Gross Anatomy of the Digestive Tract of the Hawaiian Monk Seal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monk Seals in Post-Classical History
Monk Seals in Post-Classical History The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century William M. Johnson Mededelingen No. 39 2004 NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Mededelingen No. 39 i NEDERLANDSCHE COMMISSIE VOOR INTERNATIONALE NATUURBESCHERMING Netherlands Commission for International Nature Protection Secretariaat: Dr. H.P. Nooteboom National Herbarium of the Netherlands Rijksuniversiteit Leiden Einsteinweg 2 Postbus 9514, 2300 RA Leiden Mededelingen No. 39, 2004 Editor: Dr. H.P. Nooteboom PDF edition 2008: Matthias Schnellmann Copyright © 2004 by William M. Johnson ii MONK SEALS IN POST-CLASSICAL HISTORY The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century by William M. Johnson Editor, The Monachus Guardian www.monachus-guardian.org email: [email protected] iii iv TABLE OF CONTENTS MONK SEALS IN POST-CLASSICAL HISTORY ......................................................III ABSTRACT ......................................................................................................................... VII ACKNOWLEDGEMENTS ........................................................................................................ VII MONK SEALS IN POST-CLASSICAL HISTORY ..............................................................................1 AN INTRODUCTION TO THE SPECIES ......................................................................1 -
Marine Mammals of Hudson Strait the Following Marine Mammals Are Common to Hudson Strait, However, Other Species May Also Be Seen
Marine Mammals of Hudson Strait The following marine mammals are common to Hudson Strait, however, other species may also be seen. It’s possible for marine mammals to venture outside of their common habitats and may be seen elsewhere. Bowhead Whale Length: 13-19 m Appearance: Stocky, with large head. Blue-black body with white markings on the chin, belly and just forward of the tail. No dorsal fin or ridge. Two blow holes, no teeth, has baleen. Behaviour: Blow is V-shaped and bushy, reaching 6 m in height. Often alone but sometimes in groups of 2-10. Habitat: Leads and cracks in pack ice during winter and in open water during summer. Status: Special concern Beluga Whale Length: 4-5 m Appearance: Adults are almost entirely white with a tough dorsal ridge and no dorsal fin. Young are grey. Behaviour: Blow is low and hardly visible. Not much of the body is visible out of the water. Found in small groups, but sometimes hundreds to thousands during annual migrations. Habitat: Found in open water year-round. Prefer shallow coastal water during summer and water near pack ice in winter. Killer Whale Status: Endangered Length: 8-9 m Appearance: Black body with white throat, belly and underside and white spot behind eye. Triangular dorsal fin in the middle of the back. Male dorsal fin can be up to 2 m in high. Behaviour: Blow is tall and column shaped; approximately 4 m in height. Narwhal Typically form groups of 2-25. Length: 4-5 m Habitat: Coastal water and open seas, often in water less than 200 m depth. -
56. Otariidae and Phocidae
FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig. -
Brucella Antibody Seroprevalence in Antarctic Seals (Arctocephalus Gazella, Leptonychotes Weddellii and Mirounga Leonina)
Vol. 105: 175–181, 2013 DISEASES OF AQUATIC ORGANISMS Published September 3 doi: 10.3354/dao02633 Dis Aquat Org Brucella antibody seroprevalence in Antarctic seals (Arctocephalus gazella, Leptonychotes weddellii and Mirounga leonina) Silje-Kristin Jensen1,2,*, Ingebjørg Helena Nymo1, Jaume Forcada3, Ailsa Hall2, Jacques Godfroid1 1Section for Arctic Veterinary Medicine, Norwegian School of Veterinary Science, Stakkevollveien 23, 9010 Tromsø, Norway; member of the Fram Centre - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway 2Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK 3British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Brucellosis is a worldwide infectious zoonotic disease caused by Gram-negative bac- teria of the genus Brucella, and Brucella infections in marine mammals were first reported in 1994. A serosurvey investigating the presence of anti-Brucella antibodies in 3 Antarctic pinniped spe- cies was undertaken with a protein A/G indirect enzyme-linked immunosorbent assay (iELISA) and the Rose Bengal test (RBT). Serum samples from 33 Weddell seals Leptonychotes weddelli were analysed, and antibodies were detected in 8 individuals (24.2%) with the iELISA and in 21 (65.6%) with the RBT. We tested 48 southern elephant seal Mirounga leonina sera and detected antibodies in 2 animals (4.7%) with both the iELISA and the RBT. None of the 21 Antarctic fur seals Arctocephalus gazella was found positive. This is the first report of anti-Brucella antibodies in southern elephant seals. The potential impact of Brucella infection in pinnipeds in Antarctica is not known, but Brucella spp. -
Monachus Schauinslandi) P
Journal of Zoology. Print ISSN 0952-8369 Distribution and frequencies of shark-inflicted injuries to the endangered Hawaiian monk seal (Monachus schauinslandi) P. Bertilsson-Friedman Department of Zoology, University of New Hampshire, Durham, NH, USA Keywords Abstract Hawaiian monk seals; Monachus schauinslandi; shark-inflicted injuries; injury I analyzed the frequencies of wounds inflicted by sharks to the endangered distribution; shark interactions. Hawaiian monk seal Monachus schauinslandi at three colonies in the Northwestern Hawaiian Islands between 1990 and 2000. I applied specific criteria typical of shark Correspondence bites to all injuries to avoid bias. Pooling data from all years and the three colonies Petra Bertilsson-Friedman. Current address: revealed several patterns. Sharks injured more pups (nursing and weaned) and GPS Department, St Joseph’s College of juveniles (1–2 years old) than adults and subadults. More female pups and male Maine, 278 Whites Bridge Road, Standish, juveniles than any other size classes were injured by sharks. Almost all (97%) of ME 04084-9978, USA. the injured pups were from French Frigate Shoals. More juveniles than expected Email: [email protected] were wounded at Laysan Island and Lisianski Island. Most shark wounds were between the diaphragm and the pelvic girdle, but pups were bitten most often just Received 13 December 2004; accepted behind the pelvis compared with adults who were bitten more often near the head 23 June 2005 and neck. doi:10.1111/j.1469-7998.2006.00066.x Introduction atolls and islands. The species has declined substantially during the past several decades. Many factors have been In contrast to well-studied terrestrial mammals, little is suggested to explain the decline and lack of recovery, known about predation on marine mammals. -
Underwater Hearing and Communication in the Endangered Hawaiian Monk Seal Neomonachus Schauinslandi
Vol. 44: 61–78, 2021 ENDANGERED SPECIES RESEARCH Published January 28 https://doi.org/10.3354/esr01092 Endang Species Res OPEN ACCESS Underwater hearing and communication in the endangered Hawaiian monk seal Neomonachus schauinslandi Jillian M. Sills1,*, Kirby Parnell2,3, Brandi Ruscher2, Chloe Lew1, Traci L. Kendall4, Colleen Reichmuth1 1Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA 2Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA 3Marine Mammal Research Program, Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kaneohe, HI 96744, USA 4Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA ABSTRACT: Hawaiian monk seals are among the most endangered marine mammals and the most basal of the phocid seals. The auditory biology of monk seals is compelling from behavioral, evolutionary, and conservation perspectives, but we presently lack substantive bioacoustic infor- mation for this species, with no formal descriptions of underwater vocalizations and limited data concerning hearing. These seals have been isolated for more than 10 million yr and have auditory structures differing from those of related species. Additionally, unlike other aquatically mating phocids, monk seals breed asynchronously and are not known to produce social calls in water. To address existing knowledge gaps, we trained a mature male Hawaiian monk seal to perform a psychophysical task while submerged. Detection thresholds were measured for narrowband sounds across the frequency range of hearing. We also conducted a year-round characterization of the seal’s spontaneous underwater vocalizations. This individual demonstrated best hearing between 0.2 and 33 kHz, with a lower high-frequency roll-off than that of related species. -
Hunting and Social Behaviour of Leopard Seals (Hydrurga Leptonyx) at Seal Island, South Shetland Islands, Antarctica
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 1999 Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica Lisa M. Hiruki National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, [email protected] Michael K. Schwartz National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Peter L. Boveng National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Hiruki, Lisa M.; Schwartz, Michael K.; and Boveng, Peter L., "Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica" (1999). Publications, Agencies and Staff of the U.S. Department of Commerce. 151. https://digitalcommons.unl.edu/usdeptcommercepub/151 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Zool., Lond. (1999) 249, 97±109 # 1999 The Zoological Society of London Printed in the United Kingdom Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica Lisa M. Hiruki*, Michael K. Schwartz{ and Peter L. -
A Specially Protected Species Under Annex II
WP 27 Agenda Item: CEP 8(b) Presented by: SCAR Original: English Current Status of the Ross Seal (Ommatophoca rossii): A Specially Protected Species under Annex II Attachments: atcm30_att030_e.pdf: Summary of status of the Ross seal. 1 WP 27 Current Status of the Ross Seal (Ommatophoca rossii): A Specially Protected Species under Annex II Introduction 1. Resolution 2 (1999) of XXIII ATCM requested SCAR, in consultation with the Parties, CCAMLR and other expert bodies as appropriate, to examine the status of the species currently designated in Appendix A of Annex II to the Environmental Protocol, and with the assistance of IUCN, to determine the conservation status of native Antarctic fauna and flora and advise the CEP on which species should remain or be designated as Specially Protected Species. 2. At XXIII ATCM an Intersessional Contact Group, chaired by Argentina, was established to discuss the criteria that could be used to designate Specially Protected Species. The Final ICG report was presented as XXV ATCM/ WP8. The advice to the ATCM was encapsulated in Resolution 1 (2002), which noted that the CEP had decided to adopt the IUCN criteria on endangerment to establish the degree of threat to species, requested SCAR to assist in reviewing those species which were classed as “vulnerable”, “endangered” or “critically endangered” (taking into consideration regional assessments of populations), as well as reviewing those species classed as “data deficient” or “near threatened” which occurred in the Antarctic Treaty Area. 3. Working Paper XXVIII ATCM WP34 proposed how the IUCN criteria could be applied to Antarctic species. At XXIX ATCM SCAR tabled WP39 proposing that, on this basis and on the grounds of the presently available population data, Antarctic Fur Seals (Arctocephalus spp.) should be delisted as Specially Protected Species. -
The Antarctic Ross Seal, and Convergences with Other Mammals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Servicio de Difusión de la Creación Intelectual Evolutionary biology Sensory anatomy of the most aquatic of rsbl.royalsocietypublishing.org carnivorans: the Antarctic Ross seal, and convergences with other mammals Research Cleopatra Mara Loza1, Ashley E. Latimer2,†, Marcelo R. Sa´nchez-Villagra2 and Alfredo A. Carlini1 Cite this article: Loza CM, Latimer AE, 1 Sa´nchez-Villagra MR, Carlini AA. 2017 Sensory Divisio´n Paleontologı´a de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. CONICET, La Plata, Argentina anatomy of the most aquatic of carnivorans: 2Pala¨ontologisches Institut und Museum der Universita¨tZu¨rich, Karl-Schmid Strasse 4, 8006 Zu¨rich, Switzerland the Antarctic Ross seal, and convergences with MRS-V, 0000-0001-7587-3648 other mammals. Biol. Lett. 13: 20170489. http://dx.doi.org/10.1098/rsbl.2017.0489 Transitions to and from aquatic life involve transformations in sensory sys- tems. The Ross seal, Ommatophoca rossii, offers the chance to investigate the cranio-sensory anatomy in the most aquatic of all seals. The use of non-invasive computed tomography on specimens of this rare animal Received: 1 August 2017 reveals, relative to other species of phocids, a reduction in the diameters Accepted: 12 September 2017 of the semicircular canals and the parafloccular volume. These features are independent of size effects. These transformations parallel those recorded in cetaceans, but these do not extend to other morphological features such as the reduction in eye muscles and the length of the neck, emphasizing the independence of some traits in convergent evolution to aquatic life. -
MASS TOURISM and the MEDITERRANEAN MONK SEAL
MASS TOURISM and the MEDITERRANEAN MONK SEAL The role of mass tourism in the decline and possible future extinction of Europe’s most endangered marine mammal, Monachus monachus William M. Johnson & David M. Lavigne International Marine Mammal Association 1474 Gordon Street, Guelph, Ontario, Canada N1L 1C8 ABSTRACT Mass tourism has been implicated in the decline of the Mediterranean monk seal (Monachus monachus) since the 1970s, when scientists first began reviewing the global status of the species. Since then, the scientific literature, recognising the inexorable process of disturbance and loss of habitat that this economic and social activity has produced along extensive stretches of Mediterranean coastline, has consistently identified tourism as among the most significant causes of decline affecting this critically-endangered species. Despite apparent consensus on this point, no serious attempt has been made to assess the tourist industry’s role, or to acknowledge and discuss its moral and financial responsibility, in the continuing decline and possible future extinction of M. monachus. In view of this, The Monachus Guardian 2 (2) November 1999 1 we undertook a review of existing literature to identify specific areas in which tourism has impacted the Mediterranean monk seal. Our results provide compelling evidence that mass tourism has indeed played a major role in the extirpation of the monk seal in several European countries, that it continues to act as a significant force of extinction in the last Mediterranean strongholds of the species, and that the industry exerts a generally negative influence on the design and operation of protected areas in coastal marine habitats. There are compelling reasons to conclude that unless the tourist industry can be persuaded to become an active and constructive partner in monk seal conservation initiatives, it will eventually ensure the extinction of the remaining monk seals in the Mediterranean. -
Managing for Extinction Conflicting Conservation Objectives in a Large
POLICY PERSPECTIVE Managing for extinction? Conflicting conservation objectives in a large marine reserve Leah R. Gerber1, James Estes2, Tara Gancos Crawford1, Lindsey E. Peavey3, & Andrew J. Read4 1Ecology, Evolution and Environmental Sciences, School of Life Sciences, Arizona State University, Box 874501, Tempe, AZ 85287-4501, USA 2Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA 3Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA 4Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA Keywords Abstract Hawaiian monk seal; marine protected areas; endangered species conservation; intervention; Establishment of the Papahanaumoku¯ akea¯ Marine National Monument adaptive management; extinction; marine (PMNM) in 2006 was heralded as a major advance for marine conserva- mammal. tion. The PMNM is one of the largest no-take marine reserves in the world (36,207,439 hectares) and includes all of the Northwestern Hawaiian Is- Correspondence Leah R. Gerber, Ecology, Evolution and lands (NWHI). Despite the protection, within its boundaries one of Hawaii’s Environmental Sciences, School of Life most charismatic marine species, the endemic Hawaiian monk seal (Monachus Sciences, Arizona State University, Box 874501, schauinslandi), is declining towards extinction. In contrast, monk seal abun- Tempe, AZ 85287-4501, USA. dance is increasing in the largely unprotected Main Hawaiian Islands. High Tel: +1-480-727-3109; Fax: +1-480-965-6899. -
FATAL SHARK ATTACK on a HAWAIIAN MONK SEAL (MONACHUS Schaulnslandl)
MARINE MAMMAL SCIENCE, 2(4):313-3 15 (October 1986) 0 1986 by the Society for Marine Mammalogy FATAL SHARK ATTACK ON A HAWAIIAN MONK SEAL (MONACHUS SCHAUlNSLANDl) We describe here a fatal attack on a Hawaiian monk seal, Monachus schauins- Iandi, apparently initiated by tiger sharks, Galeocerdo cuvier. The attack oc- curred near sunset at 1957 h on 28 May 1982, 15 m off the landing beach on the west side of Laysan Island (25"42'N, 171"44'W),Northwestern Hawai- ian Islands. Observations were made from shore at a distance of approximately 33 m. Predation by sharks on this endangered species is indicated by the presence of monk seal remains in tiger sharks (Taylor and Naftel 1978), tiger sharks seen feeding on dead seals (Balats and Whittow 1979, Johanos and Kam 1986), a tiger shark seen injuring a seal Uohanos, unpubl. ms.) and apparent shark-inflicted wounds on monk seals (e.g., Wirtt 1968, Kenyon 1973, John- son and Johnson 1978, Alcorn 1984), but a fatal attack on a live monk seal has not been documented. First attack-At 1929 h the fins of a large tiger shark were seen about 12 m offshore, near two monk seals. One seal, an adult, appeared by its behavior to be a male; the other seal was the site of a subadult with open pink puncture wounds on its back and sides and shallow tears as long as 8 cm. The wounds were not bleeding and were at least a few days old; we had seen them on this seal 3 d earlier.