Seiches in the Semiclosed Seas of the Continental Shelf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ukrainian and Russian Waterways and the Development of European Transport Corridors
European Transport \ Trasporti Europei n. 30 (2005): 14-36 Ukrainian and Russian waterways and the development of European transport corridors Michael Doubrovsky1∗ 1Odessa National Maritime University, Odessa, Ukraine Abstract Four of the nine international transport corridors pass through the territory of Ukraine: №3, №5, №7, and №9. In recent years Ukraine conducted an active policy supporting the European initiatives on the international transport corridors and offered variants of corridors to the European community. In the field of a water transport it is planned to carry out the construction of new and reconstruction of existing infrastructure (regarding corridors № 9; TRACECA; Baltic - Black Sea) in the main Ukrainian ports. The paper considers the situation in the Ukrainian waterways as a part of the international transport corridors. It presents an analysis of the existing situation and some planning measures. In order to optimize and rationally development the inland waterways and seaports of the Black Sea – Azov Sea region it is necessary to speed up the working out and official approval of the regional transport ways network. Regarding Ukrainian seaports this task is carried out within the framework of program TRACECA, and also by Steering Committee of Black Sea PETRA and working group on transport of the Organization of the Black Sea Economic Cooperation. To connect the new members countries of EU two approaches are considered: (1) the use of the Danube River due to restoration of navigation in its Ukrainian part, providing an exit to the Black Sea; (2) the creation of new inland water-transport links providing a more rational and uniform distribution of freight traffics from the Central and Northern Europe (using the third largest river in Europe - Dnepr River running into the Black Sea). -
Lifespan and Growth of Astarte Borealis (Bivalvia) from Kandalaksha Gulf, White Sea, Russia
Lifespan and growth of Astarte borealis (Bivalvia) from Kandalaksha Gulf, White Sea, Russia David K. Moss, Donna Surge & Vadim Khaitov Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-018-2290-9 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biology https://doi.org/10.1007/s00300-018-2290-9 ORIGINAL PAPER Lifespan and growth of Astarte borealis (Bivalvia) from Kandalaksha Gulf, White Sea, Russia David K. Moss1 · Donna Surge1 · Vadim Khaitov2,3 Received: 2 October 2017 / Revised: 13 February 2018 / Accepted: 21 February 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Marine bivalves are well known for their impressive lifespans. Like trees, bivalves grow by accretion and record age and size throughout ontogeny in their shell. Bivalves, however, can form growth increments at several diferent periodicities depending on their local environment. -
Black Sea-Caspian Steppe: Natural Conditions 20 1.1 the Great Steppe
The Pechenegs: Nomads in the Political and Cultural Landscape of Medieval Europe East Central and Eastern Europe in the Middle Ages, 450–1450 General Editors Florin Curta and Dušan Zupka volume 74 The titles published in this series are listed at brill.com/ecee The Pechenegs: Nomads in the Political and Cultural Landscape of Medieval Europe By Aleksander Paroń Translated by Thomas Anessi LEIDEN | BOSTON This is an open access title distributed under the terms of the CC BY-NC-ND 4.0 license, which permits any non-commercial use, distribution, and reproduction in any medium, provided no alterations are made and the original author(s) and source are credited. Further information and the complete license text can be found at https://creativecommons.org/licenses/by-nc-nd/4.0/ The terms of the CC license apply only to the original material. The use of material from other sources (indicated by a reference) such as diagrams, illustrations, photos and text samples may require further permission from the respective copyright holder. Publication of the presented monograph has been subsidized by the Polish Ministry of Science and Higher Education within the National Programme for the Development of Humanities, Modul Universalia 2.1. Research grant no. 0046/NPRH/H21/84/2017. National Programme for the Development of Humanities Cover illustration: Pechenegs slaughter prince Sviatoslav Igorevich and his “Scythians”. The Madrid manuscript of the Synopsis of Histories by John Skylitzes. Miniature 445, 175r, top. From Wikimedia Commons, the free media repository. Proofreading by Philip E. Steele The Library of Congress Cataloging-in-Publication Data is available online at http://catalog.loc.gov LC record available at http://catalog.loc.gov/2021015848 Typeface for the Latin, Greek, and Cyrillic scripts: “Brill”. -
The Impact of Sea-Level Rise on Tidal Characteristics Around Australia
The impact of sea-level rise on tidal characteristics around Australia ANGOR UNIVERSITY Harker, Alexander; Green, Mattias; Schindelegger, Michael; Wilmes, Sophie- Berenice Ocean Science DOI: 10.5194/os-2018-104 PRIFYSGOL BANGOR / B Published: 19/02/2019 Publisher's PDF, also known as Version of record Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Harker, A., Green, M., Schindelegger, M., & Wilmes, S-B. (2019). The impact of sea-level rise on tidal characteristics around Australia. Ocean Science, 15(1), 147-159. https://doi.org/10.5194/os- 2018-104 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 07. Oct. 2021 Ocean Sci., 15, 147–159, 2019 https://doi.org/10.5194/os-15-147-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. -
The Soviet Doctrine of the Closed Sea
The Soviet Doctrine of the Closed Sea JOSEPH J. DARBY* The Soviet Union's maritime borders include several enclosed and semi-enclosed seas. In order to strengthen its military defenses, Russian jurists, both Tsarist and Soviet, developed and offered to the community of nations the doctrine of the closed sea. According to this doctrine, which has never become part of customary inter- national law, the warships of all nonlittoral countries of certain designated peripheralseas would have no right to enter and navi- gate on those seas. Professor Darby analyzes the application of the doctrine to one of the most important of the peripheralseas on the borders of the USSR, namely the Black Sea, in light of recent history and contemporary developments in the Law of the Sea. SOVIET PUBLIC INTERNATIONAL LAW Writing in 1959, Gregorii Tunkin, who is generally recognized as the most authoritative spokesman of Soviet international law, stated that the international law position of a country is "determined by the basic principles of its foreign policy."' As far as it goes, this state- ment appears to be an accurate reflection of how the leaders of the Soviet Union perceive the nature and function of international law. International law is a means to be used by legal technicians to ad- vance the foreign policy goals of the Soviet state. Soviet legal schol- ars, whose writings are often obtuse and highly generalized, have al- ways been quite clear on this-no rule of international law is binding on the Soviet Union unless, through an unequivocal sovereign act, the Soviet Union has expressly and formally given its consent to be bound by it. -
Radioactivity in the Arctic Seas
IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment. -
For Classification and Construction of Ships (Rccs)
RULES FOR CLASSIFICATION AND CONSTRUCTION OF SHIPS (RCCS) Part 0 CLASSIFICATION 4 RCCS. Part 0 “Classification” 1 GENERAL PROVISIONS 1.1 The present Part of the Rules for the materials for the ships except for small craft Classification and Construction of Inland and used for non-for-profit purposes. The re- Combined (River-Sea) Navigation Ships (here quirements of the present Rules are applicable and in all other Parts — Rules) defines the to passenger ships, tankers, pushboats, tug- basic terms and definitions applicable for all boats, ice breakers and industrial ships of Parts of the Rules, general procedure of ship‘s overall length less than 20 m. class adjudication and composing of class The requirements of the present Rules are formula, as well as contains information on not applicable to small craft, pleasure ships, the documents issued by Russian River Regis- sports sailing ships, military and border- ter (hereinafter — River Register) and on the security ships, ships with nuclear power units, areas and seasons of operation of the ships floating drill rigs and other floating facilities. with the River Register class. However, the River Register develops and 1.2 When performing its classification and issues corresponding regulations and other survey activities the River Register is governed standards being part of the Rules for particu- by the requirements of applicable interna- lar types of ships (small craft used for com- tional agreements of Russian Federation, mercial purposes, pleasure and sports sailing Regulations on Classification and Survey of ships, ekranoplans etc.) and other floating Ships, as well as the Rules specified in Clause facilities (pontoon bridges etc.). -
The Impact of Sea-Level Rise on Tidal Characteristics Around Australia Alexander Harker1,2, J
The impact of sea-level rise on tidal characteristics around Australia Alexander Harker1,2, J. A. Mattias Green2, Michael Schindelegger1, and Sophie-Berenice Wilmes2 1Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany 2School of Ocean Sciences, Bangor University, Menai Bridge, United Kingdom Correspondence: Alexander Harker ([email protected]) Abstract. An established tidal model, validated for present-day conditions, is used to investigate the effect of large levels of sea-level rise (SLR) on tidal characteristics around Australasia. SLR is implemented through a uniform depth increase across the model domain, with a comparison between the implementation of coastal defences or allowing low-lying land to flood. The complex spatial response of the semi-diurnal M2 constituent does not appear to be linear with the imposed SLR. The most 5 predominant features of this response are the generation of new amphidromic systems within the Gulf of Carpentaria, and large amplitude changes in the Arafura Sea, to the north of Australia, and within embayments along Australia’s north-west coast. Dissipation from M2 notably decreases along north-west Australia, but is enhanced around New Zealand and the island chains to the north. The diurnal constituent, K1, is found to decrease in amplitude in the Gulf of Carpentaria when flooding is allowed. Coastal flooding has a profound impact on the response of tidal amplitudes to SLR by creating local regions of increased tidal 10 dissipation and altering the coastal topography. Our results also highlight the necessity for regional models to use correct open boundary conditions reflecting the global tidal changes in response to SLR. -
DRAINAGE BASINS of the WHITE SEA, BARENTS SEA and KARA SEA Chapter 1
38 DRAINAGE BASINS OF THE WHITE SEA, BARENTS SEA AND KARA SEA Chapter 1 WHITE SEA, BARENTS SEA AND KARA SEA 39 41 OULANKA RIVER BASIN 42 TULOMA RIVER BASIN 44 JAKOBSELV RIVER BASIN 44 PAATSJOKI RIVER BASIN 45 LAKE INARI 47 NÄATAMÖ RIVER BASIN 47 TENO RIVER BASIN 49 YENISEY RIVER BASIN 51 OB RIVER BASIN Chapter 1 40 WHITE SEA, BARENT SEA AND KARA SEA This chapter deals with major transboundary rivers discharging into the White Sea, the Barents Sea and the Kara Sea and their major transboundary tributaries. It also includes lakes located within the basins of these seas. TRANSBOUNDARY WATERS IN THE BASINS OF THE BARENTS SEA, THE WHITE SEA AND THE KARA SEA Basin/sub-basin(s) Total area (km2) Recipient Riparian countries Lakes in the basin Oulanka …1 White Sea FI, RU … Kola Fjord > Tuloma 21,140 FI, RU … Barents Sea Jacobselv 400 Barents Sea NO, RU … Paatsjoki 18,403 Barents Sea FI, NO, RU Lake Inari Näätämö 2,962 Barents Sea FI, NO, RU … Teno 16,386 Barents Sea FI, NO … Yenisey 2,580,000 Kara Sea MN, RU … Lake Baikal > - Selenga 447,000 Angara > Yenisey > MN, RU Kara Sea Ob 2,972,493 Kara Sea CN, KZ, MN, RU - Irtysh 1,643,000 Ob CN, KZ, MN, RU - Tobol 426,000 Irtysh KZ, RU - Ishim 176,000 Irtysh KZ, RU 1 5,566 km2 to Lake Paanajärvi and 18,800 km2 to the White Sea. Chapter 1 WHITE SEA, BARENTS SEA AND KARA SEA 41 OULANKA RIVER BASIN1 Finland (upstream country) and the Russian Federation (downstream country) share the basin of the Oulanka River. -
How to Use the Digital History Reader
Module 03: 1917 — Did the War Cause a Revolution? Evidence 29: "Workers' Marseillaise" Introduction Based on the anthem of the French Revolution of 1789, the "Workers' Marseillaise" served as the unofficial anthem of the Provisional Government after the Revolution. While the tune of the song provided a symbolic link to a successful tradition of international revolutionary struggle, the words of the Russian variant appealed directly to a brotherhood of working people "from the Dnepr to the White Sea," and "from the Volga to the Caucasus." Document "Workers' Marseillaise" Verse 1: Let us renounce the ancient world! Let us shake its dust from our feet! We've no need for a golden idol, The tsar's palace we do so hate. The tsar needs soldiers for his forces, So, give up your native sons The tsar needs feasts and he needs palaces, So, why not give up your very own blood? Chorus: Arise, arise working people! Rise up against the foe hungry brother! Sound the cry of the people's vengeance! Forward march, forward march, forward march, march, march. Verse 2: The greedy pack of wealthy kulaks, Steal your own hard labor. Then your work fattens up those gluttons, Who will steal the last bit from your mouth. Have we not enough eternal misery? We'll rise brothers against the spreading plague ? From the Dnepr to the White Sea, And from the Volga to the Caucauses. Chorus: Arise, arise working people! Rise up against the foe hungry brother! Sound the cry of the people's vengeance! Forward march, forward march, forward march, march, march. -
Clockwise Phase Propagation of Semi-Diurnal Tides in the Gulf of Thailand
Journal of Oceanography, Vol. 54, pp. 143 to 150. 1998 Clockwise Phase Propagation of Semi-Diurnal Tides in the Gulf of Thailand 1 2 TETSUO YANAGI and TOSHIYUKI TAKAO 1Research Institute for Applied Mechanics, Kyushu University, Kasuga 816, Japan 2Department of Civil and Environmental Engineering, Ehime University, Matsuyama 790, Japan (Received 4 August 1997; in revised form 3 December 1997; accepted 6 December 1997) The phase of semi-diurnal tides (M and S ) propagates clockwise in the central part of Keywords: 2 2 ⋅ the Gulf of Thailand, although that of the diurnal tides (K1, O1 and P1) is counterclock- Clockwise wise. The mechanism of clockwise phase propagation of semi-diurnal tides at the Gulf of amphidrome, ⋅ natural oscillation, Thailand in the northern hemisphere is examined using a simple numerical model. The ⋅ natural oscillation period of the whole Gulf of Thailand is near the semi-diurnal period tide, ⋅ Gulf of Thailand. and the direction of its phase propagation is clockwise, mainly due to the propagation direction of the large amplitude part of the incoming semi-diurnal tidal wave from the South China Sea. A simplified basin model with bottom slope and Coriolis force well reproduces the co-tidal and co-range charts of M2 tide in the Gulf of Thailand. 1. Introduction phase propagation of semi-diurnal tides at the Gulf of It is well known that the phase of tides propagates Thailand in the northern hemisphere using a simple numeri- counterclockwise (clockwise) in gulfs or shelf seas such as cal model. the North Sea, the Baltic, the Adria, the Persian Gulf, the Yellow Sea, the Sea of Okhotsk, the Gulf of Mexico and so 2. -
Directory of Azov-Black Sea Coastal Wetlands
Directory of Azov-Black Sea Coastal Wetlands Kyiv–2003 Directory of Azov-Black Sea Coastal Wetlands: Revised and updated. — Kyiv: Wetlands International, 2003. — 235 pp., 81 maps. — ISBN 90 5882 9618 Published by the Black Sea Program of Wetlands International PO Box 82, Kiev-32, 01032, Ukraine E-mail: [email protected] Editor: Gennadiy Marushevsky Editing of English text: Rosie Ounsted Lay-out: Victor Melnychuk Photos on cover: Valeriy Siokhin, Vasiliy Kostyushin The presentation of material in this report and the geographical designations employed do not imply the expres- sion of any opinion whatsoever on the part of Wetlands International concerning the legal status of any coun- try, area or territory, or concerning the delimitation of its boundaries or frontiers. The publication is supported by Wetlands International through a grant from the Ministry of Agriculture, Nature Management and Fisheries of the Netherlands and the Ministry of Foreign Affairs of the Netherlands (MATRA Fund/Programme International Nature Management) ISBN 90 5882 9618 Copyright © 2003 Wetlands International, Kyiv, Ukraine All rights reserved CONTENTS CONTENTS3 6 7 13 14 15 16 22 22 24 26 28 30 32 35 37 40 43 45 46 54 54 56 58 58 59 61 62 64 64 66 67 68 70 71 76 80 80 82 84 85 86 86 86 89 90 90 91 91 93 Contents 3 94 99 99 100 101 103 104 106 107 109 111 113 114 119 119 126 130 132 135 139 142 148 149 152 153 155 157 157 158 160 162 164 164 165 170 170 172 173 175 177 179 180 182 184 186 188 191 193 196 198 199 201 202 4 Directory of Azov-Black Sea Coastal Wetlands 203 204 207 208 209 210 212 214 214 216 218 219 220 221 222 223 224 225 226 227 230 232 233 Contents 5 EDITORIAL AND ACKNOWLEDGEMENTS This Directory is based on the national reports prepared for the Wetlands International project ‘The Importance of Black Sea Coastal Wetlands in Particular for Migratory Waterbirds’, sponsored by the Netherlands Ministry of Agriculture, Nature Management and Fisheries.