Thyroglobulin Carole A

Total Page:16

File Type:pdf, Size:1020Kb

Thyroglobulin Carole A 18 Thyroglobulin Carole A. Spencer and Shireen Fatemi Serum thyroglobulin (Tg) measurements are a follows that when interpreting a serum Tg value, cornerstone for managing patients with differ- it is important to weigh patient-specific pathol- entiated thyroid carcinomas (DTC). The clinical ogy and treatment together with the technical utility of serum Tg testing is predicated on the limitations of the method. This chapter will tissue-specific origin of circulating Tg protein focus on the technical strengths and pitfalls of (thyroid follicular cells). However, since the current Tg methods and the clinical utility maturation and secretion of a mature Tg mole- of using serum Tg measurement as a tumor- cule is complex, it is not surprising that circu- marker for DTC. lating Tg is heterogeneous, and that as tumors dedifferentiate they can lose their capability to synthesize, iodinate, and secrete conformation- ally normal Tg protein [1,2]. Consequently, Technical Strengths and current Tg immunometric assays (IMA), based Pitfalls of Serum Tg on monoclonal antibodies with restricted epi- tope specificity, may only recognize a limited Measurement population of Tg isoforms secreted by a neo- plasm [3,4]. It follows that specificity differences Over the last decade, IMA methodology has largely explain the wide method-to-method largely replaced radioimmunoassays (RIA) variability that precludes changing assays when for measuring serum Tg concentrations. IMA serially monitoring DTC patients. Serum Tg methods are favored by laboratories because concentrations should be interpreted relative to: they can be automated and require a shorter (1) the mass of thyroid tissue present (normal incubation to achieve maximal sensitivity, as remnant and/or tumor); (2) any inflammation compared with RIA [9,10]. Current Tg assays of, or injury to, thyroid tissue, such caused by suffer from a number of technical limitations fine-needle aspiration biopsy (FNAB), thyroid that negatively impact their clinical utility. surgery, radioactive iodine (RAI) therapy, These include (a) large between-method biases or thyroiditis; and (3) the thyroid-stimulating that preclude the use of different methods hormone (TSH) status of the patient, since the for serial monitoring of DTC patients; (b) sub- stimulation of TSH receptors by either endoge- optimal between-run precision across the long nous or recombinant human TSH (rhTSH), intervals generally used to monitor DTC the high human chorionic gonatropin (hCG) patients (~12 months) that can mask clinically of pregnancy, or the thyroid-stimulating im- important changes; (c) inadequate sensitivity munoglobulins present in Graves’ disease, that compromises the early detection of re- elevate the serum Tg concentration [5–8]. It currence; and (d) interferences by TgAb and 211 212 Practical Management of Thyroid Cancer Figure 18.1 Serum Tg concentrations measured in 88 TgAb-negative normal euthyroid volunteers (TSH 0.5–2.5mIU/L) using dif- ferent methods.Method #1 = University of Southern California RIA,Los Angeles,CA,USA;method #2 = DSL RIA,Websster,Texas,USA; method #3 = Nichols Advantage ICMA, Nichols Institute Diagnostics ICMA, San Juan Capistrano, CA, USA; method #4 = CIS; method #5 = Access ICMA, Beckman-Coulter, Fullerton, CA, USA; method #6 = Immulite ICMA, Diagnostic Products Corporation, Los Angeles, CA, USA; method #7 = Brahms Kryptor, Berlin, Germany.The shaded area approximates the functional sensitivity. Median values are indicated. heterophilic antibodies (HAMA) that can lead (Figure 18.1A). The new guidelines consider a to the reporting of falsely low or high serum Tg change in serum Tg during thyroid hormone values [7,9,11–13]. suppression therapy (THST) in excess of 1.5mg/L to be clinically significant [10]. Current Between-Method Biases between-method biases alone could easily produce this magnitude of change, since current Unfortunately, a change in Tg method during biases exceed the within-person variability of the course of monitoring a DTC patient can serum Tg concentrations (10–15%) [10,14]. produce a shift in the serial Tg pattern that can Thus, significant assay biases preclude chang- cause clinical confusion. Figure 18.1 shows a ing methods during long-term monitoring of representative comparison of Tg measurements patients. For example, a change from a Tg made by two RIA and five IMA methods in sera method with a positive bias to one with a nega- from normal euthyroid subjects with TSH in the tive bias has the potential to mask recurrent 0.5–2.5mIU/L range, with or without detectable disease, whereas a change from a method with TgAb (Figures 18.1A and 18.1B, respectively). a negative bias to one with a positive bias would When TgAb was absent, the methods displayed cause concern for recurrence that could poten- a threefold difference in absolute Tg values tially lead to unnecessary imaging or RAI treat- Thyroglobulin 213 ment. It is now recommended that laboratories Suboptimal Sensitivity consult their physician-users before implement- ing any change in Tg method, and when the bias TSH and Tg assay development share many between the old and proposed new method analogies concerning their quests for improved exceeds 10% the re-baselining of patients is rec- sensitivity. The clinical utility of TSH measure- ommended [10]. Practically, the relative bias ment has been dramatically enhanced over between methods can be assessed from a com- the last decade by the optimization of IMA parison between the mean reference range value methodology, leading to a 100-fold improve- of the methods in question. ment in TSH assay functional sensitivity. Unfor- There are a number of reasons for persis- tunately, the development of more sensitive Tg tent biases between different Tg methods. The assays is still in its infancy. Currently, Tg assay biosynthesis of a mature Tg molecule within the functional sensitivity ranges between 0.3 and follicular cell is a complex vectoral process that 2.5mg/L (Figure 18.1). As shown in Figure 18.2, is orchestrated by different molecular chaper- a 100-fold improvement in Tg assay functional one proteins [15]. Given the complexity of this, sensitivity (~0.01mg/L) would dramatically im- it is not surprising that Tg molecular processing prove the diagnostic sensitivity of measuring Tg may become unregulated in thyroid tumors, during THST.Specifically,Figure 18.2 shows that leading to heterogeneity in tumor-derived Tg there is a striking linear relationship between protein in the circulation.Different Tg assay for- the serum Tg nadir measured without TSH mulations employ a variety of Tg monoclonal stimulation in the first postoperative year and antibody reagents that vary with respect to their long-term (median 8-year) recurrence risk [16]. specificity for different epitopes on tumor- This suggests that less than 1% of patients derived Tg. This can result in the measurement with serum Tg below 0.1mg/L during their first of different Tg isoforms in the specimen and postoperative year would suffer a recurrence give rise to differences in serum Tg measure- [16,17]. ments made by assays [4]. Compounding these As Tg assay sensitivity becomes a marketing specificity differences are differences in assay issue, there will be increasing commercial pres- standardization and the use of non-serum cali- sure for the diagnostic kit manufacturers to make brator matrices that behave differently from unrealistic claims for the sensitivity of their tests. human sera [9]. The guidelines state that the functional sensi- tivity of a Tg assay should be determined from the lowest Tg value that can be measured with Between-Run Precision 20% between-run coefficient of variation, using TgAb-negative human sera measured across a Current Tg assays have suboptimal between- 6- to 12-month period and using different lots run precision across the long follow-up interval of reagent [10]. It is critical that Tg method (6–12 months) typical of monitoring patients comparisons are made on the basis of functional with DTC. It is well known that the between- sensitivity and that descriptive terms such as run precision of a biochemical test erodes over “ultrasensitive” and “supersensitive” are not used time as a consequence of changing reagent lots, for marketing purposes [10]. instrument calibrations and a myriad of other Unfortunately, even with Tg assay functional less well-defined factors. The loss of assay pre- sensitivity determined according to the stan- cision over the time between clinical evaluations dardized protocol, the absolute (mg/L) func- negatively impacts the ability to detect small tional sensitivity of different methods cannot be clinically significant changes, especially at the compared because of method biases (Figure extremes of the Tg measurement range. The 18.1A). The ability to detect small amounts of guidelines suggest that laboratories should tumor is related to the degree of discrimination archive specimens remaining after serum Tg between the assay lower reference limit for testing to allow concurrent measurement of the normal euthyroid subjects and its functional past and current specimens from the patient in sensitivity. Currently, there is very little dis- the same run, thereby eliminating between-run crimination between the lower reference limit errors and improving the clinical sensitivity of for normal euthyroid subjects and the func- the test [7,10]. tional sensitivity limits of current methods, as 214 Practical Management of Thyroid Cancer Figure 18.2 The relationship between cumulative percent recurrence in a cohort of 278 papillary thyroid cancer patients followed over a median of 8 years and the median group serum Tg nadir value reported (in the absence of TSH stimulation) during the first year fol- lowing thyroidectomy. G1 had serum Tg nadirs between 1.0 and 1.9mg/L; G2 had serum Tg nadirs between 2.0 and 4.9mg/L;G3 had serum Tg nadirs between 5 and 10mg/L; G4 had serum Tg nadirs above 10mg/L [16]. shown in Figure 18.1A. In fact, serum Tg was studies can be used to supply reassurance that paradoxically undetectable for some subjects by disease is absent.
Recommended publications
  • Is Circulating HER-2 More Than Just a Tumor Marker?
    Vol. 7, 2605–2607, September 2001 Clinical Cancer Research 2605 Editorial Is Circulating HER-2 More Than Just a Tumor Marker? Jose Baselga1 chemotherapy; and the selection patients for trastuzumab ther- Medical Oncology Service, Vall d’Hebron University Hospital, apy and the monitoring of response to trastuzumab (8, 9). Barcelona 08035, Spain. In this regard what does the study by Hayes et al. (10) add to our current knowledge? In this study, 242 patients who were enrolled in Cancer and Leukemia Group B (CALGB) prospec- HER2/neu (also known as neu and as c-erbB-2) is a proto- tive therapeutic trials for metastatic breast cancer were assayed oncogene of the EGF2 receptor family of receptor tyrosine for circulating ECD/HER-2 using a commercially available kinases (1). HER2/neu encodes a M 185,000 transmembrane r sandwich enzyme immunoassay (10). In their study, elevated glycoprotein receptor (HER2, or c-erbB-2) that has partial ho- ECD/HER-2 levels were observed in 37% of patients and were mology with the other members of the EGF receptor family, and associated with a shorter overall survival. However, in a multi- which also includes the EGF receptor (also called HER1), variate analysis, ECD/HER-2 did not independently correlate HER3, and HER4. These receptors are composed of an extra- with survival. Furthermore, ECD/HER-2 levels were not pre- cellular binding domain, a transmembrane lipophilic segment, dictive for time to progression and for response to megestrol and an intracellular protein tyrosine kinase domain with a reg- acetate or chemotherapy, including a subgroup of patients ulatory carboxyl terminal segment (2).
    [Show full text]
  • Cerebrospinal Fluid Ctdna and Metabolites Are Informative
    www.nature.com/scientificreports OPEN Cerebrospinal fuid ctDNA and metabolites are informative biomarkers for the evaluation of CNS germ cell tumors Takeshi Takayasu1,2, Mauli Shah1, Antonio Dono3, Yuanqing Yan3, Roshan Borkar4, Nagireddy Putluri4, Jay‑Jiguang Zhu3,5, Seiji Hama2, Fumiyuki Yamasaki2*, Hidetoshi Tahara6, Kazuhiko Sugiyama7, Kaoru Kurisu2, Yoshua Esquenazi3,5,8 & Leomar Y. Ballester1,3,5* Serum and cerebrospinal fuid (CSF) levels of α‑fetoprotein and β‑subunit of human chorionic gonadotropin are used as biomarkers for the management of central nervous system (CNS) germ cell tumors (GCTs). However, additional discriminating biomarkers are required. Especially, biomarkers to diferentiate non‑germinomatous germ cell tumors (NGGCTs) from germinomas are critical, as these have a distinct prognosis. We investigated CSF samples from 12 patients with CNS‑GCT patients (8 germinomas and 4 NGGCTs). We analyzed circulating tumor DNA (ctDNA) in CSF to detect mutated genes. We also used liquid chromatography‑mass spectrometry to characterize metabolites in CSF. We detected KIT and/or NRAS mutation, known as frequently mutated genes in GCTs, in 3/12 (25%) patients. We also found signifcant diferences in the abundance of 15 metabolites between control and GCT, with unsupervised hierarchical clustering analysis. Metabolites related to the TCA cycle were increased in GCTs. Urea, ornithine, and short‑chain acylcarnitines were decreased in GCTs. Moreover, we also detected several metabolites (e.g., betaine, guanidine acetic acid, and 2‑aminoheptanoic acid) that displayed signifcant diferences in abundance in patients with germinomas and NGGCTs. Our results suggest that ctDNA and metabolites in CSF can serve as novel biomarkers for CNS‑GCTs and can be useful to diferentiate germinomas from NGGCTs.
    [Show full text]
  • (CEA) As a Serum Marker for Breast Cancer: a Prospective Longitudinal Study1
    Vol. 7, 2357–2362, August 2001 Clinical Cancer Research 2357 A Re-Evaluation of Carcinoembryonic Antigen (CEA) as a Serum Marker for Breast Cancer: A Prospective Longitudinal Study1 Fiorella Guadagni,2 Patrizia Ferroni, Longitudinal monitoring of 53 metastatic patients undergo- Sandro Carlini, Sabrina Mariotti, Antonella Spila, ing chemotherapy demonstrated that, when positive, both Simona Aloe, Roberta D’Alessandro, CEA and CA 15.3 paralleled response to treatment, al- though CA 15.3 was a significantly more powerful marker Maria Daniela Carone, Americo Cicchetti, for determining response to treatment. The cost effective- Andrea Ricciotti, Irene Venturo, Pasquale Perri, ness ratio of CEA was clearly less favorable than that of Franco Di Filippo, Francesco Cognetti, CA 15.3. Claudio Botti, and Mario Roselli Conclusions: CEA monitoring should be considered an Laboratory of Clinical Pathology [F. G., S. M., A. S., S. A., R. D., expensive and inefficient method of follow-up evaluation for M. D. C.], III Department of Surgery [S. C., P. P.], I Department of breast cancer patients, and it provides no additional value Surgery [A. R., F. D. F., C. B.], and Department of Medical Oncology when used in combination with CA 15.3. [F. C., I. V.], Regina Elena Cancer Institute, Department of Experimental Medicine and Pathology, University of Rome “La Sapienza,” [P. F.]; Department of Hygiene and Public Health, INTRODUCTION Catholic University of Rome “Sacro Cuore,” [A. C.]; and Department CEA3 is one of the first tumor markers to be identified and of Surgery, University of Rome “Tor Vergata,” 00100 Rome, Italy [M. R.] characterized (1, 2).
    [Show full text]
  • A Preliminary Evaluation of Calcitonin and PDN-21 As Tumor Markers for Lung Cancer
    Henry Ford Hospital Medical Journal Volume 37 Number 3 Article 31 9-1989 A Preliminary Evaluation of Calcitonin and PDN-21 as Tumor Markers for Lung Cancer J. J. Body J. C. Dumon J. P. Sculier G. Dabouis H. Lacroix See next page for additional authors Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Body, J. J.; Dumon, J. C.; Sculier, J. P.; Dabouis, G.; Lacroix, H.; Libert, P.; Richez, M.; Bureau, G.; Mommen, P.; Raymakers, N.; Paesmans, M.; and Klastersky, J. (1989) "A Preliminary Evaluation of Calcitonin and PDN-21 as Tumor Markers for Lung Cancer," Henry Ford Hospital Medical Journal : Vol. 37 : No. 3 , 190-193. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol37/iss3/31 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. A Preliminary Evaluation of Calcitonin and PDN-21 as Tumor Markers for Lung Cancer Authors J. J. Body, J. C. Dumon, J. P. Sculier, G. Dabouis, H. Lacroix, P. Libert, M. Richez, G. Bureau, P. Mommen, N. Raymakers, M. Paesmans, and J. Klastersky This article is available in Henry Ford Hospital Medical Journal: https://scholarlycommons.henryford.com/ hfhmedjournal/vol37/iss3/31 A Preliminary Evaluation of Calcitonin and PDN-21 as TUmor Markers for Lung Cancer J.J. Body,* J.C. Dumon,* J.P.
    [Show full text]
  • HER2 Testing Fact Sheet
    FACT SHEET Media: Krysta Pellegrino (650) 467-6800 Investor: Diane Schrick (650) 225-1599 Advocacy: Sonali Padhi (650) 467-0842 HER2 Testing Fact Sheet Testing tumors to determine their genetic makeup provides vital information about cancer at the cellular level. Together with physical characteristics, such as size, type and stage of the tumor, tumor marker testing can help determine the appropriate medicines needed to treat the disease most effectively. A variety of tests to identify breast and stomach (gastric) cancer tumor markers can be performed. Herceptin® (trastuzumab) is approved in combination with the chemotherapy drugs cisplatin, and either capecitabine or 5-fluorouracil, for metastatic HER2-positive stomach cancer or cancer of the gastroesophageal junction, in men and women who have not received prior medicines for their metastatic disease. Who Should Be Tested Guidelines from various organizations recommend people with breast cancer receive tumor marker testing, including the American Society of Clinical Oncology (ASCO), the College of American Pathologists (CAP) and the National Comprehensive Cancer Network (NCCN).1,2,3 No guidelines exist yet for stomach cancer testing. A person who had a biopsy (a tissue sample taken from the tumor for testing), but has not received a tumor marker test, may request it from his or her doctor. If a person is told their sample is no longer being stored, a new biopsy may be requested if the tumor is still present or if the cancer returns. People should ask their doctor for additional information about testing. HER2 Testing For Breast and Stomach Cancer Standard human epidermal growth factor receptor 2 (HER2) tests measure if there is a higher than normal number of HER2 genes present in tumor cells or if there is a higher than normal number of HER2 receptors on the surface of tumor cells.
    [Show full text]
  • Immunohistochemical CD10 Expression Is Useful for Differentiating Malignant Melanoma from Benign Melanocytic Nevus
    111 J. St. Marianna Univ. Original Article Vol. 6, pp. 111–118, 2015 Immunohistochemical CD10 Expression is Useful for Differentiating Malignant Melanoma from Benign Melanocytic Nevus Masahiro Hoshikawa1, Hirotaka Koizumi1, Rumiko Handa1, Saeko Naruki1, Junki Koike2, and Masayuki Takagi1 (Received for Publication: April 27, 2015) Abstract Malignant melanoma (MM), an aggressive skin neoplasm, can be difficult to differentiate histologically from benign melanocytic nevi (BMN). Although immunohistochemical analysis could facilitate diagnosis of MM, markers that discriminate between benign and malignant lesions have not yet been established. However, CD10 expression is associated with MM progression. We immunostained 36 MM and 50 BMN specimens for CD10 to evaluate whether CD10 immunostaining could distinguish between BMN and MM tumors. In the 36 MM samples, we found CD10 expression in 17 (47.2%) sample tumor cells and 32 (88.9%) stromal cells, for 34 of the 36 MM specimens (94.4%) overall. In contrast, no BMN (0/50) samples had CD10+ tumor cells, although a few (8/50, 16.0%) showed stromal staining. The two specimen types thus significantly differed in CD10 ex‐ pression (P<0.01), indicating that melanocytic CD10+ tumor cells are likely to be malignant. Also, melanocytic stromal cells with diffuse, strong CD10 expression are more likely to be malignant than those with light, focal CD10 expression. Although hematoxylin and eosin staining is fundamental to the diagnosis of melanocytic le‐ sions, CD10 immunostaining may help distinguish between BMN and MM. Key words CD10, immunohistochemistry, malignant melanoma, melanocytic nevus BMN are controversial3–5). Representative melano‐ Introduction cytic markers, including S100, HMB- 45, and melan- Malignant melanoma (MM), an aggressive skin A, are often used in diagnosing melanocytic lesions; neoplasm with poor prognosis, is diagnosed by clini‐ although they are useful for MM and tumors with cal and pathological findings.
    [Show full text]
  • Understanding CD30 Biology and Therapeutic Targeting: a Historical Perspective Providing Insight Into Future Directions
    OPEN Citation: Blood Cancer Journal (2017) 7, e603; doi:10.1038/bcj.2017.85 www.nature.com/bcj REVIEW Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions CA van der Weyden1, SA Pileri2,3, AL Feldman4, J Whisstock5 and HM Prince1,6,7 CD30 is a member of the tumor necrosis factor receptor superfamily. It is characteristically expressed in certain hematopoietic malignancies, including anaplastic large cell lymphoma and Hodgkin lymphoma, among others. The variable expression of CD30 on both normal and malignant lymphoid cells has focused research efforts on understanding the pathogenesis of CD30 upregulation, its contribution to lymphomagenesis through anti-apoptotic mechanisms, and its effect on cell survival. Given the restriction of CD30 to certain tumor types, the logical extension of this has been to attempt to exploit it as a therapeutic target. The efficacy of naked anti-CD30 antibodies in practice was, however, modest. Moreover, combinations with bacterial toxins and radioimmunoconjugates have also had limited success. The development of the antibody-drug compound brentuximab vedotin (BV), however, has rejuvenated interest in CD30 as a tumor target. Phase I and II clinical trials in Hodgkin lymphoma, peripheral T-cell lymphoma, cutaneous T cell lymphoma, and even CD30-expressing B-cell lymphomas, have shown the compound is well tolerated, but more importantly, able to deliver meaningful disease control even in patients with multiply relapsed or refractory disease. FDA approval has been granted for its use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. A recent phase III trial of BV in cutaneous T-cell lymphoma has confirmed its superiority to standard of care therapies.
    [Show full text]
  • Ki-1 Anaplastic Large-Cell Lymphoma Occurring at the Site of Ileocolonic Anastomosis in a Patient Treated Surgically for Colonic
    Ki-1 Anaplastic Large-Cell Lymphoma Occurring at the Site of Ileocolonic Anastomosis in a Patient Treated Surgically for Colonic Adenocarcinoma: Case Report and Review of the Literature Matthew R. Cooperberg, BA, and Paul N. Fiedler, MD Systemic anaplastic large-cell lymphoma is an uncommon type of non-Hodgkin lymphoma characterized by strong expression of the Ki-1 (CD30) antigen. Gastro- intestinal involvement typically is less common than in other types of non-Hodgkin’s lymphoma. We report a case of CD30-positive anaplastic large-cell lymphoma occurring at the site of colonic anastomosis in an elderly patient who had been treated for colonic adenocarcinoma by right hemicolectomy 10 years previously. The lymphoma was a 2-cm mass composed of large, atypical cells infiltrating the mucosa, submucosa, and muscularis propria. Immunoperoxidase stain was strongly positive for Ki-1, and negative for LeuM1, L26, UCHL1, EMA, and cytokeratin. There have been numerous reports of unusual extranodal presentations of systemic anaplastic large-cell lymphoma; the only previously reported case involving the colon, however, occurred in the context of ulcerative colitis. Anastomotic recurrence is a relatively common complication of surgical therapy for adenocarcinoma, but the recurrent tumors are invariably adenocarcinomas. We are aware of no cases of lymphoma of any type occurring at the site of anastomosis after resection for adenocarcinoma. Ann Diagn Pathol 5: 162-167, 2001. Copyright © 2001 by W.B. Saunders Company Index Words: Lymphoma, large-cell, Ki-1, anastomosis, surgical, lymphoma, non- Hodgkin, gastrointestinal neoplasms IRST described in 1985 by Stein et al,1 Ki-1 presentations have been described, including pri- Fanaplastic large cell lymphoma (ALCL) consti- mary tumors of the gut.
    [Show full text]
  • Use of Tumor Markers in Testicular, Prostate, Colorectal, Breast, and Ovarian Cancers Edited by Catharine M
    Laboratory Medicine Practice Guidelines Use of Tumor Markers in Testicular, Prostate, Colorectal, Breast, and Ovarian Cancers Edited by Catharine M. Sturgeon and Eleftherios Diamandis NACB_LMPG_Ca1cover.indd 1 11/23/09 1:36:03 PM Tumor Markers.qxd 6/22/10 7:51 PM Page i The National Academy of Clinical Biochemistry Presents LABORATORY MEDICINE PRACTICE GUIDELINES USE OF TUMOR MARKERS IN TESTICULAR, PROSTATE, COLORECTAL, BREAST, AND OVARIAN CANCERS EDITED BY Catharine M. Sturgeon Eleftherios P. Diamandis Copyright © 2009 The American Association for Clinical Chemistry Tumor Markers.qxd 6/22/10 7:51 PM Page ii National Academy of Clinical Biochemistry Presents LABORATORY MEDICINE PRACTICE GUIDELINES USE OF TUMOR MARKERS IN TESTICULAR, PROSTATE, COLORECTAL, BREAST, AND OVARIAN CANCERS EDITED BY Catharine M. Sturgeon Eleftherios P. Diamandis Catharine M. Sturgeon Robert C. Bast, Jr Department of Clinical Biochemistry, Department of Experimental Therapeutics, University of Royal Infirmary of Edinburgh, Texas M. D. Anderson Cancer Center, Houston, TX Edinburgh, UK Barry Dowell Michael J. Duffy Abbott Laboratories, Abbott Park, IL Department of Pathology and Laboratory Medicine, St Vincent’s University Hospital and UCD School of Francisco J. Esteva Medicine and Medical Science, Conway Institute of Departments of Breast Medical Oncology, Molecular Biomolecular and Biomedical Research, University and Cellular Oncology, University of Texas M. D. College Dublin, Dublin, Ireland Anderson Cancer Center, Houston, TX Ulf-Håkan Stenman Caj Haglund Department of Clinical Chemistry, Helsinki University Department of Surgery, Helsinki University Central Central Hospital, Helsinki, Finland Hospital, Helsinki, Finland Hans Lilja Nadia Harbeck Departments of Clinical Laboratories, Urology, and Frauenklinik der Technischen Universität München, Medicine, Memorial Sloan-Kettering Cancer Center, Klinikum rechts der Isar, Munich, Germany New York, NY 10021 Daniel F.
    [Show full text]
  • Clinical Chemistry Trainee Council Pearls of Laboratory Medicine
    Clinical Chemistry Trainee Council Pearls of Laboratory Medicine www.traineecouncil.org TITLE: Prostate Specific Antigen: The Controversial Tumor Marker PRESENTER: Yan Zhang, Ph.D. Slide 1: Introduction Hello, my name is Yan Zhang, an Assistant Professor in the Department of Pathology and Laboratory Medicine at the University of Rochester Medical Center and Associate Director of Clinical Chemistry and Toxicology Laboratories at Strong Memorial Hospital. Welcome to this Pearl of Laboratory Medicine on “Prostate Specific Antigen: The Controversial Tumor Marker.” Slide 2: Prostate Specific Antigen (PSA) Prostate specific antigen (PSA) has been used extensively for prostate cancer screening since 1988. It is a serine proteinase that has four carbohydrate side chains, which account for about 7% of its total molecular weight. PSA is also a single-change glycoprotein composed of 237 amino acids with a molecular weight of about 28 KDa. Its isoelectric points vary from 6.8 to 7.2 due to various components of the carbohydrate side chains. Slide 3: Prevalence of Prostate Cancer Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death in the male population. It accounts for about 28% of total cancer incidences and 10% of total death. The estimated new cases were 238,590 based on the 2013 cancer statistics report. The lifetime probability of developing invasive prostate cancer is 16.15% or one in six men. Men age 70 and older have the highest probability of developing invasive prostate cancer with a rate of 12.06% or one in eight men. In comparison to other cancer types, prostate cancer is a slow-growing cancer with a relatively high survival rate.
    [Show full text]
  • Expression of Proteolytic Enzymes by Small Cell Lung Cancer Circulating Tumor Cell Lines
    cancers Article Expression of Proteolytic Enzymes by Small Cell Lung Cancer Circulating Tumor Cell Lines Barbara Rath 1, Lukas Klameth 2, Adelina Plangger 1, Maximilian Hochmair 3, Ernst Ulsperger 4, Ihor Huk 1, Robert Zeillinger 5 and Gerhard Hamilton 1,* 1 Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria; [email protected] (B.R.); [email protected] (A.P.); [email protected] (I.H.) 2 Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria; [email protected] 3 Respiratory Oncology Unit, Otto Wagner Hospital, A-1140 Vienna, Austria; [email protected] 4 Hospital Horn, A-3580 Horn, Austria; [email protected] 5 Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecological Cancer Unit, Medical University of Vienna, A-1090 Vienna, Austria; [email protected] * Correspondence: [email protected] Received: 28 December 2018; Accepted: 17 January 2019; Published: 19 January 2019 Abstract: Small cell lung cancer (SCLC) is an aggressive type of lung cancer which disseminates vigorously and has a dismal prognosis. Metastasis of SCLC is linked to an extremely high number of circulating tumor cells (CTCs), which form chemoresistant spheroids, termed tumorospheres. Intravasation and extravasation during tumor spread requires the activity of a number of proteases to disintegrate the stroma and vascular tissue. Generation of several permanent SCLC CTC lines allowed us to screen for the expression of 35 proteases using Western blot arrays. Cell culture supernatants of two CTC lines, namely BHGc7 and 10, were analyzed for secreted proteases, including matrix metalloproteinases (MMPs), ADAM/TS, cathepsins, kallikreins, and others, and compared to proteases expressed by SCLC cell lines (GLC14, GLC16, NCI-H526 and SCLC26A).
    [Show full text]
  • Primary Intracranial Germ Cell Tumor (GCT)
    Primary Intracranial Germ Cell Tumor (GCT) Bryce Beard MD, Margaret Soper, MD, and Ricardo Wang, MD Kaiser Permanente Los Angeles Medical Center Los Angeles, California April 19, 2019 Case • 10 year-old boy presents with headache x 2 weeks. • Associated symptoms include nausea, vomiting, and fatigue • PMH/PSH: none • Soc: Lives with mom and dad. 4th grader. Does well in school. • PE: WN/WD. Lethargic. No CN deficits. Normal strength. Dysmetria with finger-to-nose testing on left. April 19, 2019 Presentation of Intracranial GCTs • Symptoms depend on location of tumor. – Pineal location • Acute onset of symptoms • Symptoms of increased ICP due to obstructive hydrocephalus (nausea, vomiting, headache, lethargy) • Parinaud’s syndrome: Upward gaze and convergence palsy – Suprasellar location: • Indolent onset of symptoms • Endocrinopathies • Visual field deficits (i.e. bitemporal hemianopsia) – Diabetes insipidus can present due to tumor involvement of either location. – 2:1 pineal:suprasellar involvement. 5-10% will present with both (“bifocal germinoma”). April 19, 2019 Suprasellar cistern Anatomy 3rd ventricle Pineal gland Optic chiasm Quadrigeminal Cistern Cerebral (Sylvian) aquaduct Interpeduncular Cistern 4th ventricle Prepontine Cistern April 19, 2019 Anatomy Frontal horn of rd lateral ventricle 3 ventricle Interpeduncular cistern Suprasellar cistern Occipital horn of lateral Quadrigeminal Ambient ventricle cistern cistern April 19, 2019 Case CT head: Hydrocephalus with enlargement of lateral and 3rd ventricles. 4.4 x 3.3 x 3.3 cm midline mass isodense to grey matter with calcifications. April 19, 2019 Case MRI brain: Intermediate- to hyper- intense 3rd ventricle/aqueduct mass with heterogenous enhancement. April 19, 2019 Imaging Characteristics • Imaging cannot reliably distinguish different types of GCTs, however non-germinomatous germ cell tumors (NGGCTs) tend to have more heterogenous imaging characteristics compared to germinomas.
    [Show full text]