The Project Gutenberg Ebook #31344: Mathematical Geography
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
TYPHOONS and DEPRESSIONS OVER the FAR EAST Morning Observation, Sep Teinber 6, from Rasa Jima Island by BERNARDF
SEPTEMBER1940 MONTHLY WEATHER REVIEW 257 days west of the 180th meridian. In American coastal appear to be independent of the typhoon of August 28- waters fog was noted on 10 days each off Washington and September 5, are the following: The S. S. Steel Exporter California; on 4 days off Oregon; and on 3 days off Lower reported 0700 G. C. T. September 6, from latitude 20'18' California. N., longitude 129'30'E.) a pressure of 744.8 mm. (993.0 nib.) with west-northwest winds of force 9. Also, the TYPHOONS AND DEPRESSIONS OVER THE FAR EAST morning observation, Sep teinber 6, from Rasa Jima Island By BERNARDF. DOUCETTE, J. (one of the Nansei Island group) was 747.8 mm. (997.0 5. mb.) for pressure and east-northeast, force 4, for winds. [Weather Bureau, Manila, P. I.] Typhoon, September 11-19) 1940.-A depression, moving Typhoon, August %!-September 6,1940.-A low-pressure westerly, passed about 200 miles south of Guam and area far to the southeast of Guam moved west-northwest, quickly inclined to the north, intensifying to typhoon rapidly developing to typhoon intensity as it proceeded. strength, September 11 to 13. It was stationary, Sep- When the center reached the regions about 250 miles tember 13 and 14, about 150 miles west-northwest of west of Guam, the direction changed to the northwest, Guam, and then began a northwesterly and northerly and the storm continued along this course until it reached course to the ocean regions about 300 miles west of the the latitude of southern Formosa. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Feature of the Month – January 2016 Galilaei
A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2016 GALILAEI Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA October 26, 2015 03:32-03:58 UT, 15 cm refl, 170x, seeing 8-9/10 I sketched this crater and vicinity on the evening of Oct. 25/26, 2015 after the moon hid ZC 109. This was about 32 hours before full. Galilaei is a modest but very crisp crater in far western Oceanus Procellarum. It appears very symmetrical, but there is a faint strip of shadow protruding from its southern end. Galilaei A is the very similar but smaller crater north of Galilaei. The bright spot to the south is labeled Galilaei D on the Lunar Quadrant map. A tiny bit of shadow was glimpsed in this spot indicating a craterlet. Two more moderately bright spots are east of Galilaei. The western one of this pair showed a bit of shadow, much like Galilaei D, but the other one did not. Galilaei B is the shadow-filled crater to the west. This shadowing gave this crater a ring shape. This ring was thicker on its west side. Galilaei H is the small pit just west of B. A wide, low ridge extends to the southwest from Galilaei B, and a crisper peak is south of H. Galilaei B must be more recent than its attendant ridge since the crater's exterior shadow falls upon the ridge. -
A Modern Look at the Earth's Climate Mechanism and the Cosmo-Geophysical System of the Earth
A modern look at the Earth's climate mechanism and the cosmo-geophysical system of the Earth Bogdan Góralski Library of the Historical Institute of the University of Warsaw I. Introduction Is the earth's climate getting warmer? My research shows that indeed the atmosphere and hydrosphere of the northern hemisphere warmed up during XIX-XXI centuries but the southern hemisphere getting colder. However, this warming of the northern hemisphere is not caused by excessive carbon dioxide emission caused by the developing human civilization, but is caused by the gravitational-magnetic influences of the Solar System on the rotating Earth as a result of which the outer layer of the Earth's rotates. Being in the move the Earth's coating changes its position relative to the ecliptic plane and along with its movement, over surface of the Earth's, is the shift of the zones of life-giving rainfalls that are stable relative to ecliptic plane. This results in a global economic and social events in the form of regional crises in areas affected by the drought or excessive precipitation. Physical phenomena related to the movement of the Earth's coating and evidence of the occurrence of this phenomenon are presented in the following work. Jakuszowice, 27 July 2019, 15: 10 Bogdan Góralski II. Scheme of the climate mechanism of the Earth 1. Northern hemisphere climate warming and southern hemisphere cooling. Increased magnetic activity of the Sun caused by gravitational interactions of solar system planets is marked in increase of solar wind power and reduction of power of cosmic rays in Earth's atmosphere, gravitational influence of the Sun, Moon, planets on Earth's coating (Earth's coating = crust + earth's mantle) causing rotate of Earth's coating around liquid earth core. -
Theory of Direction Kaustav B
Research Article Nanotechnology & Applications Theory of Direction Kaustav B. Arya* *Correspondence: Kaustav B. Arya, Assam Jatiya Bidyalay, Guwahati, Assam (Research works in IASST), Assam, India, Tel: +91- 9435013881; E-mail: [email protected]. Guwahati, Assam (Research works in IASST), Assam, India. Received: 30 September 2018; Accepted: 16 October 2018 Citation: Kaustav B. Arya. Theory of Direction. Nano Tech Appl. 2018; 1(2): 1-2. ABSTRACT Here, the research tries to find a connection between law of gravitation and magnetic poles. Keywords Electromagnetism shows that magnetic fields are created vertically Gravitation, Magnetic poles, Earth, Space. if electricity flows horizontally. Introduction In this way our planet has magnetic poles north and south vertically. The law of gravitation indicates that every object of the universe But in this huge universe it is always possible to have such objects attracts each other. On the other side we determine our earth’s which rotate vertically from north to south in their rotatory motion. magnetic poles as north and south. Geological poles are south That’s why, following the electromagnetism concept, they will (to earth’s north) and north (to earth’s south). The magnetism have their magnetic poles horizontally or with the directions describes that different poles attract each other. Therefore, to west and east in relation with our concept. Overall this theory of mention the principle of gravitation we can clear ourselves that direction tells that gravitation has its existence maybe because of the connection points of any two objects always face with different opposite pole concept for which all moving objects are balanced directions (poles) because they have attraction. -
(Go's, on the Magic Line .V
Groceries Damaged don't want to begin It wrong, yet 1 Standard by Fire don't know the right," . , "I don't believe much - in saying and Water. things," ; the young farmer remarked ; "my; policy is to do them. And now, are you going to stay - here in this lonely .place much longer? is l 4 It TP snowing and it ia. late." . T suppose I : ought to go," she said doubtfully, "but it Is' so' lovely here in the silence." ' "Look here,"; he said suddenly, "don't you keep your tea things in , . ' that little cupboard? I.. have got tc The New Year begins earliest on OTflrtlir svtia lov lata TTr if go to town, and when I come back the 180th meridian, is part not that at the ieep the sun over you on your I'll brings somethingfor a little, sup--J 21 af the world which lies exactly oppo- voyage, it is apparent that you will j per, "and we can watch. the old year site Greenwich, TV xrA7a- .& (Go's, on the magic line .v. jvui Qliuuug UlUb ALU, J VJ Ul out.. Then I'll take you home in the M If ' ' where day vma-- UL 1 ,:: saltors have to jump a tMMbivua uaj uuif UUICOO jr j sleigh." - either forwards accord- HC!' or backwards, have provided for this by striking out "How good of you." She held out ing as they are sailing with or against an extra day on calendar. you "" "' the If her hand to him. "You havenft ENT the sun. -
This Article Greenhouse Gardening at the South Pole
' . Michelle Rogan The Last Place on Earth Greenhouse Gardening at the South Pole ntarctica is a continent of rare Antarctica, the isolation will. The majority beauty. It is also one of the most Foundation, supports three year-round of the people who go there during the research bases, McMurdo Base, A inhospitable places on summer go home before the austral winter Earth in which to work and live. But every Palmer Station and Amundsen-Scott South sets in. Less than 500 people a year Pole Station. Many other countries support year over 5,000 people from many "winter-over" on the ice. different countries, do just that. year-round facilities, including the Soviet Antarctica is a continent of research. Commonwealth with Vostok Base, the The southern most continent is certainly The signing of the International Antarctic the coldest. Temperatures at the South Pole New Zealanders with Scott Base, the Treaty has guaranteed that for now and for Italians with Terra Nova and the United can drop to 94 degrees the near future the continent will not be below zero (-70 C) in any given austral Kingdom with Halley Bay Station. exploited or explored for its mineral Most "winter-over" bases are winter. The plateau of the continent is also potential, but will be used solely for one of the driest spots in the unreachable from March to October. This scientific advancement. Therefore, it might isolation not only stops people from coming world. Although surrounded by snow and be considered the largest laboratory in the ice, the south geographical pole and going, but halts the flow of mail and world. -
Basic Requirements
UNIT 1 THE EARTH The Earth Structure 1.1 Introduction Objectives 1.2 Great Circle 1.3 Geographical Coordinates 1.4 Difference in Latitude and Difference in Longitude 1.5 Units of Distance and Speed 1.6 Summary 1.7 Key Words 1.8 Answers to SAQs 1.1 INTRODUCTION Earth The earth is one of the planets of the Solar System. Its shape approximates to that of a sphere but could best be described as an oblate spheroid, i.e. bulged at the equator and compressed at the poles. Its equatorial radius is 6378.16 km and the polar radius is 6356.77 km. This difference in diameter is called the earth’s compression. For most practical purposes, we consider the earth to be a true sphere. Navigation is all about knowing where you are on the earth. In this unit, you will be familiarised with various terms which you would be using in Navigation and acquire some knowledge about how the geographical coordinates of a point on earth’s surface are determined. Objectives After studying this unit, you should be able to • define latitude, and longitude, • calculate the differences in latitudes and longitudes between two places, and • acquire knowledge of units of distance and speed. 1.2 GREAT CIRCLE Axis The axis of the earth is the diameter about which it rotates. Poles The geographic poles of the earth are the two points where the axis meets the surface of the earth. The earth rotates about its axis once each day. This rotation carries each point on the earth’s surface towards East. -
July 2020 in This Issue Online Readers, ALPO Conference November 6-7, 2020 2 Lunar Calendar July 2020 3 Click on Images an Invitation to Join ALPO 3 for Hyperlinks
A publication of the Lunar Section of ALPO Edited by David Teske: [email protected] 2162 Enon Road, Louisville, Mississippi, USA Recent back issues: http://moon.scopesandscapes.com/tlo_back.html July 2020 In This Issue Online readers, ALPO Conference November 6-7, 2020 2 Lunar Calendar July 2020 3 click on images An Invitation to Join ALPO 3 for hyperlinks. Observations Received 4 By the Numbers 7 Submission Through the ALPO Image Achieve 4 When Submitting Observations to the ALPO Lunar Section 9 Call For Observations Focus-On 9 Focus-On Announcement 10 2020 ALPO The Walter H. Haas Observer’s Award 11 Sirsalis T, R. Hays, Jr. 12 Long Crack, R. Hill 13 Musings on Theophilus, H. Eskildsen 14 Almost Full, R. Hill 16 Northern Moon, H. Eskildsen 17 Northwest Moon and Horrebow, H. Eskildsen 18 A Bit of Thebit, R. Hill 19 Euclides D in the Landscape of the Mare Cognitum (and Two Kipukas?), A. Anunziato 20 On the South Shore, R. Hill 22 Focus On: The Lunar 100, Features 11-20, J. Hubbell 23 Recent Topographic Studies 43 Lunar Geologic Change Detection Program T. Cook 120 Key to Images in this Issue 134 These are the modern Golden Days of lunar studies in a way, with so many new resources available to lu- nar observers. Recently, we have mentioned Robert Garfinkle’s opus Luna Cognita and the new lunar map by the USGS. This month brings us the updated, 7th edition of the Virtual Moon Atlas. These are all wonderful resources for your lunar studies. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Latitude/Longitude of the Exact Opposite Place LONGITUDE on Earth to Sydney, Australia, 33° 55‘ S, 151° 17‘ E 90° N 180° Sydney LATITUDE 151° 17’ E
GEO 101, January 16, 2014, Latitude and Longitude Finding your way … How geographers locate where things are… Most common locational system Best reference points are ends of rotational axis Latitude and Longitude Measures angular distance in degrees, not distance in miles or km Basic geometry: circle has 360 degrees Babylonians (≈600 BC) chose the number 360. The reason is that their number system was based on 60. To compare, we base our number system on 10. For us, 10 is a nice, round number and we find it very convenient to count in multiples of 10. But the Babylonians liked 60. LATITUDE Midway between N & S pole is Equator = 0° 90° N 0° 90° S 1 Latitude of Mobile ≈ 30° 42’ N. Parallels of latitude measure the angular distance (degrees) north or south of the Equator. Expressed in degrees, minutes, & seconds 60 minutes in 1 degree 60 seconds in 1 minute The lines themselves run east - west like the rungs on a ladder Find distance in miles between Latitude can be used to approximate Mobile and the Galapagos Islands, distances based on following: which is almost due south of Mobile 360° in a circle Galapagos 0° 10’ S Mobile 30° 42’ N ≈ 25,000 miles around earth 25,000 miles / 360° ≈ 69 miles in 1° Difference 30° 52’ or 30 + 52/60 degrees = 30.87° One degree of latitude always ≈ 69 miles This is true because parallels of latitude 30.87° x 69 mi/degree = 2130 miles stay same distance apart LONGITUDE Arbitrary starting place at Greenwich (London), England 180° = International Date Line East West N P 0° = Prime Meridian 2 One degree of longitude ONLY EQUALS 69 Meridians of longitude measure the miles, at the Equator.