the Base of the Serpukhovian Stage
Correlation of the base of the Serpukhovian Stage (Carboniferous; Mississippian) in northwest Europe GEORGE D. SEVASTOPULO* & MILO BARHAM✝ *Department of Geology, Trinity College Dublin, Dublin 2, Ireland ✝Milo Barham, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia Author for correspondence: [email protected] Running head: Correlation base Serpukhovian northwest Europe Abstract - The Task Group charged with proposing the GSSP for the base of the Serpukhovian Stage (Mississippian: Lower Carboniferous) is likely to use the global First Appearance Datum (FAD: evolutionary first appearance) of the conodont Lochriea ziegleri in the lineage Lochriea nodosa-L. ziegleri for the definition and correlation of the base of the stage. It is important to establish that the FOD (First Occurrence Datum) of L. ziegleri in different basins is essentially penecontemporaneous. Ammonoids provide high-resolution biostratigraphy in the late Mississippian but their use for international correlation is limited by provincialism. However, it is possible to assess the levels of diachronism of the FOD of L. ziegleri in sections in northwest Europe using ammonoid zones. Published compilations of conodont distribution in the Rhenish Slate Mountains of Germany show the FOD of L. ziegleri in the Emstites novalis Biozone (upper part of the P2c zone of the British/Irish ammonoid biozonation) but L. ziegleri has also been reported as occurring in the Neoglyphioceras spirale Biozone (P1d zone). In the Yoredale Group of northern England, the FOD of L. ziegleri is in either the P1c or P1d zone. In NW Ireland, the oldest records of both L. nodosa and L. ziegleri are from the Lusitanoceras granosum Biozone (P2a).