Biology of the White Shark
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monachus Schauinslandi) P
Journal of Zoology. Print ISSN 0952-8369 Distribution and frequencies of shark-inflicted injuries to the endangered Hawaiian monk seal (Monachus schauinslandi) P. Bertilsson-Friedman Department of Zoology, University of New Hampshire, Durham, NH, USA Keywords Abstract Hawaiian monk seals; Monachus schauinslandi; shark-inflicted injuries; injury I analyzed the frequencies of wounds inflicted by sharks to the endangered distribution; shark interactions. Hawaiian monk seal Monachus schauinslandi at three colonies in the Northwestern Hawaiian Islands between 1990 and 2000. I applied specific criteria typical of shark Correspondence bites to all injuries to avoid bias. Pooling data from all years and the three colonies Petra Bertilsson-Friedman. Current address: revealed several patterns. Sharks injured more pups (nursing and weaned) and GPS Department, St Joseph’s College of juveniles (1–2 years old) than adults and subadults. More female pups and male Maine, 278 Whites Bridge Road, Standish, juveniles than any other size classes were injured by sharks. Almost all (97%) of ME 04084-9978, USA. the injured pups were from French Frigate Shoals. More juveniles than expected Email: [email protected] were wounded at Laysan Island and Lisianski Island. Most shark wounds were between the diaphragm and the pelvic girdle, but pups were bitten most often just Received 13 December 2004; accepted behind the pelvis compared with adults who were bitten more often near the head 23 June 2005 and neck. doi:10.1111/j.1469-7998.2006.00066.x Introduction atolls and islands. The species has declined substantially during the past several decades. Many factors have been In contrast to well-studied terrestrial mammals, little is suggested to explain the decline and lack of recovery, known about predation on marine mammals. -
Teeth Penetration Force of the Tiger Shark Galeocerdo Cuvier and Sandbar Shark Carcharhinus Plumbeus
Journal of Fish Biology (2017) 91, 460–472 doi:10.1111/jfb.13351, available online at wileyonlinelibrary.com Teeth penetration force of the tiger shark Galeocerdo cuvier and sandbar shark Carcharhinus plumbeus J. N. Bergman*†‡, M. J. Lajeunesse* and P. J. Motta* *University of South Florida, Department of Integrative Biology, 4202 East Fowler Avenue, Tampa, FL 33620, U.S.A. and †Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, 100 Eighth Avenue S.E., Saint Petersburg, FL 33701, U.S.A. (Received 16 February 2017, Accepted 15 May 2017) This study examined the minimum force required of functional teeth and replacement teeth in the tiger shark Galeocerdo cuvier and the sandbar shark Carcharhinus plumbeus to penetrate the scales and muscle of sheepshead Archosargus probatocephalus and pigfish Orthopristis chrysoptera. Penetra- tion force ranged from 7·7–41·9and3·2–26·3 N to penetrate A. probatocephalus and O. chrysoptera, respectively. Replacement teeth required significantly less force to penetrate O. chrysoptera for both shark species, most probably due to microscopic wear of the tooth surfaces supporting the theory shark teeth are replaced regularly to ensure sharp teeth that are efficient for prey capture. © 2017 The Fisheries Society of the British Isles Key words: biomechanics; bite force; Elasmobranchii; teleost; tooth morphology. INTRODUCTION Research on the functional morphology of feeding in sharks has typically focused on the kinematics and mechanics of cranial movement (Ferry-Graham, 1998; Wilga et al., 2001; Motta, 2004; Huber et al., 2005; Motta et al., 2008), often neglecting to integrate the function of teeth (but see Ramsay & Wilga, 2007; Dean et al., 2008; Whitenack et al., 2011). -
Managing for Extinction Conflicting Conservation Objectives in a Large
POLICY PERSPECTIVE Managing for extinction? Conflicting conservation objectives in a large marine reserve Leah R. Gerber1, James Estes2, Tara Gancos Crawford1, Lindsey E. Peavey3, & Andrew J. Read4 1Ecology, Evolution and Environmental Sciences, School of Life Sciences, Arizona State University, Box 874501, Tempe, AZ 85287-4501, USA 2Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA 3Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA 4Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA Keywords Abstract Hawaiian monk seal; marine protected areas; endangered species conservation; intervention; Establishment of the Papahanaumoku¯ akea¯ Marine National Monument adaptive management; extinction; marine (PMNM) in 2006 was heralded as a major advance for marine conserva- mammal. tion. The PMNM is one of the largest no-take marine reserves in the world (36,207,439 hectares) and includes all of the Northwestern Hawaiian Is- Correspondence Leah R. Gerber, Ecology, Evolution and lands (NWHI). Despite the protection, within its boundaries one of Hawaii’s Environmental Sciences, School of Life most charismatic marine species, the endemic Hawaiian monk seal (Monachus Sciences, Arizona State University, Box 874501, schauinslandi), is declining towards extinction. In contrast, monk seal abun- Tempe, AZ 85287-4501, USA. dance is increasing in the largely unprotected Main Hawaiian Islands. High Tel: +1-480-727-3109; Fax: +1-480-965-6899. -
FATAL SHARK ATTACK on a HAWAIIAN MONK SEAL (MONACHUS Schaulnslandl)
MARINE MAMMAL SCIENCE, 2(4):313-3 15 (October 1986) 0 1986 by the Society for Marine Mammalogy FATAL SHARK ATTACK ON A HAWAIIAN MONK SEAL (MONACHUS SCHAUlNSLANDl) We describe here a fatal attack on a Hawaiian monk seal, Monachus schauins- Iandi, apparently initiated by tiger sharks, Galeocerdo cuvier. The attack oc- curred near sunset at 1957 h on 28 May 1982, 15 m off the landing beach on the west side of Laysan Island (25"42'N, 171"44'W),Northwestern Hawai- ian Islands. Observations were made from shore at a distance of approximately 33 m. Predation by sharks on this endangered species is indicated by the presence of monk seal remains in tiger sharks (Taylor and Naftel 1978), tiger sharks seen feeding on dead seals (Balats and Whittow 1979, Johanos and Kam 1986), a tiger shark seen injuring a seal Uohanos, unpubl. ms.) and apparent shark-inflicted wounds on monk seals (e.g., Wirtt 1968, Kenyon 1973, John- son and Johnson 1978, Alcorn 1984), but a fatal attack on a live monk seal has not been documented. First attack-At 1929 h the fins of a large tiger shark were seen about 12 m offshore, near two monk seals. One seal, an adult, appeared by its behavior to be a male; the other seal was the site of a subadult with open pink puncture wounds on its back and sides and shallow tears as long as 8 cm. The wounds were not bleeding and were at least a few days old; we had seen them on this seal 3 d earlier. -
Hawaiian Monk Seal
THE HEAT IS ON Species feeling the effects of climate change Hawaiian Monk Seal Monachus schauinslandi NOAA Region: ABOUT THIS SPECIES Pacific Ocean Their Hawaiian name translates to “dog running in rough seas,” and Hawaiian monk seals are indeed having a rough time right now. Although it has been protected under Area affected: the Endangered Species Act since 1976, the Hawaiian monk seal population continues Northwest Hawaiian Islands to decline at a rate of about 3 percent per year. With only about 1,100 remaining in Climatic change: the wild, these seals are one of our most endangered marine mammals. Most are found Sea-level rise in the Northwest Hawaiian Islands, a series of small, low, coral atolls built on the remnants of the oldest volcanically formed islands, which extend for hundreds of miles Impact: northwest of the inhabited Hawaiian Islands. The seals forage in the waters surrounding Habitat loss these islands, diving to pursue fish, squid, octopus and eels. Several of these atolls, particularly the French Frigate Shoals, are critically important to the seals for giving birth and nursing their pups, and resting during molt periods. DESCRIPTION OF IMPACT The Northwest Hawaiian Islands are part of a national wildlife refuge, surrounded by the enormous Papahānaumokuākea Marine National Monument, which protects the reefs and the seabirds, fish and other marine wildlife that depend on this environment. However, that designation is not sufficient to protect the low-lying atolls from the effects of sea-level rise, which is compounding the natural effects of erosion common there. For instance, from 1985 to 1996, nearly 35 percent of the region’s monk seal pups were born on Whaleskate Island in the French Frigate Shoals, but by the late 1990s this island—once the second most important breeding site in the area— was completely submerged. -
Ore Bin / Oregon Geology Magazine / Journal
State of Oregon The ORE BIN· Department of Geology Volume 34,no. 10 and Mineral Industries 1069 State Office BI dg. October 1972 Portland Oregon 97201 FOSSil SHARKS IN OREGON Bruce J. Welton* Approximately 21 species of sharks, skates, and rays are either indigenous to or occasionally visit the Oregon coast. The Blue Shark Prionace glauca, Soup-fin Shark Galeorhinus zyopterus, and the Dog-fish Shark Squalus acanthias commonly inhabit our coastal waters. These 21 species are represented by 16 genera, of which 10 genera are known from the fossi I record in Oregon. The most common genus encountered is the Dog-fish Shark Squalus. The sharks, skates, and rays, (all members of the Elasmobranchii) have a fossil record extending back into the Devonian period, but many major groups became extinct before or during the Mesozoic. A rapid expansion in the number of new forms before the close of the Mesozoic gave rise to practically all the Holocene families living today. Paleozoic shark remains are not known from Oregon, but teeth of the Cretaceous genus Scapanorhyn chus have been collected from the Hudspeth Formation near Mitchell, Oregon. Recent work has shown that elasmobranch teeth occur in abundance west of the Cascades in marine Tertiary strata ranging in age from late Eocene to middle Miocene (Figures 1 and 2). All members of the EIasmobranchii possess a cartilaginous endoskeleton which deteriorates rapidly upon death and is only rarely preserved in the fossil record. Only under exceptional conditions of preservation, usually in a highly reducing environment, will cranial or postcranial elements be fossilized. -
The Ernst Quarries Pricing Digging in the Sharktooth Hill Fossil Formation
The Ernst Quarries Pricing Digging in the Sharktooth Hill Fossil Formation OUR PRICING ALL PRICES ARE PER PERSON Admission ........................................................................ $40 Group Discounts for 10 or more, email for information. Everyone entering the property is subject to admission and a signed waiver, NO EXCEPTIONS. Check-in is between 7:45 and 8:15am at our staging point. A vehicle is required, no hikers or walking from the staging area is permitted. For safety reasons, a vehicle must stay with the participants (no drop offs). Unfortunately, we CANNOT accept debit or credit card payments at this time. Cash and checks are the ONLY methods of payment, and need to be presented prior to digging. WE LEAVE THE STAGING AREA PROMPTLY AT 8:30AM! If you cannot make the start time, please call prior to 8am and we can attempt to accommodate you, but there are no guarantees. You will caravan in your own vehicles to the property and arrive by 8:45am. After a short orientation/tour, you are free to begin digging (approx. 9am start after orientation). Due to ongoing construction activities, we currently cannot support any low profile vehicles. This includes cars such as Mini's, VW Bugs, and custom lowered vehicles. ALL TOOLS ARE PROVIDED. Children under 18 MUST be accompanied by an adult. Children under 8 must remain with an adult at all times (No Exceptions). Children under five will not be allowed to participate in digging actives with tooling. No dogs are allowed, this is for their safety. Many of the manageable hazards to humans are unmanageable and deadly to dogs. -
Re-Evaluation of Pachycormid Fishes from the Late Jurassic of Southwestern Germany
Editors' choice Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany ERIN E. MAXWELL, PAUL H. LAMBERS, ADRIANA LÓPEZ-ARBARELLO, and GÜNTER SCHWEIGERT Maxwell, E.E., Lambers, P.H., López-Arbarello, A., and Schweigert G. 2020. Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany. Acta Palaeontologica Polonica 65 (3): 429–453. Pachycormidae is an extinct group of Mesozoic fishes that exhibits extensive body size and shape disparity. The Late Jurassic record of the group is dominated by fossils from the lithographic limestone of Bavaria, Germany that, although complete and articulated, are not well characterized anatomically. In addition, stratigraphic and geographical provenance are often only approximately known, making these taxa difficult to place in a global biogeographical context. In contrast, the late Kimmeridgian Nusplingen Plattenkalk of Baden-Württemberg is a well-constrained locality yielding hundreds of exceptionally preserved and prepared vertebrate fossils. Pachycormid fishes are rare, but these finds have the potential to broaden our understanding of anatomical variation within this group, as well as provide new information regarding the trophic complexity of the Nusplingen lagoonal ecosystem. Here, we review the fossil record of Pachycormidae from Nusplingen, including one fragmentary and two relatively complete skulls, a largely complete fish, and a fragment of a caudal fin. These finds can be referred to three taxa: Orthocormus sp., Hypsocormus posterodorsalis sp. nov., and Simocormus macrolepidotus gen. et sp. nov. The latter taxon was erected to replace “Hypsocormus” macrodon, here considered to be a nomen dubium. Hypsocormus posterodorsalis is known only from Nusplingen, and is characterized by teeth lacking apicobasal ridging at the bases, a dorsal fin positioned opposite the anterior edge of the anal fin, and a hypural plate consisting of a fused parhypural and hypurals. -
Diet of a Mediterranean Monk Seal Monachus Monachus in a Transitional Post-Weaning Phase and Its Implications for the Conservation of the Species
Vol. 39: 315–320, 2019 ENDANGERED SPECIES RESEARCH Published August 22 https://doi.org/10.3354/esr00971 Endang Species Res OPENPEN ACCESSCCESS NOTE Diet of a Mediterranean monk seal Monachus monachus in a transitional post-weaning phase and its implications for the conservation of the species Cem Orkun Kıraç1,*, Meltem Ok2 1Underwater Research Society - Mediterranean Seal Research Group (SAD-AFAG), 06570 Ankara, Turkey 2Middle East Technical University - Institute of Marine Science (METU-IMS), Erdemli, 33731 Mersin, Turkey ABSTRACT: The Mediterranean monk seal Monachus monachus is the most endangered pin- niped in the world and is considered Endangered by the IUCN. Transition from suckling to active feeding is a critical time in the development of all mammal species, and understanding the dietary requirements of seals during this vulnerable period is of value in establishing conservation meas- ures, such as fishery regulations. This study provides unique information on the dietary habits of a moulted monk seal pup, through the opportunistic necropsy of a dead animal encountered at a very early age (5 mo). A total of 6 prey items from 2 families (Octopodidae, 90.8% and Congridae, 8.9%) were identified from stomach contents. The remaining stomach content mass consisted of fish bones from unidentified species (0.3%). The estimated age, low diversity and number of prey items in the stomach contents indicate that this individual may have been in a transition period from suckling to active feeding. The study confirms independent foraging in Mediterranean monk seals at about 5 mo of age. Given the importance of early life survival for maintaining stable Medi- terranean monk seal populations, and the occurrence of an ontogenetic shift in its close relative (Hawaiian monk seal), these findings contribute to the establishment and implementation of suc- cessful conservation and management strategies for this Endangered species. -
Īlio-Holo-I-Ka-Uaua Or Hawaiian Monk Seal Neomonachus Schauinslandi
Marine Mammals Īlio-holo-i-ka-uaua or Hawaiian monk seal Neomonachus schauinslandi SPECIES STATUS: Federally Listed as Endangered Courtesy State Listed as Endangered State Recognized as Indigenous and Endemic IUCN Red List – Critically Endangered SPECIES INFORMATION: Īlio-holo-i-ka-uaua, or Hawaiian monk seals, are benthic feeders and feed on reef fishes, octopus, squid, and lobsters over many substrates up to depths of 305 meters (1,000 feet). Juveniles feed on a higher proportion of nocturnal fish species. Food seems to be a limiting factor for population growth. They are usually solitary, except on preferred beaches when they occur in close proximity and interact. Mating occurs in the spring and early summer. Gestation is approximately one year. Pupping occurs in late winter and spring. Weaning lasts five to six weeks, in late spring, and pups and mothers stay ashore until pups are weaned. Foster parenting occurs. Most females breed every other year, but about one-third breed in consecutive years. Sexual maturity occurs at around five to ten years of age, and earliest is at Laysan. Life span is 20 to 25 years of age. These are the only endangered marine mammal that occurs exclusively within the United States. DISTRIBUTION: Occurs in all of the Hawaiian Islands, including a small population in the Main Hawaiian Islands (MHI), although the majority of the population and pupping occurs in the Northwestern Hawaiian Islands (NWHI). ABUNDANCE: The total population is estimated at 1,200 individuals, most of which occur in the NWHI, with a decreasing population trend. About 150 of these seals occur in the MHI, where the population is increasing. -
The Truth About Sharks the Story of the Sea Turtle the World of Whales
The Truth About Sharks Sharks are magnificent, but misunderstood creatures that are unfortunately being pushed to the brink of extinction due to overfishing and poor international management. This program highlights the beauty and importance of these animals by showing the incredible rich diversity of shark species and their unique adaptations. Students will rotate through hands-on stations in small groups that involve shark tooth and jaw morphology, shark identification, and shark sensory systems. The session culminates in a discussion about the critical need for conservation of many shark species and what students, no matter where they live, can do to help. The Story of the Sea Turtle Sea turtles are one of the most ancient creatures on Earth, yet we are still learning more and more about them every day. This program covers the life history, ecology, behavior, and unique adaptations of these extraordinary marine animals. Hands-on activities will highlight nesting behavior, sea turtle predators, how hatchings make it to the ocean, and how they are able to return to the same nesting beaches as adults. Students will have sea turtle models to study and even get a chance to experience what it is like for a sea turtle biologist studying these animals in the wild. The session ends in a discussion on current sea turtle conservation measures and how students can help protect marine life. The World of Whales Whales are found in every ocean region and are the largest mammals on the planet, yet we still have much to learn about these magnificent creatures. This program highlights the rich diversity of whale species and their unique adaptations that allow them to grow to mind-boggling dimensions, dive deep underwater, survive in cold-water habitats, and even sing elaborate songs to each other! Through hands-on activities, students will learn about whale feeding and communication strategies, and how scientists study these incredible animals in the wild. -
Semionotiform Fish from the Upper Jurassic of Tendaguru (Tanzania)
Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 2 (1999) 135-153 19.10.1999 Semionotiform Fish from the Upper Jurassic of Tendaguru (Tanzania) Gloria Arratial & Hans-Peter Schultze' With 12 figures Abstract The late Late Jurassic fishes collected by the Tendaguru expeditions (1909-1913) are represented only by a shark tooth and various specimens of the neopterygian Lepidotes . The Lepidotes is a new species characterized by a combination of features such as the presence of scattered tubercles in cranial bones of adults, smooth ganoid scales, two suborbital bones, one row of infraorbital bones, non-tritoral teeth, hyomandibula with an anteriorly expanded membranous outgrowth, two extrascapular bones, two postcleithra, and the absence of fringing fulcra on all fins. Key words: Fishes, Actinopterygii, Semionotiformes, Late Jurassic, East-Africa . Zusammenfassung Die spätoberjurassischen Fische, die die Tendaguru-Expedition zwischen 1909 und 1913 gesammelt hat, sind durch einen Haizahn und mehrere Exemplare des Neopterygiers Lepidotes repräsentiert. Eine neue Art der Gattung Lepidotes ist be- schrieben, sie ist durch eine Kombination von Merkmalen (vereinzelte Tuberkel auf den Schädelknochen adulter Tiere, glatte Ganoidschuppen, zwei Suborbitalia, eine Reihe von Infraorbitalia, nichttritoriale Zähne, Hyomandibulare mit einer membra- nösen nach vorne gerichteten Verbreiterung, zwei Extrascapularia, zwei Postcleithra und ohne sich gabelnde Fulkren auf dem Vorderrand der Flossen) gekennzeichnet. Schlüsselwörter: Fische, Actinopterygii, Semionotiformes, Oberer Jura, Ostafrika. Introduction margin, crescent shaped lateral line pore, and the number of scales in vertical and longitudinal At the excavations of the Tendaguru expeditions rows), and on the shape of teeth (non-tritoral) . (1909-1913), fish remains were collected to- However, the Tendaguru lepidotid differs nota- gether with the spectacular reptiles in sediments bly from L.