Pterospora Andromedea) in Eastern North America Linked to Rarity of Its Unique Fungal Symbiont?

Total Page:16

File Type:pdf, Size:1020Kb

Pterospora Andromedea) in Eastern North America Linked to Rarity of Its Unique Fungal Symbiont? Mycorrhiza (2012) 22:393–402 DOI 10.1007/s00572-011-0414-y ORIGINAL PAPER Is rarity of pinedrops (Pterospora andromedea) in eastern North America linked to rarity of its unique fungal symbiont? Christina Hazard & Erik A. Lilleskov & Thomas R. Horton Received: 8 July 2011 /Accepted: 27 September 2011 /Published online: 12 October 2011 # Springer-Verlag 2011 Abstract Like other myco-heterotrophic plants, Ptero- Keywords Myco-heterotrophy. Pterospora andromedea spora andromedea (pinedrops) is dependent upon its (pinedrops) . Rhizopogon . Fungal specificity. Rarity . specific fungal symbionts for survival. The rarity of Distribution pinedrops fungal symbiont was investigated in the eastern United States where pinedrops are rare. Wild populations of eastern pinedrops were sampled, and the plant haplotypes Introduction and fungal symbionts were characterized with molecular techniques; these data were compared to those from the Mycorrhizal symbioses are often generalized as mutually West with phylogenetic analyses. The frequency of the beneficial for the plant and fungal symbionts, but this is fungal symbiont in eastern white pine forests was assessed not always correct in that mycorrhizal symbioses can using a laboratory soil bioassay and in situ pinedrops seed fall along a continuum from mutualism to parasitism baiting. Only one plant haplotype and fungal symbiont was (Johnson et al. 1997; Jones and Smith 2004). An extreme detected. The plant haplotype was not unique to the East. example in this mutualism-parasitism continuum is the The fungal symbiont appears to be a new species within the parasitic mycorrhizal relationship between many non- genus Rhizopogon, closely related to the western sym- photosynthetic plants and their fungal symbionts. These bionts. This fungal species was not frequent in soils with or non-photosynthetic or myco-heterotrophic plants (Leake without pinedrops, but was less frequent in the latter and in 1994), develop a unique relationship with their mycorrhizal comparison to the fungal symbionts in western forests. fungi to acquire fixed carbon from photosynthetic hosts Seed baiting resulted in few germinants, suggesting that via a shared mycorrhizal fungus (Björkman 1960; mycelial networks produced by the eastern fungal symbiont McKendrick et al. 2000). were rare. Results suggest that eastern pinedrops rarity is The myco-heterotrophic strategy evolved independently influenced by the distribution and rarity of its fungal and repeatedly, resulting in over 400 achlorophyllous myco- symbiont. heterotrophic species (Leake 1994; Merckx and Freudenstein 2010). Several researchers have used molecular techniques Electronic supplementary material The online version of this article to demonstrate the associations of many myco-heterotrophic (doi:10.1007/s00572-011-0414-y) contains supplementary material, plants with a narrow range of closely related species of which is available to authorized users. : fungi, even over large geographical distances (Cullings et al. C. Hazard (*) T. R. Horton 1996; Taylor and Bruns 1999a; Kretzer et al. 2000; State University of New York-Environmental Bidartondo and Bruns 2001, 2002; Taylor et al. 2002; Science and Forestry, 1 Forestry Drive, Yagame et al. 2008; Bougoure et al. 2009; Barrett et al. Syracuse, NY 13210, USA 2010). The specificity of myco-heterotrophic plants for their e-mail: [email protected] fungal host follows patterns of specificity seen with other parasite-host systems, such as plant rusts and other plant E. A. Lilleskov USDA Forest Service, Northern Research Station, pathogens (Thompson 1994), and contrasts with the majority Houghton 49931, USA of autotrophic plants which can associate with a diverse 394 Mycorrhiza (2012) 22:393–402 range of mycorrhizal fungal species (Trappe 1977;Molinaet The research on pinedrops and its fungal symbionts al. 1992, and see Bruns et al. 2002a). has been focused in the western United States where The myco-heterotrophic plant pinedrops (Pterospora the plant and its fungal symbionts are common (Cullings et al. andromedea Nutt.; Ericaceae, Monotropoideae) forms 1996; Bruns and Read 2000; Bidartondo and Bruns typical monotropoid mycorrhizae with a narrow range 2001, 2002, 2005; Kjøller and Bruns 2003). To conserve of basidiomycete ectomycorrhizal fungi in the genus and manage for eastern pinedrops a better understanding Rhizopogon subgenus Amylopogon (Cullings et al. 1996; of this plant and its fungal symbionts are needed. Here we Bidartondo and Bruns 2001). Fungi in the genus Rhizopogon use molecular techniques to identify eastern pinedrops are disturbance tolerant, mammal dispersed, and form truffle- haplotypes and fungal symbionts from plant and fungal like hypogeous fungi that are otherwise almost exclusively tissue collected from pinedrops in the field. These data associated with Pinaceae (Molina et al. 1992;Molinaand are compared to those from the West with phylogenetic Trappe 1994). Five plastid DNA haplotypes of pinedrops analyses. We further investigate the fungal symbionts have been identified and these haplotypes show preference with regards to their frequency in eastern forests using for either R. salebrosus or R. arctostaphyli, even when they soil bioassay and in situ seed sowing methods. We co-occur (Bidartondo and Bruns 2002). In the Sierra predicted that the fungal symbionts of eastern pinedrops National Forest where pinedrops is common, these fungal are less frequent than their counterparts in western symbionts are common and found frequently in the soil forests. spore bank (Kjøller and Bruns 2003). Soil spore banks are analogous to soil seed banks, referring to resistant spores that are found in soils awaiting germination cues following Materials and methods disturbance (Baar et al. 1999). Like other myco-heterotrophic plants, pinedrops produce Field sites and experimental plots large quantities of wind dispersed dust-like seeds that contain reduced endosperms (Leake 1994; McKendrick et Field sites were located within mixed deciduous al. 2000). An in vitro germination study showed that conifer forests that were dominated by Pinus strobus. pinedrops seeds would only germinate when stimulated by Two types of sites were used: (1) sites with an active a diffusible chemical produced by its fungal symbiont, or a population of pinedrops (i.e. inflorescences observed closely related species (Bruns and Read 2000). An in situ within the last 3 years) and (2) sites in which pinedrops seed germination study showed further fungal specificity have never been reported; hereafter referred to as requirements in that only the pinedrops seeds associated pinedrops (PD) and non-pinedrops (NPD) sites, respec- with the mycorrhizal fungi of their maternal seed source (i.e. tively. Due to the rarity of pinedrops in the eastern United R. arctostaphyli or R. salebrosus) could develop into States only a limited number of study sites were mycorrhizal seedlings (Bidartondo and Bruns 2005). These available. Sites were established in New York and methods for sowing seeds that bait for the respective fungal Michigan with three PD and NPD sites in each state. symbiont can also be used for assessing symbionts’ presence The New York sites were all located in the only known and distribution. The biology of pinedrops clearly shows that location with active population in the state, in Letchworth the fungal symbiont plays a crucial role in survival, State Park (77° 55′N by 42° 40′W), Livingston county recruitment and distribution of this plant species. (Livingston-1, -2 and -3). The Michigan sites were located Pinedrops is endemic to North America where it is found in Emmet (84° 15′Nby45°40′W), Mecosta (85° 30′Nby43° in mixed conifer/deciduous forests. The species is limited to 35′W), and Keweenaw (88° 15′Nby47°20′W), each with one either western or eastern forests, with no occurrences in the PD and NPD site. In New York, the PD sites were all middle of the continent. Western occurrences extend separated by ∼1 km and in Michigan by at least 249 km. In throughout the Sierra Nevada and Rocky Mountain ranges both states, NPD sites were located between 1 and 1.6 km from Canada to Mexico, and eastern occurrences extend from a NPD site. throughout the Great Lake states across Canada to New Each site was defined by a 30×100 m sampling area; England and New York (Bakshi 1959). Although western from which five randomly selected 5×5 m plots were pinedrops is common, the species appears to be relatively established, hereafter referred to as NPD plots. In addition, rare and in decline in the East (Schori 2002). Specifically, four and five 5×5 m plots containing flowering pinedrops in Ontario Canada pinedrops are now recorded in only four were established at the Emmet and Keweenaw PD sites, counties. Only two towns in Vermont now hold one respectively. At the Livingston-1 PD site, remnant inflor- occurrence each. Only three locations in New York have escences from the previous year were used to establish recent records of the plants, all of which are in the same three additional 5×5 m plots. Plots containing flowering or county. remnant inflorescences of pinedrops are hereafter referred Mycorrhiza (2012) 22:393–402 395 to as PD plots. PD plots were not established at the Field soil bioassay with pine Livingston-2 and -3 PD site or the Mecosta PD site as flowering or remnant inflorescences of pinedrops were From each soil core, two pots (Ray Leach Tubes - 3.8 cm absent during the time frame of this study. Pinedrops do not diameter by 21 cm deep, Stuewe & Sons, Inc., Corvallis, necessarily flower every year, remaining underground and OR, USA) were prepared, containing either 0.5% or 50% undetected even though they are present at a site (Schori field soil, for a total of 144 pots (72 soil cores×2 dilutions= 2002). See Fig. 1 for a schematic of the sampling design 144 pots). The field soils were diluted with extra field soil and Table 1 for a summary of the number and types of from their respective site that was pooled, mixed 1:1 with study sites and plots used for the field soil bioassay with sand, and then sterilized (autoclaved twice).
Recommended publications
  • Monotropa Hypopitys L. Yellow Bird's-Nest
    Monotropa hypopitys L. Yellow Bird's-nest Starting references Family Monotropaceae IUCN category (2001) Endangered. Habit Saprophytic ± chlorophyll-less perennial herb. Habitat Leaf litter in shaded woodlands, most frequent under Fagus and Corylus on calcareous substrates, and under Pinus on more acidic soils. Also in damp dune-slacks, where it is usually associated with Salix repens. From 0-395 m. Reasons for decline Distribution in wild Country Locality & Vice County Sites Population (10km2 occurences) (plants) Scotland East Perth 1 Fife & Kinross 1 England North-east Yorkshire 1 West Lancashire 1 S. Northumberland 1 Leicestershire 1 Nottinghamshire 2 Derbyshire 2 S. Lancashire 5 Westmorland 2 South Devon 1 N. Somerset 3 S. Wiltshire 2 Dorset 1 Isle of Wight 2 Hampshire 10 Sussex 3 Kent 3 Surrey 6 Berkshire 5 Oxfordshire 5 Buckinghamshire 4 Suffolk 2 Norfolk 5 Bedfordshire 1 Northamptonshire 1 Gloucestershire 7 Monmouthshire 3 Herefordshire 1 Worcestershire 1 Warwickshire 1 Staffordshire 2 Shropshire 1 Wales Glamorgan 1 Carmarthenshire 4 Merioneth 2 Denbighshire 2 Anglesey 4 Ex situ Collections Gardens close to the region of distribution of the species 1 University of Dundee Botanic Garden 2 Branklyn Garden (NTS) 3 St Andrews Botanic Garden 4 Moor Bank Garden 5 University of Durham Botanic Garden 6 Yorkshire Museum & Gardens 7 Sheffield Botanical Gardens 8 Firs Botanical Grounds 9 University of Manchester Botanical & Exp. Grounds 10 City of Liverpool Botanic Gardens 11 Ness Botanic Gardens 12 Chester Zoological Gardens 13 Treborth Botanic
    [Show full text]
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Bulletin of the Native Plant Society of Oregon Dedicated to the Enjoyment, Conservation and Study of Oregon’S Native Plants and Habitats
    Bulletin of the Native Plant Society of Oregon Dedicated to the enjoyment, conservation and study of Oregon’s native plants and habitats VOLUME 50, NO. 7 AUGUST/SEPTEMBER 2017 2017 Annual Meeting Recap: Land of Umpqua For an in-depth recap and photos of one Roseburg locales, and Wolf Creek. On Susan Carter (botanist with the Rose- of this year’s annual meeting field trips, Saturday, nine trips included hikes to burg BLM office), Marty Stein (USFS visit Tanya Harvey’s “Plants and Places” Beatty Creek, Bilger Ridge, Fall Creek botanist), and Rod Trotter. blog, westerncascades.com/2017/06/21/ Falls, Hemlock Lake, King Mountain, Field trip participants were treated weather-woes-at-hemlock-lake Limpy Rock, Lookout Mountain, Tah- to views of the regionally unique en- NPSO members traveled to the kenitch Dunes, and Twin Lakes. Partici- demic species, including Calochortus Land of Umpqua June 9–11 for the pants at higher locations were treated coxii (crinite mariposa lily, named for 2017 Annual Meeting, jointly hosted by to a little snow (just enough to enhance Marvin Cox), Calochortus umpquaensis the Umpqua Valley and Corvallis Chap- the fun) but those at lower sites found (Umpqua mariposa lily), and Kalmiopsis ters. This location, situated at a “botani- primarily pleasant (if a bit drizzly) fragrans (fragrant kalmiopsis) along with cal crossroads” between the California weather. Sunday’s adventures trekked the threatened Lupinus oreganus (Kin- Floristic Province and the Vancouverian to the North Bank Preserve, Roseburg caid’s lupine). Noting some highlights Floristic Province, combined with par- locales, Wolf Creek, Beatty Creek, and from one trip, Gail Baker reports from ticular geological formations, allowed Bilger Ridge.
    [Show full text]
  • Fungi of North East Victoria Online
    Agarics Agarics Agarics Agarics Fungi of North East Victoria An Identication and Conservation Guide North East Victoria encompasses an area of almost 20,000 km2, bounded by the Murray River to the north and east, the Great Dividing Range to the south and Fungi the Warby Ranges to the west. From box ironbark woodlands and heathy dry forests, open plains and wetlands, alpine herb elds, montane grasslands and of North East Victoria tall ash forests, to your local park or backyard, fungi are found throughout the region. Every fungus species contributes to the functioning, health and An Identification and Conservation Guide resilience of these ecosystems. Identifying Fungi This guide represents 96 species from hundreds, possibly thousands that grow in the diverse habitats of North East Victoria. It includes some of the more conspicuous and distinctive species that can be recognised in the eld, using features visible to the Agaricus xanthodermus* Armillaria luteobubalina* Coprinellus disseminatus Cortinarius austroalbidus Cortinarius sublargus Galerina patagonica gp* Hypholoma fasciculare Lepista nuda* Mycena albidofusca Mycena nargan* Protostropharia semiglobata Russula clelandii gp. yellow stainer Australian honey fungus fairy bonnet Australian white webcap funeral bell sulphur tuft blewit* white-crowned mycena Nargan’s bonnet dung roundhead naked eye or with a x10 magnier. LAMELLAE M LAMELLAE M ■ LAMELLAE S ■ LAMELLAE S, P ■ LAMELLAE S ■ LAMELLAE M ■ ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ When identifying a fungus, try and nd specimens of the same species at dierent growth stages, so you can observe the developmental changes that can occur. Also note the variation in colour and shape that can result from exposure to varying weather conditions.
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • Rhizopogon Togasawariana Sp. Nov., the First Report of Rhizopogon Associated with an Asian Species of Pseudotsuga
    Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Mujic, A. B., Hosaka, K., & Spatafora, J. W. (2014). Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia, 106(1), 105-112. doi:10.3852/13-055 10.3852/13-055 Allen Press Inc. Version of Record http://hdl.handle.net/1957/47245 http://cdss.library.oregonstate.edu/sa-termsofuse Mycologia, 106(1), 2014, pp. 105–112. DOI: 10.3852/13-055 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Alija B. Mujic1 the natural and anthropogenic range of the family Department of Botany and Plant Pathology, Oregon and plays an important ecological role in the State University, Corvallis, Oregon 97331-2902 establishment and maintenance of forests (Tweig et Kentaro Hosaka al. 2007, Simard 2009). The foundational species Department of Botany, National Museum of Nature concepts for genus Rhizopogon were established in the and Science, Tsukuba-shi, Ibaraki, 305-0005, Japan North American monograph of Smith and Zeller (1966), and a detailed monograph also has been Joseph W. Spatafora produced for European Rhizopogon species (Martı´n Department of Botany and Plant Pathology, Oregon 1996). However, few data on Asian species of State University, Corvallis, Oregon 97331-2902 Rhizopogon have been incorporated into phylogenetic and taxonomic studies and only a limited account of Asian Rhizopogon species has been published for EM Abstract: Rhizopogon subgenus Villosuli are the only associates of Pinus (Hosford and Trappe 1988).
    [Show full text]
  • Download the *.Pdf File
    ECOLOGICAL SURVEY OF THE PROPOSED BIG PINE MOUNTAIN RESEARCH NATURAL AREA LOS PADRES NATIONAL FOREST, SANTA BARBARA COUNTY, CALIFORNIA TODD KEELER-WOLF FEBRUARY 1991 (PURCHASE ORDER # 40-9AD6-9-0407) INTRODUCTION 1 Access 1 PRINCIPAL DISTINGUISHING FEATURES 2 JUSTIFICATION FOR ESTABLISHMENT 4 Mixed Coniferous Forest 4 California Condor 5 Rare Plants 6 Animal of Special Concern 7 Biogeographic Significance 7 Large Predator and Pristine Environment 9 Riparian Habitat 9 Vegetation Diversity 10 History of Scientific Research 11 PHYSICAL AND CLIMATIC CONDITIONS 11 VEGETATION AND FLORA 13 Vegetation Types 13 Sierran Mixed Coniferous Forest 13 Northern Mixed Chaparral 22 Canyon Live Oak Forest 23 Coulter Pine Forest 23 Bigcone Douglas-fir/Canyon Live Oak Forest 25 Montane Chaparral 26 Rock Outcrop 28 Jeffrey Pine Forest 28 Montane Riparian Forest 31 Shale Barrens 33 Valley and Foothill Grassland 34 FAUNA 35 GEOLOGY 37 SOILS 37 AQUATIC VALUES 38 CULTURAL VALUES 38 IMPACTS AND POSSIBLE CONFLICTS 39 MANAGEMENT CONCERNS 40 BOUNDARY CHANGES 40 RECOMMENDATIONS 41 LITERATURE CITED 41 APPENDICES 41 Vascular Plant List 43 Vertebrate List 52 PHOTOGRAPHS AND MAPS 57 INTRODUCTION The Big Pine Mountain candidate Research Natural Area (RNA) is on the Santa Lucia Ranger District, Los Padres National Forest, in Santa Barbara County, California. The area was nominated by the National Forest as a candidate RNA in 1986 to preserve an example of the Sierra Nevada mixed conifer forest for the South Coast Range Province. The RNA as defined in this report covers 2963 acres (1199 ha). The boundaries differ from those originally proposed by the National Forest (map 5, and see discussion of boundaries in later section).
    [Show full text]
  • Pigment Composition of Putatively Achlorophyllous Angiosperms
    Plant Pl. Syst. Evol. 210:105-111 (1998) Systematics and Evolution © Springer-Verlag 1998 Printed in Austria Pigment composition of putatively achlorophyllous angiosperms MICHAEL P. CUMMINGS and NICHOLAS A. WELSCHMEYER Received August 15, 1996; in revised version February 10, 1997 Key words: Angiospermae, Lennoaceae, Monotropaceae, Orobanchaceae, Orchidaceae. - Chlorophyll, carotenoid, pigment, high-performance liquid chromatography. Abstract: Chlorophyll and carotenoid pigment composition was determined for ten species of putatively achlorophyllous angiosperms using high-performance liquid chromatography. Four families were represented: Lennoaceae (Pholisma arenarium); Monotropaceae (Allotropa virgata, Monotropa uniflora, Pterospora andromedea, Sarcodes sanguinea); Orobanchaceae (Epifagus virginiana, Orobanche cooperi, O. unißora); Orchidaceae (Cephalanthera austinae, Corallorhiza maculata). Chlorophyll a was detected in all taxa, but chlorophyll b was only detected in Corallorhiza maculata. The relative amount of chlorophyll and chlorophyll-related pigments in these plants is greatly reduced compared to fully autotrophic angiosperms. One of the most conspicuous features of plants is green coloration conferred by the presence of the pigment chlorophyll. However achlorophyllous plants, as their name implies, are thought to lack chlorophyll and other pigments associated with photosynthesis. This lack of chlorophyll is thought to be associated with the nonphotosynthetic habit, and hence the completely heterotrophic nature of holoparasites
    [Show full text]
  • High Root Concentration and Uneven Ectomycorrhizal Diversity Near Sarcodes Sanguinea ( Ericaceae): a Cheater That Stimulates Its Victims? Author(S): Martin I
    High Root Concentration and Uneven Ectomycorrhizal Diversity Near Sarcodes sanguinea ( Ericaceae): A Cheater That Stimulates Its Victims? Author(s): Martin I. Bidartondo, Annette M. Kretzer, Elizabeth M. Pine and Thomas D. Bruns Source: American Journal of Botany, Vol. 87, No. 12 (Dec., 2000), pp. 1783-1788 Published by: Botanical Society of America, Inc. Stable URL: http://www.jstor.org/stable/2656829 Accessed: 29-02-2016 09:39 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America, Inc. is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org This content downloaded from 132.174.255.116 on Mon, 29 Feb 2016 09:39:26 UTC All use subject to JSTOR Terms and Conditions American Journal of Botany 87(12): 1783-1788. 2000. HIGH ROOT CONCENTRATION AND UNEVEN ECTOMYCORRHIZAL DIVERSITY NEAR SARCODES SANGUINEA (ERICACEAE): A CHEATER THAT STIMULATES ITS VICTIMS?1 MARTIN I. BIDARTONDO,2 ANNETTE M. KRETZER,3 ELIZABETH M. PINE, AND THOMAS D. BRUNS 111 Koshland Hall, College of Natural Resources, University of California at Berkeley, Berkeley, California 94720-3102, USA Sarcodes sanguinea is a nonphotosynthetic mycoheterotrophic plant that obtains all of its fixed carbon from neighboring trees through a shared ectomycorrhizal fungus.
    [Show full text]
  • The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012).
    [Show full text]
  • Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
    THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae.
    [Show full text]