Patterns of Vegetative Growth and Gene Flow in Rhizopogon Vinicolor and R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 13–870/2014/16–3–489–497 http://www.fspublishers.org Full Length Article Diversity and Phylogeny of Suillus (Suillaceae; Boletales; Basidiomycota) from Coniferous Forests of Pakistan Samina Sarwar * and Abdul Nasir Khalid Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54950, Pakistan *For correspondence: [email protected] Abstract Suillus (Boletales; Basidiomycota) is an ectomycorrhizal genus, generally associated with Pinaceae. Coniferous forests of Pakistan are rich in mycodiversity and Suillus species are found as early appearing fungi in the vicinity of conifers. This study reports the diversity of Suillus collected during a period of three (3) years (2008-2011). From 32 basidiomata of Suillus collected, 12 species of this genus were identified. These basidiomata were characterized morphologically, and phylogenetically by amplifying and sequencing the ITS region of rDNA. © 2014 Friends Science Publishers Keywords: Moist temperate forests; PCR; rDNA; Ectomycorrhizae Introduction adequate temperature make the environment suitable for the growth of mushrooms in these forests. Suillus (Suillaceae, Basidiomycota, Boletales ) forms This paper described the diversity of Suillus (Boletes, ectomycorrhizal associations mostly with members of the Fungi) with the help of the anatomical, morphological and Pinaceae and is characterized by having slimy caps, genetic analyses as little knowledge is available from forests glandular dots on the stipe, large pore openings that are in Pakistan. often arranged radially and a partial veil that leaves a ring or tissue hanging from the cap margin (Kuo, 2004). This genus Materials and Methods is mostly distributed in northern temperate locations, although some species have been reported in the southern Sporocarp Collection hemisphere as well (Kirk et al ., 2008). -
Fungi of North East Victoria Online
Agarics Agarics Agarics Agarics Fungi of North East Victoria An Identication and Conservation Guide North East Victoria encompasses an area of almost 20,000 km2, bounded by the Murray River to the north and east, the Great Dividing Range to the south and Fungi the Warby Ranges to the west. From box ironbark woodlands and heathy dry forests, open plains and wetlands, alpine herb elds, montane grasslands and of North East Victoria tall ash forests, to your local park or backyard, fungi are found throughout the region. Every fungus species contributes to the functioning, health and An Identification and Conservation Guide resilience of these ecosystems. Identifying Fungi This guide represents 96 species from hundreds, possibly thousands that grow in the diverse habitats of North East Victoria. It includes some of the more conspicuous and distinctive species that can be recognised in the eld, using features visible to the Agaricus xanthodermus* Armillaria luteobubalina* Coprinellus disseminatus Cortinarius austroalbidus Cortinarius sublargus Galerina patagonica gp* Hypholoma fasciculare Lepista nuda* Mycena albidofusca Mycena nargan* Protostropharia semiglobata Russula clelandii gp. yellow stainer Australian honey fungus fairy bonnet Australian white webcap funeral bell sulphur tuft blewit* white-crowned mycena Nargan’s bonnet dung roundhead naked eye or with a x10 magnier. LAMELLAE M LAMELLAE M ■ LAMELLAE S ■ LAMELLAE S, P ■ LAMELLAE S ■ LAMELLAE M ■ ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ When identifying a fungus, try and nd specimens of the same species at dierent growth stages, so you can observe the developmental changes that can occur. Also note the variation in colour and shape that can result from exposure to varying weather conditions. -
Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12). -
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic. -
Rhizopogon Togasawariana Sp. Nov., the First Report of Rhizopogon Associated with an Asian Species of Pseudotsuga
Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Mujic, A. B., Hosaka, K., & Spatafora, J. W. (2014). Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia, 106(1), 105-112. doi:10.3852/13-055 10.3852/13-055 Allen Press Inc. Version of Record http://hdl.handle.net/1957/47245 http://cdss.library.oregonstate.edu/sa-termsofuse Mycologia, 106(1), 2014, pp. 105–112. DOI: 10.3852/13-055 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Alija B. Mujic1 the natural and anthropogenic range of the family Department of Botany and Plant Pathology, Oregon and plays an important ecological role in the State University, Corvallis, Oregon 97331-2902 establishment and maintenance of forests (Tweig et Kentaro Hosaka al. 2007, Simard 2009). The foundational species Department of Botany, National Museum of Nature concepts for genus Rhizopogon were established in the and Science, Tsukuba-shi, Ibaraki, 305-0005, Japan North American monograph of Smith and Zeller (1966), and a detailed monograph also has been Joseph W. Spatafora produced for European Rhizopogon species (Martı´n Department of Botany and Plant Pathology, Oregon 1996). However, few data on Asian species of State University, Corvallis, Oregon 97331-2902 Rhizopogon have been incorporated into phylogenetic and taxonomic studies and only a limited account of Asian Rhizopogon species has been published for EM Abstract: Rhizopogon subgenus Villosuli are the only associates of Pinus (Hosford and Trappe 1988). -
Programme & Abstracts
European Council for Conservation of Fungi (European Mycological Association) International Society for Fungal Conservation Ss. Cyril and Methodius University, Skopje Macedonian Mycological Society Ohrid, Republic of Macedonia 1-6 October 2017 PROGRAMME & ABSTRACTS Organizing Committee Prof. Mitko Karadelev [Chair] Assistant Prof. Katerina Rusevska [Congress Secretary] Ms Daniela Mitic-Kopanja [Local Organizer] Ms Kristina Zimbakova [Local Organizer] Prof. Gerhard Kost [Field Trips] Dr Su Gonçalves [Co-chair ECCF, ex officio] Dr Beatrice Senn-Irlet [Co-chair ECCF, ex officio] Dr David Minter [President EMA, ex officio] Scientific support of the meeting: European Council for Conservation of Fungi; IUCN Species Survival Commission (Chytrid, Zygomycete, Downy Mildew and Slime Mould Specialist Group; Cup-fungi, Truffles and Allies Specialist Group; Lichen Specialist Group; Mushroom, Bracket and Puffball Specialist Group; Rust and Smut Specialist Group) and the Macedonian Mycological Society. Financial support of the Meeting: British Mycological Society; Cybertruffle; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ); Regional Rural Development Standing Working Group (SWG) in South-East Europe; Soloprom; Sofija - Printing House and Soloprom Company. European Council for Conservation of Fungi [www.eccf.eu] Established in 1985, the ECCF is the world’s oldest body devoted entirely to conservation of fungi. It aims to promote fungal conservation in Europe by stimulating production of continental-level, national and local red lists, by monitoring changes in and threats to fungal populations, and by drawing those changes and threats to the attention of decision makers, politicians and the public. Since 2003, it has been the conservation wing of the European Mycological Association and, since 2010, the voice of fungal conservation for Europe in the International Society for Fungal Conservation. -
Forming Ectomycorrhizal Fungi in the Interior Cedar-Hemlock Biogeoclimatic Zone of British Columbia
THE ROLE OF SCIURIDS AND MURIDS IN THE DISPERSAL OF TRUFFLE- FORMING ECTOMYCORRHIZAL FUNGI IN THE INTERIOR CEDAR-HEMLOCK BIOGEOCLIMATIC ZONE OF BRITISH COLUMBIA by Katherine Sidlar A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The College of Graduate Studies (Biology) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) January 2012 © Katherine Sidlar, 2012 Abstract Ectomycorrhizal fungi form an integral tripartite relationship with trees and rodents whereby the fungi provide nutritional benefits for the trees, the trees provide carbohydrate for the fungi, and the rodents feed on the fruit bodies produced by the fungi and then disperse the fungal spores in their feces. When forests are harvested, new ectomycorrhizae must form. It has been assumed that dispersal beyond the root zone of surviving trees happens by way of animals dispersing the spores in their feces, but the importance of particular animal taxa to fungal spore dispersal into disturbed areas in the Interior Cedar Hemlock Biogeoclimatic zone of British Columbia has not previously been investigated. This study observed the occurrence and prevalence of hypogeous fruit bodies (truffles) of ectomycorrhizal fungi, and fungal spores in the feces of a range of rodent species. Truffles were excavated and sciurids (squirrels, chipmunks) and murids (mice, voles) were trapped on sites in a 7 to 102-year chronosequence, as well as unharvested sites adjacent to 7- and 25-year-old sites. The average truffle species richness in soil did not change significantly over the chronosequence. Rhizopogon species were present at all sites and treatments. Deer mice (Peromyscus maniculatus) and yellow-pine chipmunks (Tamias amoenus) were the most commonly trapped rodents across all site ages and were also the most likely to move between harvested and unharvested areas. -
A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms
International Journal of Environmental Research and Public Health Review A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms 1, 2,3, Dagmara Strumi ´nska-Parulska * and Jerzy Falandysz y 1 Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland 2 Environmental Chemistry & Ecotoxicology Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland; [email protected] 3 Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia * Correspondence: [email protected]; Tel.: +48-58-5235254 Jerzy Falandysz is visiting professor at affiliation 3. y Received: 22 September 2020; Accepted: 3 November 2020; Published: 6 November 2020 Abstract: Alpha-emitting radioisotopes are the most toxic among all radionuclides. In particular, medium to long-lived isotopes of the heavier metals are of the greatest concern to human health and radiological safety. This review focuses on the most common alpha-emitting radionuclides of natural and anthropogenic origin in wild mushrooms from around the world. Mushrooms bio-accumulate a range of mineral ionic constituents and radioactive elements to different extents, and are therefore considered as suitable bio-indicators of environmental pollution. The available literature indicates that the natural radionuclide 210Po is accumulated at the highest levels (up to 22 kBq/kg dry weight (dw) in wild mushrooms from Finland), while among synthetic nuclides, the highest levels of up to 53.8 Bq/kg dw of 239+240Pu were reported in Ukrainian mushrooms. The capacity to retain the activity of individual nuclides varies between mushrooms, which is of particular interest for edible species that are consumed either locally or, in some cases, also traded on an international scale. -
Complete Sequence of Glycolytic Enzymes in the Mycorrhizal
Complete Sequence of Glycolytic Enzymes in the Mycorrhizal Basidiomycete, Suillus bovinus Wolfgang Kowallik, Meinolf Thiemann, Yi Huang*, Gerard Mutumba**, Lisa Beermann, Dagmar Broer and Norbert Grotjohann Lehrstuhl für Stoffwechselphysiologie, Fakultät für Biologie, Universität Bielefeld, 33501 Bielefeld, Germany Z. Naturforsch. 53c, 818-827 (1998); received March 12/April 24, 1998 Suillus bovinus, Glycolytic Enzymes, Class II Aldolase, Fructose 2,6- bisphosphate-Dependent Fructose 6-Phosphate Kinase, Mycorrhiza Axenic cultures of Suillus bovinus were cultivated in inorganic liquid medium with glucose as a carbon source at 25 °C and continuous supply of oxygen by aeration with compressed air in the dark. Exogenous fructose as sole carbon source yielded about 50% less increase in dry weight than glucose. This resulted from different uptake velocities. Sucrose as sole exogenous carbon source yielded no measurable increase in dry weight. In glucose cultures, activities of all glycolytic enzymes were found. Maximum specific activ ities varied largely (from about 60 [fructose 6-phosphate kinase] to about 20 000 [triosephos- phate isomerase] nmoles • mg protein -1 • min-1). Apparent K m-values also varied over more than two orders of magnitude (0.035 m M [pyruvate kinase] to 6.16 m M [triosephosphate iso merase]). Fructose 6-phosphate kinase proved to be the fructose 2,6-bisphosphate-regulated type, aldolase the divalent cation-dependent (class II) type and glyceratephosphate mutase the glycerate 2,3-phosphate-independent type of the respective enzymes. Eight of the 10 enzymes exhibited pH-optima' between 7.5-8.0. Triosephosphate isomerase and pyruvate ki nase showed highest activities at pH 6.5. Regulatory sites within the glycolytic pathway of Suillus bovinus are discussed; fructose 6-phosphate kinase appears to be its main bottle neck. -
Svensk Mykologisk Tidskrift Volym 27 · Nummer 3 · 2006 Svensk Mykologisk Tidskrift Inkluderar Tidigare
Svensk Mykologisk Tidskrift Volym 27 · nummer 3 · 2006 Svensk Mykologisk Tidskrift inkluderar tidigare: www.svampar.se Svensk Mykologisk Tidskrift Sveriges Mykologiska Förening Tidskriften publicerar originalartiklar med svamp- Föreningen verkar för anknytning och med svenskt och nordeuropeiskt - en bättre kännedom om Sveriges svampar och intresse. Tidskriften utkommer med fyra nummer svampars roll i naturen per år och ägs av Sveriges Mykologiska Förening. - skydd av naturen och att svampplockning och Instruktioner till författare finns på SMF:s hemsi- annat uppträdande i skog och mark sker under da www.svampar.se. Svensk Mykologisk Tidskrift iakttagande av gällande lagar erhålls genom medlemskap i SMF. - att kontakter mellan lokala svampföreningar och svampintresserade i landet underlättas Redaktion - att kontakt upprätthålls med mykologiska före- Redaktör och ansvarig utgivare ningar i grannländer Mikael Jeppson - en samverkan med mykologisk forskning och Lilla Håjumsgatan 4, vetenskap. 461 35 TROLLHÄTTAN 0520-82910 Medlemskap erhålls genom insättning av med- [email protected] lemsavgiften 200:- (familjemedlem 30:-, vilket ej inkluderar Svensk Mykologisk Tidskrift) på postgi- Hjalmar Croneborg rokonto 443 92 02 - 5. Medlemsavgift inbetald Mattsarve Gammelgarn från utlandet är 250:-. 620 16 LJUGARN 018-672557 Subscriptions from abroad are welcome. [email protected] Payments (250 SEK) can be made to our bank account: Jan Nilsson Swedbank (Föreningssparbanken) Smultronvägen 4 Storgatan, S 293 00 Olofström, Sweden 457 31 TANUMSHEDE SWIFT: SWEDSESS 0525-20972 IBAN no. SE9280000848060140108838 [email protected] Äldre nummer av Svensk Mykologisk Tidskrift Sveriges Mykologiska Förening (inkl. JORDSTJÄRNAN) kan beställas från SMF:s Botaniska Institutionen hemsida www.svampar.se eller från föreningens Göteborgs Universitet kassör. Box 461 Previous issues of Svensk Mykologisk Tidskrift 405 30 Göteborg (incl. -
Redalyc.Field Performance of Pinus Ponderosa Seedlings Inoculated
Bosque ISSN: 0304-8799 [email protected] Universidad Austral de Chile Chile Barroetaveña, Carolina; Bassani, Vilma Noemí; Monges, Juan Ignacio; Rajchenberg, Mario Field performance of Pinus ponderosa seedlings inoculated with ectomycorrhizal fungi planted in steppe-grasslands of Andean Patagonia, Argentina Bosque, vol. 37, núm. 2, 2016, pp. 307-316 Universidad Austral de Chile Valdivia, Chile Available in: http://www.redalyc.org/articulo.oa?id=173148403009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative BOSQUE 37(2): 307-316, 2016 DOI: 10.4067/S0717-92002016000200009 Field performance of Pinus ponderosa seedlings inoculated with ectomycorrhizal fungi planted in steppe-grasslands of Andean Patagonia, Argentina Comportamiento a campo de Pinus ponderosa inoculado con hongos ectomicorrícicos plantado en pastizales de estepa en Patagonia Andina, Argentina Carolina Barroetaveña a,b,c*, Vilma Noemí Bassani a, Juan Ignacio Monges a, Mario Rajchenberg a,b,c a Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina. b Consejo Nacional de Ciencia y Tecnología (CONICET), Argentina. * Corresponding autor: c Universidad Nacional de la Patagonia SJ Bosco, Facultad de Ingeniería sede Esquel, Centro Forestal CIEFAP, C.C. 14, 9200, Esquel, Chubut, Argentina, [email protected] SUMMARY Pinus ponderosa is the most planted tree species in the ecotone area of Patagonia, Argentina, subjected to water stress and a Mediterranean climate. Ectomycorrhizal (EM) fungi form obligate mutually beneficial associations with ponderosa pine which improve plant growth and resistance to adverse conditions. -
Systematics of the Genus Rhizopogon Inferred from Nuclear Ribosomal DNA Large Subunit and Internal Transcribed Spacer Sequences
AN ABSTRACT OF THE THESIS OF Lisa C. Grubisha for the degree of Master of Science in Botany and Plant Pathology presented on June 22, 1998. Title: Systematics of the Genus Rhizopogon Inferred from Nuclear Ribosomal DNA Large Subunit and Internal Transcribed Spacer Sequences. Abstract approved Redacted for Privacy Joseph W. Spatafora Rhizopogon is a hypogeous fungal genus that forms ectomycorrhizae with genera of the Pinaceae. The greatest number and species of Rhizopogon are found in coniferous forests of the Pacific Northwestern United States, where members of the Pinaceae are also concentrated. Rhizopogon spp. are host-specific primarily with Pinus spp. and Pseudotsuga spp. and thus are an important component of these forest ecosystems. Rhizopogon includes over 100 species; however, the systematics of Rhizopogon have not been well understood. Currently the genus is placed in the Boletales, an order of ectomycorrhizal fungi that are primarily epigeous and have a tubular hymenium. Suillus is a stipitate genus closely related to Rhizopogon that is also in the Boletales and host specific with Pinaceae.I examined the relationship of Rhizopogon to Suillus and other genera in the Boletales. Infrageneric relationships in Rhizopogon were also investigated to test current taxonomic hypotheses and species concepts. Through phylogenetic analyses of large subunit and internal transcribed spacer nuclear ribosomal DNA sequences, I found that Rhizopogon and Suillus formed distinct monophyletic groups. Rhizopogon was composed of four distinct groups; sections Amylopogon and Villosuli were strongly supported monophyletic groups. Section Rhizopogon was not monophyletic, and formed two distinct clades. Section Fulviglebae formed a strongly supported group within section Villosuli.