Understanding CD30 Biology and Therapeutic Targeting: a Historical Perspective Providing Insight Into Future Directions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Angiogenin Fused to Human CD30 Ligand (Ang-CD30L) Exhibits Specific Cytotoxicity Against CD30-Positive Lymphoma1
[CANCER RESEARCH 61, 8737–8742, December 15, 2001] Human Angiogenin Fused to Human CD30 Ligand (Ang-CD30L) Exhibits Specific Cytotoxicity against CD30-positive Lymphoma1 Michael Huhn, Stephanie Sasse, Mehmet K. Tur, Ba¨rbel Matthey, Timo Schinko¨the, Susanna M. Rybak, Stefan Barth,2 and Andreas Engert Fraunhofer IME, Department of Pharmaceutical Product Development, 52074 Aachen, Germany [M. K. T., M. H., S. B.]; Laboratory of Immunotherapy, Department I of Internal Medicine, University Hospital Cologne, 50931 Cologne, Germany [S. S., B. M., T. S., A. E.]; Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702 [S. M. R.] ABSTRACT first and then to administer ITs to kill residual H-RS cells. One of the most promising target antigens for immunotherapy of malignant lym- A number of different immunotoxins composed of cell-specific target- phoma such as Hodgkin’s lymphoma or anaplastic large cell lym- ing structures coupled to plant or bacterial toxins have increasingly been phoma is the CD30 receptor. This antigen was originally discovered evaluated for immunotherapy. Because these foreign proteins are highly immunogenic in humans, we have developed a new CD30 ligand-based on cultured H-RS cells using the moab Ki-1 (1). The gene encoding fusion toxin (Ang-CD30L) using the human RNase angiogenin. The com- the CD30 receptor molecule (2) is located on chromosome 1p36. The pletely human fusion gene was inserted into a pET-based expression naturally occurring CD30 ligand has also been identified and cloned plasmid. Transformed Escherichia coli BL21(DE3) were grown under (3). -
Tools for Cell Therapy and Immunoregulation
RnDSy-lu-2945 Tools for Cell Therapy and Immunoregulation Target Cell TIM-4 SLAM/CD150 BTNL8 PD-L2/B7-DC B7-H1/PD-L1 (Human) Unknown PD-1 B7-1/CD80 TIM-1 SLAM/CD150 Receptor TIM Family SLAM Family Butyrophilins B7/CD28 Families T Cell Multiple Co-Signaling Molecules Co-stimulatory Co-inhibitory Ig Superfamily Regulate T Cell Activation Target Cell T Cell Target Cell T Cell B7-1/CD80 B7-H1/PD-L1 T cell activation requires two signals: 1) recognition of the antigenic peptide/ B7-1/CD80 B7-2/CD86 CTLA-4 major histocompatibility complex (MHC) by the T cell receptor (TCR) and 2) CD28 antigen-independent co-stimulation induced by interactions between B7-2/CD86 B7-H1/PD-L1 B7-1/CD80 co-signaling molecules expressed on target cells, such as antigen-presenting PD-L2/B7-DC PD-1 ICOS cells (APCs), and their T cell-expressed receptors. Engagement of the TCR in B7-H2/ICOS L 2Ig B7-H3 (Mouse) the absence of this second co-stimulatory signal typically results in T cell B7-H1/PD-L1 B7/CD28 Families 4Ig B7-H3 (Human) anergy or apoptosis. In addition, T cell activation can be negatively regulated Unknown Receptors by co-inhibitory molecules present on APCs. Therefore, integration of the 2Ig B7-H3 Unknown B7-H4 (Mouse) Receptors signals transduced by co-stimulatory and co-inhibitory molecules following TCR B7-H5 4Ig B7-H3 engagement directs the outcome and magnitude of a T cell response Unknown Ligand (Human) B7-H5 including the enhancement or suppression of T cell proliferation, B7-H7 Unknown Receptor differentiation, and/or cytokine secretion. -
Is Circulating HER-2 More Than Just a Tumor Marker?
Vol. 7, 2605–2607, September 2001 Clinical Cancer Research 2605 Editorial Is Circulating HER-2 More Than Just a Tumor Marker? Jose Baselga1 chemotherapy; and the selection patients for trastuzumab ther- Medical Oncology Service, Vall d’Hebron University Hospital, apy and the monitoring of response to trastuzumab (8, 9). Barcelona 08035, Spain. In this regard what does the study by Hayes et al. (10) add to our current knowledge? In this study, 242 patients who were enrolled in Cancer and Leukemia Group B (CALGB) prospec- HER2/neu (also known as neu and as c-erbB-2) is a proto- tive therapeutic trials for metastatic breast cancer were assayed oncogene of the EGF2 receptor family of receptor tyrosine for circulating ECD/HER-2 using a commercially available kinases (1). HER2/neu encodes a M 185,000 transmembrane r sandwich enzyme immunoassay (10). In their study, elevated glycoprotein receptor (HER2, or c-erbB-2) that has partial ho- ECD/HER-2 levels were observed in 37% of patients and were mology with the other members of the EGF receptor family, and associated with a shorter overall survival. However, in a multi- which also includes the EGF receptor (also called HER1), variate analysis, ECD/HER-2 did not independently correlate HER3, and HER4. These receptors are composed of an extra- with survival. Furthermore, ECD/HER-2 levels were not pre- cellular binding domain, a transmembrane lipophilic segment, dictive for time to progression and for response to megestrol and an intracellular protein tyrosine kinase domain with a reg- acetate or chemotherapy, including a subgroup of patients ulatory carboxyl terminal segment (2). -
Autologous T Cells Expressing CD30 Chimeric Antigen Receptors For
Published OnlineFirst August 31, 2016; DOI: 10.1158/1078-0432.CCR-16-1365 Cancer Therapy: Clinical Clinical Cancer Research Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase I Trial Chun-Meng Wang1, Zhi-Qiang Wu2,YaoWang3, Ye-Lei Guo3,Han-RenDai3, Xiao-Hui Wang2, Xiang Li2, Ya-Jing Zhang1,Wen-YingZhang1, Mei-Xia Chen1, Yan Zhang1, Kai-Chao Feng1,YangLiu4,Su-XiaLi4, Qing-Ming Yang1, and Wei-Dong Han3 Abstract Purpose: Relapsed or refractory Hodgkin lymphoma is a chal- tolerated, with grade 3 toxicities occurring only in two of 18 lenge for medical oncologists because of poor overall survival. We patients. Of 18 patients, seven achieved partial remission and six aimed to assess the feasibility, safety, and efficacy of CD30- achieved stable disease. An inconsistent response of lymphoma targeting CAR T cells in patients with progressive relapsed or was observed: lymph nodes presented a better response than refractory Hodgkin lymphoma. extranodal lesions and the response of lung lesions seemed to Experimental Design: Patients with relapsed or refractory be relatively poor. Lymphocyte recovery accompanied by an Hodgkin lymphoma received a conditioning chemotherapy fol- increase of circulating CAR T cells (peaking between 3 and 9 days lowed by the CART-30 cell infusion. The level of CAR transgenes after infusion) is a probable indictor of clinical response. Analysis in peripheral blood and biopsied tumor tissues was measured of biopsied tissues by qPCR and immunohistochemistry revealed periodically according to an assigned protocol by quantitative the trafficking of CAR T cells into the targeted sites and reduction PCR (qPCR). -
Clinical Trials of CAR-T Cells in China Bingshan Liu1,2, Yongping Song2* and Delong Liu2*
Liu et al. Journal of Hematology & Oncology (2017) 10:166 DOI 10.1186/s13045-017-0535-7 RAPID COMMUNICATION Open Access Clinical trials of CAR-T cells in China Bingshan Liu1,2, Yongping Song2* and Delong Liu2* Abstract Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China. Background “third generation chimeric,” and “fourth generation chimeric”; Novel immunotherapeutic agents targeting CTLA-4, country: China. All relevant trials registered at the Clinical- programmed cell death-1 protein receptor (PD-1), and the Trials.gov prior to July 18, 2017, were included in the analysis. ligand PD-L1 are revolutionizing cancer therapy [1–7]. One trial was excluded (NCT03121625) because the target Cancer immunotherapy by re-igniting T cells through antigen was not disclosed. A search of the PubMed blocking PD-1 and PD-L1 is highly potent in a variety of databasewasalsodonetoincludethosetrialsand malignancies [8–12]. -
Cerebrospinal Fluid Ctdna and Metabolites Are Informative
www.nature.com/scientificreports OPEN Cerebrospinal fuid ctDNA and metabolites are informative biomarkers for the evaluation of CNS germ cell tumors Takeshi Takayasu1,2, Mauli Shah1, Antonio Dono3, Yuanqing Yan3, Roshan Borkar4, Nagireddy Putluri4, Jay‑Jiguang Zhu3,5, Seiji Hama2, Fumiyuki Yamasaki2*, Hidetoshi Tahara6, Kazuhiko Sugiyama7, Kaoru Kurisu2, Yoshua Esquenazi3,5,8 & Leomar Y. Ballester1,3,5* Serum and cerebrospinal fuid (CSF) levels of α‑fetoprotein and β‑subunit of human chorionic gonadotropin are used as biomarkers for the management of central nervous system (CNS) germ cell tumors (GCTs). However, additional discriminating biomarkers are required. Especially, biomarkers to diferentiate non‑germinomatous germ cell tumors (NGGCTs) from germinomas are critical, as these have a distinct prognosis. We investigated CSF samples from 12 patients with CNS‑GCT patients (8 germinomas and 4 NGGCTs). We analyzed circulating tumor DNA (ctDNA) in CSF to detect mutated genes. We also used liquid chromatography‑mass spectrometry to characterize metabolites in CSF. We detected KIT and/or NRAS mutation, known as frequently mutated genes in GCTs, in 3/12 (25%) patients. We also found signifcant diferences in the abundance of 15 metabolites between control and GCT, with unsupervised hierarchical clustering analysis. Metabolites related to the TCA cycle were increased in GCTs. Urea, ornithine, and short‑chain acylcarnitines were decreased in GCTs. Moreover, we also detected several metabolites (e.g., betaine, guanidine acetic acid, and 2‑aminoheptanoic acid) that displayed signifcant diferences in abundance in patients with germinomas and NGGCTs. Our results suggest that ctDNA and metabolites in CSF can serve as novel biomarkers for CNS‑GCTs and can be useful to diferentiate germinomas from NGGCTs. -
CD134/OX40 Code No
D125-3 For Research Use Only. Page 1 of 2 Not for use in diagnostic procedures. MONOCLONAL ANTIBODY CD134/OX40 Code No. Clone Subclass Quantity Concentration D125-3 W4-3 Rat IgG2a 100 L 1 mg/mL BACKGROUND: OX40 (CD134/TNFRSF4/ACT35) is SPECIES CROSS REACTIVITY: a 50 kDa of cell surface glycoprotein. OX40, a member of Species Human Mouse Rat the tumor necrosis factor (TNF) superfamily, is expressed primarily on activated CD4+ T cells. OX40 interacts with Cells MT2, HPB-MLT Not Tested Not Tested OX40 ligand antigen (OX40L, also known as CD252/gp34/CD134L) expressed on activated B cells and Reactivity on FCM + antigen presenting cells results in enhanced T cell proliferation and induction of IL-2 production. REFERENCES: OX40/OX40L interaction provides a costimulatory signal, 1) Kawamata, S., et al., J. Biol. Chem. 273, 5808-5814 (1998) resulting in enhanced T cell proliferation and cytokine 2) Latza, U., et al., Europ. J. Immun. 24, 677-683 (1994) production. Then, cell proliferation and immunoglobulin secretion in activated B cells are enhanced. OX40/OX40L system mediates the adhesion of activated or HTLV-I-transformed T cells to vascular endothelial cells. TRAF2 and TRAF5 binding to OX40 led to NF-B activation, and TRAF3 binding appeared to inhibit NF-B activation SOURCE: This antibody was purified from C.B-17 SCID mice ascites fluid using protein A agarose. This hybridoma (clone W4-3) was established by fusion of mouse myeloma cell SP2/0 with WKA/H rat splenocyte immunized with the human OX40 transfectant. Flow cytometric analysis of CD134 expression on HPB-MLT (left) and PM1 FORMULATION: 100 g IgG in 100 L volume of (right). -
(CEA) As a Serum Marker for Breast Cancer: a Prospective Longitudinal Study1
Vol. 7, 2357–2362, August 2001 Clinical Cancer Research 2357 A Re-Evaluation of Carcinoembryonic Antigen (CEA) as a Serum Marker for Breast Cancer: A Prospective Longitudinal Study1 Fiorella Guadagni,2 Patrizia Ferroni, Longitudinal monitoring of 53 metastatic patients undergo- Sandro Carlini, Sabrina Mariotti, Antonella Spila, ing chemotherapy demonstrated that, when positive, both Simona Aloe, Roberta D’Alessandro, CEA and CA 15.3 paralleled response to treatment, al- though CA 15.3 was a significantly more powerful marker Maria Daniela Carone, Americo Cicchetti, for determining response to treatment. The cost effective- Andrea Ricciotti, Irene Venturo, Pasquale Perri, ness ratio of CEA was clearly less favorable than that of Franco Di Filippo, Francesco Cognetti, CA 15.3. Claudio Botti, and Mario Roselli Conclusions: CEA monitoring should be considered an Laboratory of Clinical Pathology [F. G., S. M., A. S., S. A., R. D., expensive and inefficient method of follow-up evaluation for M. D. C.], III Department of Surgery [S. C., P. P.], I Department of breast cancer patients, and it provides no additional value Surgery [A. R., F. D. F., C. B.], and Department of Medical Oncology when used in combination with CA 15.3. [F. C., I. V.], Regina Elena Cancer Institute, Department of Experimental Medicine and Pathology, University of Rome “La Sapienza,” [P. F.]; Department of Hygiene and Public Health, INTRODUCTION Catholic University of Rome “Sacro Cuore,” [A. C.]; and Department CEA3 is one of the first tumor markers to be identified and of Surgery, University of Rome “Tor Vergata,” 00100 Rome, Italy [M. R.] characterized (1, 2). -
Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy
cells Review Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy Jan A. Rath and Caroline Arber * Department of oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland * Correspondence: [email protected] Received: 18 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: T cell receptor (TCR)-based adoptive T cell therapies (ACT) hold great promise for the treatment of cancer, as TCRs can cover a broad range of target antigens. Here we summarize basic, translational and clinical results that provide insight into the challenges and opportunities of TCR-based ACT. We review the characteristics of target antigens and conventional αβ-TCRs, and provide a summary of published clinical trials with TCR-transgenic T cell therapies. We discuss how synthetic biology and innovative engineering strategies are poised to provide solutions for overcoming current limitations, that include functional avidity, MHC restriction, and most importantly, the tumor microenvironment. We also highlight the impact of precision genome editing on the next iteration of TCR-transgenic T cell therapies, and the discovery of novel immune engineering targets. We are convinced that some of these innovations will enable the field to move TCR gene therapy to the next level. Keywords: adoptive T cell therapy; transgenic TCR; engineered T cells; avidity; chimeric receptors; chimeric antigen receptor; cancer immunotherapy; CRISPR; gene editing; tumor microenvironment 1. Introduction Adoptive T cell therapy (ACT) with T cells expressing native or transgenic αβ-T cell receptors (TCRs) is a promising treatment for cancer, as TCRs cover a wide range of potential target antigens [1]. -
A Preliminary Evaluation of Calcitonin and PDN-21 As Tumor Markers for Lung Cancer
Henry Ford Hospital Medical Journal Volume 37 Number 3 Article 31 9-1989 A Preliminary Evaluation of Calcitonin and PDN-21 as Tumor Markers for Lung Cancer J. J. Body J. C. Dumon J. P. Sculier G. Dabouis H. Lacroix See next page for additional authors Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Body, J. J.; Dumon, J. C.; Sculier, J. P.; Dabouis, G.; Lacroix, H.; Libert, P.; Richez, M.; Bureau, G.; Mommen, P.; Raymakers, N.; Paesmans, M.; and Klastersky, J. (1989) "A Preliminary Evaluation of Calcitonin and PDN-21 as Tumor Markers for Lung Cancer," Henry Ford Hospital Medical Journal : Vol. 37 : No. 3 , 190-193. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol37/iss3/31 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. A Preliminary Evaluation of Calcitonin and PDN-21 as Tumor Markers for Lung Cancer Authors J. J. Body, J. C. Dumon, J. P. Sculier, G. Dabouis, H. Lacroix, P. Libert, M. Richez, G. Bureau, P. Mommen, N. Raymakers, M. Paesmans, and J. Klastersky This article is available in Henry Ford Hospital Medical Journal: https://scholarlycommons.henryford.com/ hfhmedjournal/vol37/iss3/31 A Preliminary Evaluation of Calcitonin and PDN-21 as TUmor Markers for Lung Cancer J.J. Body,* J.C. Dumon,* J.P. -
CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30 And
Published OnlineFirst August 7, 2018; DOI: 10.1158/2326-6066.CIR-18-0065 Research Article Cancer Immunology Research CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30þ and CD30– Embryonal Carcinoma via Antigen-Dependent and Fas/FasL Interactions Lee K. Hong1, Yuhui Chen2, Christof C. Smith1, Stephanie A. Montgomery3, Benjamin G. Vincent2, Gianpietro Dotti1,2, and Barbara Savoldo2,4 Abstract Tumor antigen heterogeneity limits success of chimeric (NSG) mouse model of metastatic EC. We observed that CD30. þ antigen receptor (CAR) T-cell therapies. Embryonal carcino- CAR T cells, while targeting CD30 EC tumor cells through mas (EC) and mixed testicular germ cell tumors (TGCT) the CAR (i.e., antigen-dependent targeting), also eliminated – containing EC, which are the most aggressive TGCT subtypes, surrounding CD30 EC cells in an antigen-independent man- are useful for dissecting this issue as ECs express the CD30 ner, via a cell–cell contact-dependent Fas/FasL interaction. In – þ – antigen but also contain CD30 /dim cells. We found that CD30- addition, ectopic Fas (CD95) expression in CD30 Fas EC was redirected CAR T cells (CD30.CAR T cells) exhibit antitumor sufficient to improve CD30.CAR T-cell antitumor activity. activity in vitro against the human EC cell lines Tera-1, Tera-2, Overall, these data suggest that CD30.CAR T cells might be and NCCIT and putative EC stem cells identified by Hoechst useful as an immunotherapy for ECs. Additionally, Fas/FasL dye staining. Cytolytic activity of CD30.CAR T cells was com- interaction between tumor cells and CAR T cells can be plemented by their sustained proliferation and proinflamma- exploited to reduce tumor escape due to heterogeneous antigen tory cytokine production. -
CD30 Induction of Human Immunodeficiency Virus Gene Transcription Is Mediated by TRAF2
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 1390–1395, February 1997 Immunology CD30 induction of human immunodeficiency virus gene transcription is mediated by TRAF2 ERDYNI N. TSITSIKOV,DOWAIN A. WRIGHT, AND RAIF S. GEHA* Division of Immunology, Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115 Communicated by Louis Kunkel, Harvard Medical School, Boston, MA, December 17, 1996 (received for review September 4, 1996) ABSTRACT CD30 is a member of the tumor necrosis TRAF3, TRAF4 (CART1), and TRAF5 (17–21). TRAF-1 factor receptor (TNFR) superfamily expressed on activated T and TRAF-2 were found to associate with the intracellular and B lymphocytes and natural killer cells. Ligation of CD30 domain of TNFR2 (16). However, TRAF1 is indirectly asso- was previously shown to induce NF-kB activation and HIV ciated with TNFR2 via dimerization with TRAF2, whereas expression in chronically infected T lymphocytes. In this TRAF2 and TRAF3 bind directly to CD40 (18–20, 22). study, we report that two members of the TNFR-associated TRAF3 is also associated with the lymphotoxin-b receptor and factor (TRAF) family of proteins, TRAF1 and TRAF2, inde- TNFR2 (20). Recently, it was shown that TRAF5 binds to the pendently bind to the intracellular domain of CD30 (CD30IC). lymphotoxin-b receptor (21). TRAF4 was cloned from a breast Transient overexpression of TRAF2, but not TRAF1, induced carcinoma cell line and is the only TRAF that has been NF-kB activation and HIV-1-long terminal repeat-driven localized to the nucleus and may not be associated with a transcription in the T cell line, KT3.