Atmos. Chem. Phys., 19, 7233–7254, 2019 https://doi.org/10.5194/acp-19-7233-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67◦ S to 75◦ N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport Yugo Kanaya1, Kazuyuki Miyazaki2,1, Fumikazu Taketani1, Takuma Miyakawa1, Hisahiro Takashima1,3, Yuichi Komazaki1, Xiaole Pan1,a, Saki Kato3, Kengo Sudo1,4, Takashi Sekiya1, Jun Inoue5, Kazutoshi Sato6, and Kazuhiro Oshima1,b 1Research Institute for Global Change (RIGC), Japan Agency for Marine–Earth Science and Technology (JAMSTEC), Yokohama 2360001, Japan 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 3Faculty of Science, Fukuoka University, Fukuoka 8140133, Japan 4Graduate School of Environmental Studies, Nagoya University, Nagoya 4648601, Japan 5Arctic Environment Research Center, National Institute of Polar Research, Tachikawa 1908518, Japan 6School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, Kitami 0908507, Japan anow at: Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China bnow at: Department of Radioecology, Institute of Environmental Sciences, Rokkasho 0393212, Japan Correspondence: Yugo Kanaya (
[email protected]) Received: 27 December 2018 – Discussion started: 14 January 2019 Revised: 6 May 2019 – Accepted: 9 May 2019 – Published: 3 June 2019 Abstract. Constraints from ozone (O3) observations over fects of forest fires and fossil fuel combustion were recog- oceans are needed in addition to those from terrestrial re- nized, TCR-2 gave an excellent performance in reproducing gions to fully understand global tropospheric chemistry and the observed temporal variations and photochemical buildup its impact on the climate.