The Dynamics of Changes in the Amphibian (Amphibia) Population

Total Page:16

File Type:pdf, Size:1020Kb

The Dynamics of Changes in the Amphibian (Amphibia) Population Environmental Protection and Natural Resources Vol. 31 No 4(86): 8-16 Ochrona Środowiska i Zasobów Naturalnych DOI 10.2478/oszn-2020-0013 Wojciech Gotkiewicz*, Krzysztof Wittbrodt**, Ewa Dragańska* The Dynamics of Changes in the Amphibian (Amphibia) Population Size in the Masurian Landscape Park Monitoring Results of Spring Migration Monitoring from the Years 2011–2019 * Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn; ** Masurian Landscape Park in Krutyń; e-mails: [email protected]; [email protected], [email protected] Keywords: Biodiversity, amphibians, threats, Masurian Landscape Park Abstract The study presents the results of nine-year-long monitoring of the population size of amphibians (Amphibia) as one of the indicator communities used to assess the biological diversity level. The study was conducted in the Masurian Landscape Park located in Warmińsko-MazurskieVoivodeship. The obtained results demonstrated that 13 out of the 18 domestic amphibian species occurred in the area selected for research activities, including the species entered in the IUCN Red List. No clear correlation was found between the dynamics of population changes and the environmental, primarily climatic, determinants. © IOŚ-PIB 1. INTRODUCTION 2. FACTORS REPRESENTING A THREAT TO In Poland, 18 amphibian species live in Poland. They AMPHIBIANS represent two orders, namely, salamanders – Caudata and frogs – Anura, and six families: true frogs (Ranidae), As regards amphibians, the greatest threat is the loss of true toads (Bufonidae), true salamanders and newts habitats, which affects a total of 76 species. Contaminants (Salamandridae), European spadefoot toads (Pelobatidae), are the second major threat that affects 62 species. They Firebelly toads (Bombinatoridae) and Tree frogs (Hylidae). are followed by invasive alien species, which pose a All of them are subject to species protection and, with threat to almost half of the European amphibian species. the exception of the common toad and smooth newt, to These invasive species include predators, such as the protection under the EU Habitats Directive (Table 1) [Sura salmonids, and pathogens, such as a fungal disease P., Głowaciński Z., 2018; Herczek A., Gorczyca J., 2004]. chytridiomycosis, which is associated with a reduction in Amphibians are among the most endangered vertebrate the amphibian population numbers, and the extinction species worldwide. At the European level, nearly 23% of of amphibians in many parts of the world1 [Todd B. et al., the amphibians have been recognised as endangered, of 2009; Woodhams D.C. et al., 2003; Rollins-Smith L. A., 2017]. which 2.4% as critically endangered, 7.2% as endangered As far as amphibians are concerned, it is the loss of wetland and 13.3% as vulnerable. A similar situation is observed habitats that is of particular importance, as many species throughout the EU-27 (22.0% endangered, including use shallow or periodically flooded wetland habitats for 2.4% critically endangered, 6.1% endangered and 13.4% reproduction [Ray A. M. et al., 2016; Mollov I.A., 2018]. vulnerable). In general, almost a quarter of amphibians Another serious threat is the uptake of water resources are regarded as endangered on the European continent. (particularly for agricultural purposes), which changes the Further, 16.9% of the amphibians are regarded as near hydrology of surface waters of the habitats inhabited by threatened. By way of contrast, 19.4% of the reptiles, amphibians [Mathwin R. et al., 2002]. The fragmentation 15.2% of the mammals and 13% of the European birds are of habitats, which contributes to the loss of biological endangered [Temple, H.J., Cox, N.A., 2009]. diversity worldwide, is also of extreme importance. The 1 ec.europa.eu/environment/nature/conservation/species/ redlist/amphibians/major_threats.htm 8 Wojciech Gotkiewicz, Krzysztof Wittbrodt, Ewa Dragańska fragmentation implies a reduced gene flow, an increase in that there is little evidence of climate change being lethal the inbreeding levels, the loss of diversity in populations, to amphibians. These authors believe that the information an increased differentiation between populations and the on thermal tolerance of amphibians, their thermal increased risk of extinction and the dispersion (i.e. from preferences and the actual temperature and humidity the site of birth to the reproduction in other population) ranges in which amphibians live is too limited. [Pabijan M. et al., 2020; Winter M. et al., 2016; Testud G. et The examples provided above have resulted in eight out al., 2020]. of 18 species having been awarded the UI (unfavourable- One of the factors contributing to the fragmentation inadequate) status in the European Union. These species of habitats is the network of roads, particularly the include: European common spadefoot (Pelobatesfuscus), local ones. Amphibians are dependent on the complex European fire-bellied toad (Bombinabombina), landscape structure when moving between breeding and European tree frog (Hylaarborea), Northern crested newt feeding habitats. Roads act as barriers: they increase the (Trituruscristatus), pool frog (Pelophylaxlessonae), moor imperviousness of habitats and mortality of amphibians. frog (Rana arvalis), common frog (Rana temporaria) and Unfortunately, the mass mortality of amphibians on the Carpathian newt (Triturusmontandoni).23 roads increases with the development of infrastructure In Poland, all amphibian species are subject to legal and occurs faster than mitigating measures [Kolenda K. protection, of which three species are under strict et al., 2019]. Consequently, the fragmentation of habitats protection, while for six species, active protection was results in the fragmentation of population, modification proposed (Table 1). of animals’ behaviours and a reduction in gene flow [Puky M., 2006; Sillero N. et al., 2019; Wittbrodt K., 2011; Sjögren- 3. SELECTED PREVENTIVE MEASURES Gulve P., 2020]. In addition, the roads, due to the need for maintaining them (e.g., sand or salt spreading on icy The unfavourable situation in the context of changes in roads), change and pollute the habitats located in the populations of individual amphibian species necessitates immediate vicinity, which can have a lasting effect on the taking remedial measures such as the development biology of organisms, the population dynamics and the of programmes for construction/reconstruction of distribution of species [Grzybowski M., Glińska-Lewczuk, water bodies, which increase the diversity of plants and 2019]. The fragmentation of habitats in the form of road invertebrates as well as amphibians, programmes for infrastructure development has an adverse effect on: Eurasian beaver reintroduction and the construction - an amphibian’s individual characteristics within the of road-crossing tunnels for amphibians in the road same species (certain individuals, especially females, infrastructure [Downie J.R. et al., 2019; Klimaszewski K. et mature earlier, while others do it later), al., 2015; Dalbeck L. et al., 2020]. - ecological and hydrobiological differences, even It is very important to create natural buffers between between neighbouring water bodies in which wetlands and the surrounding areas, which will amphibians mate, consequently have a positive effect on water quality - differences in meteorological conditions, taking place and biological diversity. Buffer zones are contact zones primarily during the growing periods of individual between aquatic and terrestrial ecosystems, which help years (dry, wet, warm and cold growing periods) regulate the ecological functions of both systems. As [Juszczyk W., 1987]. regards the amphibians, an effective buffer zone should be approximately 50 m wide [Lind L. et al., 2019; GuzyJ.C. It is believed that it is the climate change that is of et al., 2019]. significance in the shaping of amphibian population. However, the research conducted in Canada, the United Ectothermic animals such as amphibians and reptiles States and Italy showed that the guidelines concerning are particularly sensitive to the rapidly rising global the protection of true frogs (Ranidae) and true toads temperature [Bodensteiner B.L., 2020; Taylor E.N. et al., (Bufonidae) in agricultural landscapes should focus on 2020]. According to Bucciarelli G.M. et al. [2020], although the protection of terrestrial habitats at the landscape the amphibians have developed life strategies in order to level, and not on the maintenance of narrow buffers in mitigate the adverse consequences of varying precipitation wetlands [Sawatzky M.E. et al., 2019; FicetolaG.F., 2009; patterns, their ability to adapt to the simultaneous Semlitsch R.D. et al., 2003]. Such a strategy, however, drought and rapid increased in the temperature as well requires the cooperation between naturalists with as the greater environmental variability in general, may broadly understood local communities and professional be insufficient to maintain viable populations, given the groups due to the emerging conflicts of interest [Preisser rate and intensity of these changes. A study by Cohen E. et al., 2000]. Further measures to protect amphibians J. M. et al. [2018] demonstrated that global warming may have consequences for the amphibians adapted 2 nature-art17.eionet.europa.eu/article17/species/report/?pe- to relatively cold conditions, which are most vulnerable riod=5&group=Amphibians&country=PL&region= to the interactions between an increase in the average 3 Council Directive 92/43/EEC
Recommended publications
  • <I>Ichthyosaura Alpestris</I>
    Volume 26 (January 2016), 49–56 FULL PAPER Herpetological Journal Published by the British Provenance of Ichthyosaura alpestris (Caudata: Herpetological Society Salamandridae) introductions to France and New Zealand assessed by mitochondrial DNA analysis Jan W. Arntzen1, Tania M. King2, Mathieu Denoël3, Iñigo Martínez-Solano4,5 & Graham P. Wallis2 1Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 2Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand 3Behavioural Biology Unit, Department of Biology, Ecology and Evolution, University of Liège, Quai van Beneden 22, 4020 Liège, Belgium 4CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Rua Padre Armando Quintas, s/n 4485-661 Vairão, Portugal 5(present address) Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, c/ Americo Vespucio, s/n, 41092, Seville, Spain The last century has seen an unparalleled movement of species around the planet as a direct result of human activity, which has been a major contributor to the biodiversity crisis. Amphibians represent a particularly vulnerable group, exacerbated by the devastating effects of chytrid fungi. We report the malicious translocation and establishment of the alpine newt (Ichthyosaura alpestris) to its virtual antipode in North Island of New Zealand. We use network analysis of mitochondrial DNA haplotypes to identify the original source population as I. a. apuana from Tuscany, Italy. Additionally, a population in southern France, presumed to be introduced, is identified as I. a. alpestris from western Europe. However, the presence of two differentiated haplotypes suggests a mixed origin.
    [Show full text]
  • Ecol 483/583 – Herpetology Lab 3: Amphibian Diversity 2: Anura Spring 2010
    Ecol 483/583 – Herpetology Lab 3: Amphibian Diversity 2: Anura Spring 2010 P.J. Bergmann & S. Foldi (Modified from Bonine & Foldi 2008) Lab objectives The objectives of today’s lab are to: 1. Familiarize yourself with Anuran diversity. 2. Learn to identify local frogs and toads. 3. Learn to use a taxonomic key. Today’s lab is the second in which you will learn about amphibian diversity. We will cover the Anura, or frogs and toads, the third and final clade of Lissamphibia. Tips for learning the material Continue what you have been doing in previous weeks. Examine all of the specimens on display, taking notes, drawings and photos of what you see. Attempt to identify the local species to species and the others to their higher clades. Quiz each other to see which taxa are easy for you and which ones give you troubles, and then revisit the difficult ones. Although the Anura has a conserved body plan – all are rather short and rigid bodied, with well- developed limbs, there is an incredible amount of diversity. Pay close attention to some of the special external anatomical traits that characterize the groups of frogs you see today. You will also learn to use a taxonomic key today. This is an important tool for correctly identifying species, especially when they are very difficult to distinguish from other species. 1 Ecol 483/583 – Lab 3: Anura 2010 Exercise 1: Anura diversity General Information Frogs are a monophyletic group comprising the order Anura. Salientia includes both extant and extinct frogs. Frogs have been around since the Triassic (~230 ma).
    [Show full text]
  • Stem Caecilian from the Triassic of Colorado Sheds Light on the Origins
    Stem caecilian from the Triassic of Colorado sheds light PNAS PLUS on the origins of Lissamphibia Jason D. Pardoa, Bryan J. Smallb, and Adam K. Huttenlockerc,1 aDepartment of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; bMuseum of Texas Tech University, Lubbock, TX 79415; and cDepartment of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved May 18, 2017 (received for review April 26, 2017) The origin of the limbless caecilians remains a lasting question in other early tetrapods; “-ophis” (Greek) meaning serpent. The vertebrate evolution. Molecular phylogenies and morphology species name honors paleontologist Farish Jenkins, whose work on support that caecilians are the sister taxon of batrachians (frogs the Jurassic Eocaecilia inspired the present study. and salamanders), from which they diverged no later than the early Permian. Although recent efforts have discovered new, early Holotype. Denver Museum of Nature & Science (DMNH) 56658, members of the batrachian lineage, the record of pre-Cretaceous partial skull with lower jaw and disarticulated postcrania (Fig. 1 caecilians is limited to a single species, Eocaecilia micropodia. The A–D). Discovered by B.J.S. in 1999 in the Upper Triassic Chinle position of Eocaecilia within tetrapod phylogeny is controversial, Formation (“red siltstone” member), Main Elk Creek locality, as it already acquired the specialized morphology that character- Garfield County, Colorado (DMNH loc. 1306). The tetrapod as- izes modern caecilians by the Jurassic. Here, we report on a small semblage is regarded as middle–late Norian in age (Revueltian land amphibian from the Upper Triassic of Colorado, United States, with vertebrate faunachron) (13).
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Herpetofauna of the Podkielecki Landscape Protection Area
    Environmental Protection and Natural Resources Vol. 30 No 2(80): 32-40 Ochrona Środowiska i Zasobów Naturalnych DOI 10.2478/oszn-2019-0008 Dariusz Wojdan*, Ilona Żeber-Dzikowska**, Barbara Gworek***, Agnieszka Pastuszko****, Jarosław Chmielewski***** Herpetofauna of the Podkielecki Landscape Protection Area * Uniwersytet Jana Kochanowskiego w Kielcach, ** Państwowa Wyższa Szkoła Zawodowa w Płocku, *** Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, **** Instytut Ochrony Środowiska - Państwowy Instytut Badawczy w Warszawie, ***** Wyższa Szkoła Rehabilitacji w Warszawie; e-mail: [email protected] Keywords: Amphibians, reptiles, occurrence, biology, phenology, Podkielecki Landscape Protection Area Abstract The study was conducted in 2016-2017 in the Podkielecki Landscape Protection Area (area 26,485 ha). It was focused on the occurrence and distribution of amphibians and reptiles, the biology of the selected species and the existing threats. Established in 1995, the Podkielecki Landscape Protection Area surrounds the city of Kielce from the north, east and south-east, and adjoins several other protected areas. It covers the western part of the Świętokrzyskie Mountains (part of the Klonowskie and Masłowskie ranges) and the southern part of the Suchedniów Plateau. The studied area is mostly covered by forest and thicket communities (48.1%) and farmlands (39.9%), followed by built-up areas (7.8%), industrial areas (0.5%), roads and railways (2.7%), and surface water bodies (1%). The protected area is developed mainly on Palaeozoic rocks, including Cambrian and Ordovician sandstones, Silurian and Carboniferous shales, and Devonian marls. Podzolic soils predominate among soils. The largest rivers include Lubrzanka, Czarna Nida, Bobrza and Belnianka. There are no natural lakes within the PLPA limits, and the largest artificial reservoirs include the Cedzyna Reservoir, Morawica Reservoir, Suków Sandpit and two sedimentation reservoirs of the Kielce Power Plant.
    [Show full text]
  • Morphological Evolution and Modularity of the Caecilian Skull Carla Bardua1,2* , Mark Wilkinson1, David J
    Bardua et al. BMC Evolutionary Biology (2019) 19:30 https://doi.org/10.1186/s12862-018-1342-7 RESEARCH ARTICLE Open Access Morphological evolution and modularity of the caecilian skull Carla Bardua1,2* , Mark Wilkinson1, David J. Gower1, Emma Sherratt3 and Anjali Goswami1,2 Abstract Background: Caecilians (Gymnophiona) are the least speciose extant lissamphibian order, yet living forms capture approximately 250 million years of evolution since their earliest divergences. This long history is reflected in the broad range of skull morphologies exhibited by this largely fossorial, but developmentally diverse, clade. However, this diversity of form makes quantification of caecilian cranial morphology challenging, with highly variable presence or absence of many structures. Consequently, few studies have examined morphological evolution across caecilians. This extensive variation also raises the question of degree of conservation of cranial modules (semi-autonomous subsets of highly-integrated traits) within this clade, allowing us to assess the importance of modular organisation in shaping morphological evolution. We used an intensive surface geometric morphometric approach to quantify cranial morphological variation across all 32 extant caecilian genera. We defined 16 cranial regions using 53 landmarks and 687 curve and 729 surface sliding semilandmarks. With these unprecedented high-dimensional data, we analysed cranial shape and modularity across caecilians assessing phylogenetic, allometric and ecological influences on cranial evolution, as well as investigating the relationships among integration, evolutionary rate, and morphological disparity. Results: We found highest support for a ten-module model, with greater integration of the posterior skull. Phylogenetic signal was significant (Kmult =0.87,p < 0.01), but stronger in anterior modules, while allometric influences were also significant (R2 =0.16,p < 0.01), but stronger posteriorly.
    [Show full text]
  • Bollettino Del Museo Di Storia Naturale Di Venezia 67
    Bollettino del Museo di Storia Naturale di Venezia, 67: 71-75 71 Nicola Novarini, Emanuele Stival WADING BIRDS PREDATION ON BUFOTES VIRIDIS (LAURENTI, 1768) IN THE CA’ VALLESINA WETLAND (CA’ NOGHERA, VENICE, ITALY) Riassunto. Predazione di uccelli acquatici su Bufotes viridis (Laurenti, 1768) nella zona umida di Ca’ Vallesina (Ca’ Noghera, Venezia). Viene riportata per la prima volta la predazione di rospo smeraldino da parte di due specie di uccelli acquatici, Bubulcus ibis e Threskiornis aethiopicus, in una piccola zona umida lungo il margine nordoccidentale della Laguna di Venezia. Summary. Predation instances on the green toad by two waterbird predators, Bubulcus ibis and Threskiornis aethiopicus, are reported for the first time in a small wetland along the northwestern border of the Lagoon of Venice (NE-Italy). Keywords: Bufotes viridis, predation, waterbirds, Bubulcus ibis, Threskiornis aethiopicus. Reference: Novarini N., Stival E., 2017. Wading birds predation on Bufotes viridis (Laurenti, 1768) in the Ca’ Vallesina wetland (Ca’ Noghera, Venice, Italy). Bollettino del Museo di Storia Naturale di Venezia, 67: 71-75. INTRODUCTION Anuran amphibians are typical intermediate predators in the food-chain of wetlands, being active consumers of invertebrates, especially insects, and occasionally small vertebrates, as well as prey themselves of invertebrates, fishes, other amphibians, reptiles, birds and mammals, including man. Egrets, ibises and other wading birds often share the same wetland habitat with amphibians and are major (though opportunistic) predators of anurans, especially of the palatable ranids (KABISCH & BELTER, 1968; COOK, 1987; DUELLMAN & TRUEB, 1994; TOLEDO et al., 2007; WELLS, 2007). A wide number of species across almost all anuran families, however, contain toxic and/or distasteful secretions in their skin glands, with bufonids generally included among the least palatable species, either as adults and larvae (LUTZ, 1971; DUELLMAN & TRUEB, 1994; TOLEDO & JARED, 1995; GUNZBURGER & TRAVIS, 2005).
    [Show full text]
  • Understanding Biodiversity at the Pondscape Using Environmental
    bioRxiv preprint doi: https://doi.org/10.1101/278309; this version posted March 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Understanding biodiversity at the pondscape using 2 environmental DNA: a focus on great crested newts 3 4 Lynsey R. Harper1*, Lori Lawson Handley1, Christoph Hahn1,2, Neil 5 Boonham3,4, Helen C. Rees5, Erin Lewis3, Ian P. Adams3, Peter 6 Brotherton6, Susanna Phillips6 and Bernd Hänfling1 7 8 1School of Environmental Sciences, University of Hull, Hull, HU6 7RX, UK 9 2Institute of Zoology, University of Graz, Graz, Styria, Austria 10 3Fera, Sand Hutton, York, YO14 1LZ, UK 11 4Newcastle University, Newcastle upon Tyne, NE1 7RU, UK 12 5ADAS, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington 13 Campus, Leicestershire, LE12 5RD, UK 14 6 Natural England, Peterborough, PE1 1NG, UK 15 16 17 *Corresponding author: 18 Email: [email protected] 19 20 Word count: 9,563 words 21 1 bioRxiv preprint doi: https://doi.org/10.1101/278309; this version posted March 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 eDNA metabarcoding represents a new tool for community biodiversity assessment 23 in a broad range of aquatic and terrestrial habitats.
    [Show full text]
  • Morphometric Study on Tadpoles of Bombina Variegata (Linnaeus, 1758) (Anura; Bombinatoridae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Firenze University Press: E-Journals Acta Herpetologica 5(2): 223-231, 2010 Morphometric study on tadpoles of Bombina variegata (Linnaeus, 1758) (Anura; Bombinatoridae) Anna Rita Di Cerbo*, Carlo M. Biancardi Centro Studi Faunistica dei Vertebrati, Società Italiana di Scienze Naturali, C.so Venezia 55, I-20121, Milano, Italy. *Correspondig author. E.mail: [email protected] Submitted on: 2009, 23th November; revised on 2010, 10th October; accepted on 2010, 12th November. Abstract. The tadpoles of Yellow-bellied toad (Bombina variegata) can be easily rec- ognized from other Italian anuran species, except those of B. pachypus (though the two congeneric species are allopatric). In this paper we report morphometric data on B. variegata tadpoles from a Lombard population living near a torrent at 450 m a.s.l. On a sample of 264 tadpoles (stages 19-44, according to Gosner, 1960) we meas- ured the following five variables: snout-vent length, tail length, maximum tail height, total length and weight. We found a slight allometric relationship between snout-vent length and tail length, while, as expected, the weight is nearly proportional to the cube of linear measures. According to literature data, our results point to highly constant proportions during the development phases up to prometamorphic stages. The ratio between snout-vent length and tail length was about 0.75 during the whole growing phase, while from stage 42 the proportion increases as the resorption of the tail starts. Keywords. Tadpole morphology, Yellow-bellied toad, Bombina variegata.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Toxicon 60 (2012) 967–981 Contents lists available at SciVerse ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Antimicrobial peptides and alytesin are co-secreted from the venom of the Midwife toad, Alytes maurus (Alytidae, Anura): Implications for the evolution of frog skin defensive secretions Enrico König a,*, Mei Zhou b, Lei Wang b, Tianbao Chen b, Olaf R.P. Bininda-Emonds a, Chris Shaw b a AG Systematik und Evolutionsbiologie, IBU – Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany b Natural Drug Discovery Group, School of Pharmacy, Medical Biology Center, Queen’s University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK article info abstract Article history: The skin secretions of frogs and toads (Anura) have long been a known source of a vast Received 23 March 2012 abundance of bioactive substances.
    [Show full text]
  • Guidelines for Wildlife and Traffic in the Carpathians
    Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Part of Output 3.2 Planning Toolkit TRANSGREEN Project “Integrated Transport and Green Infrastructure Planning in the Danube-Carpathian Region for the Benefit of People and Nature” Danube Transnational Programme, DTP1-187-3.1 April 2019 Project co-funded by the European Regional Development Fund (ERDF) www.interreg-danube.eu/transgreen Authors Václav Hlaváč (Nature Conservation Agency of the Czech Republic, Member of the Carpathian Convention Work- ing Group for Sustainable Transport, co-author of “COST 341 Habitat Fragmentation due to Trans- portation Infrastructure, Wildlife and Traffic, A European Handbook for Identifying Conflicts and Designing Solutions” and “On the permeability of roads for wildlife: a handbook, 2002”) Petr Anděl (Consultant, EVERNIA s.r.o. Liberec, Czech Republic, co-author of “On the permeability of roads for wildlife: a handbook, 2002”) Jitka Matoušová (Nature Conservation Agency of the Czech Republic) Ivo Dostál (Transport Research Centre, Czech Republic) Martin Strnad (Nature Conservation Agency of the Czech Republic, specialist in ecological connectivity) Contributors Andriy-Taras Bashta (Biologist, Institute of Ecology of the Carpathians, National Academy of Science in Ukraine) Katarína Gáliková (National
    [Show full text]
  • The Amphibian Pathogen Batrachochytrium Salamandrivorans in the Hotspot of Its European Invasive Range: Past – Present – Future
    SALAMANDRA 56(3): 173–188 Batrachochytrium salamandrivorans in the hotspot of its European invasive rangeSALAMANDRA 15 August 2020 ISSN 0036–3375 German Journal of Herpetology The amphibian pathogen Batrachochytrium salamandrivorans in the hotspot of its European invasive range: past – present – future Stefan Lötters1*, Norman Wagner1*, Gonzalo Albaladejo2,3, Philipp Böning1, Lutz Dalbeck4, Heidrun Düssel4, Stephan Feldmeier1, Maike Guschal5, Kai Kirst5, Dagmar Ohlhoff4, Kathleen Preissler6, Timm Reinhardt7, Martin Schlüpmann8, Ulrich Schulte1,9, Vanessa Schulz6,10, Sebastian Steinfartz6, Sönke Twietmeyer11, Michael Veith1, Miguel Vences10 & Josef Wegge5 1) Universität Trier, Biogeographie, Universitätsring 15, 54296 Trier, Germany 2) Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, U.K. 3) Institute of Zoology, Zoological Society of London, Regent’s Park, London, U.K. 4) Biologische Station im Kreis Düren e.V., Zerkaller Str. 5, 52385 Nideggen, Germany 5) Biologische Station StädteRegion Aachen, Zweifaller Str. 162, 52224 Stolberg/Rheinland, Germany 6) Universität Leipzig, Institut für Molekulare Evolution und Systematik der Tiere, Talstr. 33, 04103 Leipzig, Germany 7) Bundesamt für Naturschutz, Zoologischer Artenschutz, Konstantinstr. 110, 53179 Bonn, Germany 8) Biologische Station Westliches Ruhrgebiet, Ripshorster Str. 306, 46117 Oberhausen, Germany 9) Büro für Faunistische Gutachten, Kaiserstr. 2, 33829 Borgholzhausen, Germany 10) Technische Universität
    [Show full text]