View Camera Solutions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Process Camera, Stripping, and Platemaking. Teacher Guide. INSTITUTION Mid-America L)Cational Curriculum Consortium, Stillwater, Okla
DOCUMENT RESUME ED 327 663 CE 056 673 AUTHOR Feasley, Sue C., Ed. TITLE Graphic Arts: Process Camera, Stripping, and Platemaking. Teacher Guide. INSTITUTION Mid-America l)cational Curriculum Consortium, Stillwater, Okla. REPORT NO 90-007460 PUB DATE 90 NOTE 285p.; For related documents, see CE 056 671-672. AVAILABLE FROM Mid-America Vocational Curriculum Consortium, Inc., 1500 West Seventh Avenue, Stillwater, OK 74074 (order no. 802001: $22.00). PUB TYPE Guides - Classroom Use - Guides (For Teachers) (052) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS Behavioral Objectives; Competency Based Education; Course Descriptions; Curriculum Guides; =Graphic Arts; Learning Activities; =Photographic Equipment; *Photography; Postsecondary Education; Production Techniques; Secondary Education; Units of Study ABSTRACT This curriculum guide is the second in a three-volume series of instructional materials for competency-based graphic arts instruction. Each publication is designed to include the technical content and tasks necessary for a student to be employed in an entry-level graphic arts occupation. Introductory materials include an instructional/task analysis that correlates job training with related information for this course; a list of tools, equipment, and materials; and a list of 12 references. Each of the seven instructional units includes some or all of these basic components: performance objectives; suggested activities for teachers and students; information sheets; assignment sheets; job sheets; visual aids; tests; and answer keys. Units are planned for more than one lesson or class period. Unit topics include the process camera and other darkroom equipment; line photography; halftone photography; other darkroom techniques; overview of procass color photography; stripping procedures; and platemaking procedures. -
Phase One H 20 Getting Started
H 20 GETTING START E D PostScript billede (black logo) Phase One A/S Phase One U.S. Roskildevej 39 24 Woodbine Ave DK-2000 Frederiksberg Northport, New York Denmark 11768 USA Tel +45 36 46 01 11 Tel +1 631-757-0400 Fax +45 36 46 02 22 Fax +1 631-757-2217 Notice The name Phase One is a trademark of Phase One A/S. The names Hasselblad, Mamiya and Rollei are registered trademarks of their respective companies. All specifications are subject to change without notice. Phase One takes no responsibility for any loss or damage sustained while using their products. This manual ©2003, Phase One A/S Denmark. All rights reserved. No part of this manual may be reproduced or copied in any way without prior written permission of Phase One. Printed in Denmark. Part #: 80016001 Table of Contents 1 Contents 1 I n t r o d u c t i o n . .2 2 Special Phase One H 20 features . .3 ISO Settings . .3 Double exposure protection . .3 IR filter on CCD . .4 Large format photography . .4 3 Getting ready for taking pictures . .6 Mounting the viewfinder mask . .6 Mounting the H 20 on a Hsselblad Camera . .7 Cable mounting on Hasselblad . .8 Hasselblad 553 ELX . .9 Hasselblad 555 ELD . .10 Hasselblad 501 CM and 503 CW . .10 Mamiya RZ67 Pro II . .11 Rolleiflex 6008 AF/Integrale . .13 4 Maintenance . .17 Cleaning the IR filter . .17 5 Technical data . .18 1 H 20 Getting Started 1 Introduction The Phase One H 20 single shot camera back, is designed for high-end advertising studios with a need for productivity, flexibility and the absolute best in image quality. -
Large Format Camera
Large format Camera Movements and Operation Presented by N. David king 619-276-3225 © N. David King All rights Reserved Large Format Camera Movements and Operations Page 1 COURSE CURRICULA he Large format camera, in “View” and “Field” versions, are the T primary tool for many of the commercial/professional photographic disciplines. Especially for product, advertising, illustration, and high-end fashion and portraiture work, as well as for landscape and nature photography this workhorse camera is the tool selected whenever the ultimate in quality is required. This course will teach the rudiments of using this tool to control and enhance the image. Why Large Format Large format cameras shooting a negative in the 4”x 5” size and larger are cumbersome to carry and slow to set up. So why would a working photographer with deadlines to meet, bother? The answer is in the resulting image quality and image control. No other photographic tool, including digital post acquisition image manipulation, provides the degree of control and quality available in this format. Even where the image will be manipulated after acquisition by traditional airbrushing, darkroom techniques, or via digital editing, the old rule of thumb still applies: the better the original image, the better the results will be. Course Objectives After successfully completing this course. The student will be able to set up and operate a large format camera and use its optical and film plane movements to control the distortion and depth of field of their photographs. Course Elements The complete course will contain: 1. An instructor-led lecture and demonstration, 2. -
User Manual Hasselblad CF Digital Camera Back Range C O N T E N T S
User Manual Hasselblad CF Digital Camera Back Range C O N T E N T S Introduction 3 5 MENU—ISO, White balance, Media, Browse 31 1 General overview 6 Menu system overview 31 Parts, components and control panel 8 Navigating the menu system 31 Initial setup 10 Language choice 33 Shooting and storage modes 11 ISO 33 White balance 34 2 Initial General Settings 14 Media 34 Overview of menu structure 15 Browse 35 Setting the menu language 17 6 MENU—Storage 36 Delete 37 3 Storage overview – Format 42 working with media and batches 18 Copy 42 Batc hes 18 Batch 43 Navigating media and batches 18 Default Approval Level 44 Creating new batches 20 Using Instant Approval Architecture 21 7 MENU—Settings 45 Reading and changing approval status 22 User Interface 46 Browsing by approval status 22 Camera 48 Deleting by approval status 23 Capture sequence 50 Connectivity 51 4 Overview of viewing, deleting Setting exposure time/sequence 54 and copying images 24 Miscellaneous 56 Basic image browsing 24 About 57 Choosing the current batch 24 Default 58 Browsing by approval status 24 Zooming in and out 24 8 Multishot 59 Zooming in for more detail 25 Thumbnail views 25 General 59 Preview modes 26 Histogram 27 9 Flash/Strobe 60 Underexposure 27 General 60 Even exposure 27 TTL 60 Overexposure 27 Full-details 27 10 Cleaning 61 Battery saver mode 28 Full-screen mode 28 11 Equipment care, service, Overexposure indicator 28 technical spec. 63 Deleting images 29 General 63 Transferring images 29 Technical specifications 64 Inset photo on cover: © Francis Hills/www.figjamstudios.com.Not all the images in this manual were taken with a Hasselblad CF. -
Possibilities of Processing Archival Photogrammetric Images Captured by Rollei 6006 Metric Camera Using Current Method
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy POSSIBILITIES OF PROCESSING ARCHIVAL PHOTOGRAMMETRIC IMAGES CAPTURED BY ROLLEI 6006 METRIC CAMERA USING CURRENT METHOD A. Dlesk 1,*, P. Raeva 1, K. Vach 2 1 Department of Geomatics, CTU in Prague - [email protected] 2 EuroGV s.r.o. - [email protected] Commission II, WG II/8 KEY WORDS: Rollei 6006 metric, Photo negatives, Structure from motion, Archival data, Close range photogrammetry ABSTRACT: Processing of analog photogrammetric negatives using current methods brings new challenges and possibilities, for example, creation of a 3D model from archival images which enables the comparison of historical state and current state of cultural heritage objects. The main purpose of this paper is to present possibilities of processing archival analog images captured by photogrammetric camera Rollei 6006 metric. In 1994, the Czech company EuroGV s.r.o. carried out photogrammetric measurements of former limestone quarry the Great America located in the Central Bohemian Region in the Czech Republic. All the negatives of photogrammetric images, complete documentation, coordinates of geodetically measured ground control points, calibration reports and external orientation of images calculated in the Combined Adjustment Program are preserved and were available for the current processing. Negatives of images were scanned and processed using structure from motion method (SfM). The result of the research is a statement of what accuracy is possible to expect from the proposed methodology using Rollei metric images originally obtained for terrestrial intersection photogrammetry while adhering to the proposed methodology. -
First Experiences with the New Digital Camera Rollei D7 Metric
FIRST EXPERIENCES WITH THE NEW DIGITAL CAMERA ROLLEI D7 METRIC Prof. Dr.-Ing. Guenter Pomaska FH Bielefeld, University of Applied Sciences Department of Architecture and Civil Engineering Artilleriestr. 9 D-32427 Minden eMail: [email protected] CIPA Working Group II / V Keywords: Digital camera,CCD-sensor, digital photography Abstract: Numerous digital cameras with megapixel resolution are available today. The requirements to a metric camera are a fixed focus and focal length, known lens distortion and known position of the principle point relative to the sensor elements. Application software has to provide correction of those deformations. Image quality can be very important when using correlation procedures. Focusing on new presentation technologies like texture mapping, panoramic images, digital stereo pictures and internet presentation is a legitimation for those kind of cameras. Rollei Fototechnic has introduced a new digital camera with SLR technique, fixed focus and focal length and a sensor with 1.4 million pixels. Images are stored in a raw data format and can be corrected under respect of the factory calibration parameters. Details of camera construction and handling are discussed. Some applications best suited for digital camera recording are presented. 1. OPTICAL AND MECHANICAL COMPONENTS OF THE CAMERA The camera is designed in separate groups all assembled in a sturdy metal body. Lens, mirror, viewfinder and sensor are connected to the front plate of the body, while monitor, storage media, electronic elements and interfaces are fixed at the back of the camera housing. Figure 1 displays a principle construction drawing, here with a zoom lens. The SLR single lens reflection principle displays the image in the viewfinder exactly as it will be on the CCD- sensor. -
Basic View Camera
PROFICIENCY REQUIRED Operating Guide for MEDIA LOAN CALUMET 4X5 VIEW CAMERA Media Loan Operating Guides are available online at www.evergreen.edu/medialoan/ View cameras are usually tripod mounted and lend When checking out a 4x5 camera from Media Loan, themselves to a more contemplative style than the more patrons will need to obtain a tripod, a light meter, one portable 35mm and 2 1/4 formats. The Calumet 4x5 or both types of film holders, and a changing bag for Standard model view camera is a lightweight, portable sheet film loading. Each sheet holder can be loaded tool that produces superior, fine grained images because with two sheets of film, a process that must be done in of its large format and ability to adjust for a minimum of total darkness. The Polaroid holders can only be loaded image distortion. with one sheet of film at a time, but each sheet is light Media Loan's 4x5 cameras come equipped with a 150mm protected. lens which is a slightly wider angle than normal. It allows for a 44 degree angle of view, while the normal 165mm lens allows for a 40 degree angle of view. Although the controls on each of Media Loan's 4x5 lens may vary in terms of placement and style, the functions remain the same. Some of the lenses have an additional setting for strobe flash or flashbulb use. On these lenses, use the X setting for use with a strobe flash (It’s crucial for the setting to remain on X while using the studio) and the M setting for use with a flashbulb (Media Loan does not support flashbulbs). -
Durst Da900 Manual Us B.Pdf
SPECIFICATION OF COMPONENTS AND OPERATING KNOBS Serial number Description Page 1) Base 2 2) Projection board 2 3) Hexagonal screws for fixing the column in the base 2 4) Column 2 5) Enlarger head 2 6) Fi Iter drawer 2 7) Mirror housing 2 8) DANOCON 50 twin condenser 2 9) DANOCON 105 twin condenser 2 10) DUONEG negative carrier 2 11) AUTONEG negative carrier 12) Lenses with their lens board 2 13) Serial number plate 3 14) Angular bar on column 3 15) Lock of the quick-locking lens holder 3 16) Lens carrier 3 17) Cable with plug and switch 4 18) Cover of the I ight hood 5 19) Fixing screws for AUTOCALO 4 20) Red filter wheel-grip 5 21) Shutter wheel-grip 6 22) Grip bar for opening the serial number plate 6 23) Condenser grip (DANOCON 50) 6 24) Hooks on the condenser mounti ng 6 25) Condenser fixing bar 6 26) Pushing-bar for changing the lenses 6 27) Lamp socket 6 28) Wheel-grip for vertical adjustment of the enlarger head 29) Locking screw for the enlarger head adjustment 7 30) Guide tracks for the heat absorbing filter 4 31) - 32) Wheel-grip for focusing both the lenses 10 33) Lens carriage 14 34) Focus variator wheel-grip 14 35) Locking knob of focus variator 15 36) Cross-slot screws on the base board 18 37) Green filter 19 38) Steel bands 20 DURST DA 900 A precision professional enlarger for all negative formats up to 20 x 3112" (6.5 x 9 cm.) including 70 mm. -
Datenbank Kameras
Hersteller Kameraname Objektiv Verschluß Verschlußzeit Format Blende Filmtyp Zustand Baujahr Gewicht Tasche Toptron Microcam fashon 3 3PAGEN Versand Supercolor NoName ca. 11/20mm Zentral ca. 1/30 sec. 13 x 17 mm ca. 11 110er Kassette A-B 2000 70 Gramm Nein Adox 300 Schneider Kreuznach Xenar 2,8/45 mm Compur Rapid B, 1 - 1/150 sec. 24 x 36 mm 2,8 - 22 35er Kleinbildfilm C 1956 870 Gramm Ja Adox Golf 63 Adoxar 6,3/75 mm Vario B, 1/25 - 1/200 sec. 6 x 6 cm 6,3 - 22 120er Rollfilm C-D 1954 520 Gramm Ja Adox Fotowerke Frankfurt a. M. Adoxon 2,8 / 45 Adox Golf Ia mm Prontor 125 B, 1/30 - 1/125 sec. 24 x 36 mm 2,8 - 22 35er Kleinbildfilm B 1964 330 Gramm Ja Adox Polo mat 1 Schneider Kreuznach Radionar L 2,8/45 mm Prontor 500 LK B, 1/15-1/500 sec. 24 x 36 mm 2,8 - 22 35er Kleinbildfilm C 1959 - 60 440 Gramm Nein Adox (Wirgin) Adrette I Adox Wiesbaden Adoxar 4,5/5 cm Vario B, T, 1/25-1/100 sec. 24 x 36 mm 4,5 - 16 35er Kleinbildfilm C 1939 420 Gramm Ja Agfa Agfamatic easy Agfa Color Apotar 26 mm Zentral Auto 13 x 17 mm Auto 110er Pocketfilm B 1981 200 Gramm nein Agfa Agfamatic Makro Pocket 5008 Agfa Solinar 2,7 Zentral Auto 13 x 17 mm Auto 110er Pocketfilm B 1977 300 Gramm nein Agfa Agfamatic Optima 5000 Set Agfa Solinar 2,7 Zentral Auto 13 x 17 mm Auto 110er Pocketfilm B 1974 510 Gramm nein Agfa Agfamatic Optima 6000 Agfa Solinar 2,7 Zentral Auto 13 x 17 mm Auto 110er Pocketfilm B 1977 320 Gramm nein Agfa Agfamatic Pocket 1000 S Agfa Color Agnar 26 mm Zentral Auto 13 x 17 mm Auto 110er Pocketfilm B 1974 120 Gramm nein Agfa Agfamatic Pocket 2008 Agfa Color Agnar Zentral Auto 13 x 17 mm Auto 110er Pocketfilm B 1975 180 Gramm nein Agfa Agfamatic Pocket 3000 Agfa Color Apotar Zentral Auto 13 x 17 mm Auto 110er Pocketfilm B 1976 300 Gramm nein Agfa Agfamatic Pocket 4008 Agfa Color Apotar Zentral Auto 13 x 17 mm Auto 110er Pocketfilm B 1975 200 Gramm nein Agfa Billy (I) Jgestar 8,8 / ca. -
Manual Sinar P2 / C2 / F2 / F1-EN (PDF)
lnstructionManual The cameras Operatingcontrols of the SINAR iT p2andc2 1 Coarse-focusclamping lever 2 Finefocusing drive with depth of field scale 3 Micrometer drive for vertical (rise and fall) shift 4 Micrometer drive for lateral(cross) shift 5 Micrometerdrive for horizontal-axistilts 6 Micrometer drive for vertical-axisswings 7 lmageplane mark 8 Coarse-tilt (horizontal axis) clamping lever; movementused for verticalalignment of stan- dards with camerainclined up or down, alsofor coarse tilting to reservefull micrometertilt (5) rangefor sharpnessdistribution control. Fig.1 Contents The cameras 2 The planeof sharpnessand depthof field 11 - Controls 2 - Zerosettings Fufiher accessories 12 3 - - Mountingthe camera SINARCOLOR CONTROLfitters 12 4 - - The spirit levels Exposure meters 12 4 - - The base rail 4 AutomaticSINAR film holder - Changingcomponents 4 and shuttercoupling 12 - Film - The bellows 5 holders 13 - Camera backs s Final points 14 - Switchingformats p2 on the STNAR andc2 6 - Maintenance 14 - Switchingformats g on the SINARf2 andtl - Cleaning 14 - The convertible g camera - Adjusting the drives 14 - The bellowshood 9 - Cleaninglenses, filters and mirrors 14 - Viewingaids 9 - Warranty 14 - Transport l0 - Furtherinstruction manuals 14 The view camera movements 10 Remark: The camerac2 is no longerpart of the SINARsales programme, but can stiltrbe combined by the individualSINAR components. Operatingcontrols of the S|NARt2andtl 1 Coarse-focusclamping knob 2 Finefocussing drive with depthof fieldscale 3 Clampingwheel for verticalshift 4 Clampinglever for lateralshift 5 Clampinglever for swing (verticalaxis) 6 Clampinglever for tilt (horizontalaxis) 7 Angle-meteringscale for tilt and swingangles 8 lmageplane mark Zero setting points of the cameras CAMERAMODELS REAR(IMAGE) STANDARD FRONT(LENS) STANDARD NOTES SINARo2 With regularor special gxi|2 - 4x5 / White l White White dot for standardbearer 5x7 /13x18 Green i dots White lateralshift on With F/S back j or. -
Calumet's Digital Guide to View Camera Movements
Calumet’sCalumet’s DigitalDigital GuideGuide ToTo ViewView CameraCamera MovementsMovements Copyright 2002 by Calumet Photographic Duplication is prohibited under law Calumet Photographic Chicago IL. Copies may be obtained by contacting Richard Newman @ [email protected] What you can expect to find inside 9 Types of view cameras 9 Necessary accessories 9 An overview of view camera lens requirements 9 Basic view camera movements 9 The Scheimpflug Rule 9 View camera movements demonstrated 9 Creative options There are two Basic types of View Cameras • Standard “Rail” type view camera advantages: 9 Maximum flexibility for final image control 9 Largest selection of accessories • Field or press camera advantages: 9 Portability while maintaining final image control 9 Weight Useful and necessary Accessories 9 An off camera meter, either an ambient or spot meter. 9 A loupe to focus the image on the ground glass. 9 A cable release to activate the shutter on the lens. 9 Film holders for traditional 4x5 film holder image capture. 9 A Polaroid back for traditional test exposures, to check focus or final art. VIEW CAMERA LENSES ARE DIVIDED INTO THREE GROUPS, WIDE ANGLE, NORMAL AND TELEPHOTO WIDE ANGLES LENSES WOULD BE FROM 38MM-120MM FOCAL LENGTHS FROM 135-240 WOULD BE CONSIDERED NORMAL TELEPHOTOS COULD RANGE FROM 270MM-720MM FOR PRACTICAL PURPOSES THE FOCAL LENGTHS DISCUSSED ARE FOR 4X5” FORMAT Image circle- The black lines are the lens with no tilt and the red lines show the change in lens coverage with the lens tilted. If you look at the film plane, you can see that the tilted lens does not cover the film plane, the image circle of the lens is too small with a tilt applied to the camera. -
Notes on View Camera Geometry∗
Notes on View Camera Geometry∗ Robert E. Wheeler May 8, 2003 c 1997-2001 by Robert E. Wheeler, all rights reserved. ∗ 1 Contents 1 Desargues’s Theorem 4 2 The Gaussian Lens Equation 6 3 Thick lenses 8 4 Pivot Points 9 5 Determining the lens tilt 10 5.1Usingdistancesandangles...................... 10 5.2Usingbackfocus........................... 12 5.3Wheeler’srules............................ 13 5.4LensMovement............................ 14 5.5BackTilts............................... 14 6Depthoffield for parallel planes 15 6.1NearDOFlimit............................ 15 6.2FarDOFlimit............................ 17 6.3DOF.................................. 17 6.4Circlesofconfusion.......................... 18 6.5DOFandformat........................... 19 6.6TheDOFequation.......................... 19 6.7Hyperfocaldistance......................... 20 6.8Approximations............................ 21 6.9Focusgivennearandfarlimits................... 21 6.9.1 Objectdistances....................... 21 6.9.2 Imagedistances........................ 22 7Depthoffield, depth of focus 23 8Fuzzyimages 24 9Effects of diffractiononDOF 26 9.1Theory................................. 26 9.2Data.................................. 27 9.3Resolution............................... 29 9.4Formatconsiderations........................ 31 9.5Minimumaperture.......................... 32 9.6Theoreticalcurves.......................... 33 10 Depth of field for a tilted lens 35 10.1NearandfarDOFequations.................... 35 10.2 Near and far DOF equations in terms of ρ ............