BAV Rundbrief
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2001.10147V1
Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis. -
Determination of Stellar Parameters for M-Dwarf Stars: the NIR Approach
Determination of stellar parameters for M-dwarf stars: the NIR approach by Daniel Thaagaard Andreasen A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Departamento de Fisica e Astronomia University of Porto c Copyright 2017 by Daniel Thaagaard Andreasen Dedication To Linnea, Henriette, Rico, and Else For always supporting me ii Acknowledgements When doing a PhD it is important to remember it is more a team effort than the work of an individual. This is something I learned quickly during the last four years. Therefore there are several people I would like to thank. First and most importantly are my two supervisors, Sérgio and Nuno. They were after me in the beginning of my studies because I was too shy to ask for help; something that I quickly learned I needed to do. They always had their door open for me and all my small questions. It goes without saying that I am thankful for all their guidance during my studies. However, what I am most thankful for is the freedom I have had to explorer paths and ideas on my own, and with them safely on the sideline. This sometimes led to failures and dead ends, but it make me grow as a researcher both by learning from my mistake, but also by prioritising my time. When I thank Sérgio and Nuno, my official supervisors, I also have to thank Elisa. She has been my third unofficial supervisor almost from the first day. Although she did not have any experience with NIR spectroscopy, she was never afraid of giving her opinion and trying to help. -
Astronomy of the Northern Sky— - a Sky Quest on Star Lives - Larry Krumenaker
Astronomy of the Northern Sky— - A Sky Quest on Star Lives - Larry Krumenaker There is no topic so vital to an astronomy course as the life of a star like our Sun. It ties in to so many questions: How old is our planet? Where do we come from? What is the future of the solar sys- tem? Why do all the stars look different in brightness and/or color? We have looked at parts of this story in issues past, in this column and in some other TCA articles. Here we begin to put all the previous col- umns of information together into the full story of what we are, where we came from, where we are, and where are we going. This is going to be somewhat like a Sky Quest, a search for objects in the northern sky (see Figure 1), instead of a Web Quest, with the story and sky info (the latter in this blue color) moving along together. Non-stellar objects are labeled with catalog abbreviations and numbers: M=Messier’s Catalog, NGC is the New General Catalog, and IC means Index Catalog, a follow-up to the NGC. We’ve covered star names and spectral classes in earlier TCA issues, except for HD, the Henry Draper catalog. In this Sky Quest, we shall talk about stellar evolution, the birth, life and death of a star like our Sun, and finding the representative stages up in the northern sky. Figure 2. The stages in the life cycle of the Sun. Our Past The basics of stellar evolution are the universe is the ultimate in recycling. -
Tez.Pdf (5.401Mb)
ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÖRTEN DEĞİŞEN YILDIZLARDA DÖNEM DEĞİŞİMİNİN YILDIZLARIN FİZİKSEL PARAMETRELERİNE BAĞIMLILIĞININ ARAŞTIRILMASI Uğurcan SAĞIR ASTRONOMİ VE UZAY BİLİMLERİ ANABİLİM DALI ANKARA 2006 Her hakkı saklıdır TEŞEKKÜR Tez çalışmam esnasında bana araştırma olanağı sağlayan ve çalışmamın her safhasında yakın ilgi ve önerileri ile beni yönlendiren danışman hocam Sayın Yrd.Doç.Dr. Birol GÜROL’a ve maddi manevi her türlü desteği benden esirgemeyen aileme teşekkürlerimi sunarım. Uğurcan SAĞIR Ankara, Şubat 2006 iii İÇİNDEKİLER ÖZET………………………………………………………………….......................... i ABSTRACT……………………………………………………………....................... ii TEŞEKKÜR……………………………………………………………...................... iii SİMGELER DİZİNİ…………………………………………………….................... vii ŞEKİLLER DİZİNİ...................................................................................................... x ÇİZELGELER DİZİNİ.............................................................................................. xiv 1. GİRİŞ........................................................................................................................ 1 1.1 Çalışmanın Kapsamı................................................................................................ 1 1.2 Örten Çift Sistemlerin Türleri ve Özellikleri........................................................ 1 2. KURAMSAL TEMELLER................................................................................... 3 2.1 Örten Değişen Yıldızlarda Dönem Değişim Nedenleri.................................. -
Theory of Stellar Atmospheres
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. EXTENDED BIBLIOGRAPHY References [1] D. Abbott. The terminal velocities of stellar winds from early{type stars. Astrophys. J., 225, 893, 1978. [2] D. Abbott. The theory of radiatively driven stellar winds. I. A physical interpretation. Astrophys. J., 242, 1183, 1980. [3] D. Abbott. The theory of radiatively driven stellar winds. II. The line acceleration. Astrophys. J., 259, 282, 1982. [4] D. Abbott. The theory of radiation driven stellar winds and the Wolf{ Rayet phenomenon. In de Loore and Willis [938], page 185. Astrophys. J., 259, 282, 1982. [5] D. Abbott. Current problems of line formation in early{type stars. In Beckman and Crivellari [358], page 279. [6] D. Abbott and P. Conti. Wolf{Rayet stars. Ann. Rev. Astr. Astrophys., 25, 113, 1987. [7] D. Abbott and D. Hummer. Photospheres of hot stars. I. Wind blan- keted model atmospheres. Astrophys. J., 294, 286, 1985. [8] D. Abbott and L. Lucy. Multiline transfer and the dynamics of stellar winds. Astrophys. J., 288, 679, 1985. [9] D. Abbott, C. Telesco, and S. Wolff. 2 to 20 micron observations of mass loss from early{type stars. Astrophys. J., 279, 225, 1984. [10] C. Abia, B. Rebolo, J. Beckman, and L. Crivellari. Abundances of light metals and N I in a sample of disc stars. Astr. Astrophys., 206, 100, 1988. [11] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. (Washington, DC: U.S. Government Printing Office), 1972. -
BAV Rundbrief Nr. 3 (2015)
BAV Rundbrief 2015 | Nr. 3 | 64. Jahrgang | ISSN 0405-5497 Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV) BAV Rundbrief 2015 | Nr. 3 | 64. Jahrgang | ISSN 0405-5497 Table of Contents N. Hauck An Algol system discovered in the binary V1288 Scorpii 137 R. Gröbel LIghtcurve and period of the Blazhko RRc Lyrae star DD Boo 141 Inhaltsverzeichnis N. Hauck Ein Algolsystem entdeckt im Doppelstern V1288 Scorpii 137 R. Gröbel Lichtkurve und Periode des Blazhko-RRc-Lyrae-Sterns DD Bootis 141 Beobachtungsberichte K. Bernhard / Modellierung und neue Parameter des Bedeckungssystems W. Moschner / P. Frank EE CMa 146 M. Landl Erste Erfahrungen mit Beobachtung Veränderlicher anhand von Beta Lyrae 151 D. Böhme Elemente des Mira-Sterns IX Geminorum bestimmt 153 M. Geffert et al. Optisches Langzeitverhalten der Radioquelle OQ 208 154 S. Hümmerich Bestätigung der Veränderlichkeit des „Hoher List Veränderlichen“ GSC 03205-00491 157 K. Wenzel Visuelle Lichtkurve des Blazars S5 0716+71 August 2014 bis April 2015 162 T. Lange Nova Sgr 2015-2 verfolgt auf der Webcam der Station Neumeyer 3 in der Antarktis 164 B. Gährken GK Persei 2015 167 K. Wenzel Der Ausbruch von V404 Cygni im Juni 2015 169 J. Hübscher Periodenüberwachung mit Data-Mining 172 L. Pagel Darstellung gefalteter Lichtkurven 177 S. Hümmerich DASCH-Projekt kurz vorgestellt 181 J. Schirmer Veränderlichenbeobachtung an W Ursae Minoris 182 Aus der Literatur P. Lehmann Spektroskopische Lösung des Algol-Dreifachsystems 185 P. Lehmann Wanderung Weißer Zwergsterne in alten Kugelsternhaufen 186 Aus der BAV J. Hübscher Die BAV-Mitgliederversammlung am 9. Mai 2015 188 J. Hübscher Aus der BAV-Geschäftsführung 188 T. -
XIII Publications, Presentations
XIII Publications, Presentations 1. Refereed Publications Bakunina, I. A., Abramov-maximov, V. E., Nakariakov, V. M., Lesovoy, S. V., Soloviev, A. A., Tikhomirov, Y. V., Melnikov, V. F., Shibasaki, K., Abramov-Maximov, V. E., Efremov, V. I., Parfinenko, L. D., Solov'ev, Nagovitsyn, Y. A., Averina, E. L.: 2013, Long-Period Oscillations of A. A., Shibasaki, K.: 2013, Long-period oscillations of sunspots Sunspots by NoRH and SSRT Observations, PASJ, 65, S13. according to simultaneous ground-based and space observations, Batista, V., Beaulieu, J.-P., Gould, A., Bennet, D. P., Yee, J. C., Fukui, A., Geomag. Aeron., 53, 909-912. Gaudi, B. S., Sumi, T., Udalski, A.: 2014, MOA-2011-BLG-293Lb: First Abramov-maximov, V. E., Efremov, V. I., Parfinenko, L. D., Solov'ev, A. Microlensing Planet Possibly in the Habitable Zone, ApJ, 780, 54. A., Shibasaki, K.: 2013, Long-Term Oscillations of Sunspots from Baty, H., Pétri, J., Zenitani, S.: 2013, Explosive reconnection of double Simultaneous Observations with the Nobeyama Radioheliograph and tearing modes in relativistic plasmas: application to the Crab flare, Solar Dynamics Observatory, PASJ, 65, S12. MNRAS, 436, L20-L24. Abu-Zayyad, T., et al. including Oshima, A.: 2013, Correlations Bendek, E. A., Guyon, O., Ammons, S. M., Belikov, R.: 2013, Laboratory of the Arrival Directions of Ultra-High Energy Cosmic Rays Demonstration of Astrometric Compensation Using a Diffractive with Extragalactic Objects as Observed by the Telescope Array Pupil, PASP, 125, 1212-1225. Experiment, ApJ, 777, 88. Bersten, M. C., Tanaka, M., Tominaga, N., Benvenuto, O. G., Nomoto, Abu-Zayyad, T., et al. including Oshima, A.: 2013, Upper limit on the K.: 2013, Early UV/Optical Emission of The Type Ib SN 2008D, ApJ, flux of photons with energies above 1019 eV using the Telescope 767, 143. -
Arthur Louis Day 27 by Philip H
http://www.nap.edu/catalog/570.html We ship printed books within 1 business day; personal PDFs are available immediately. Biographical Memoirs V.47 Office of the Home Secretary, National Academy of Sciences ISBN: 0-309-59892-3, 560 pages, 6 x 9, (1975) This PDF is available from the National Academies Press at: http://www.nap.edu/catalog/570.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online for free • Explore our innovative research tools – try the “Research Dashboard” now! • Sign up to be notified when new books are published • Purchase printed books and selected PDF files Thank you for downloading this PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll- free at 888-624-8373, visit us online, or send an email to [email protected]. This book plus thousands more are available at http://www.nap.edu. Copyright © National Academy of Sciences. All rights reserved. Unless otherwise indicated, all materials in this PDF File are copyrighted by the National Academy of Sciences. Distribution, posting, or copying is strictly prohibited without written permission of the National Academies Press. Request reprint permission for this book. i e h t be ion. om r ibut f r t cannot r at not o f however, version ng, i t paper book, at ive at rm o Biographical Memoirs riginal horit ic f o e h NATIONAL ACADEMY OF SCIENCES t he aut t om r as ing-specif t ion ed f peset y http://www.nap.edu/catalog/570.html Biographical MemoirsV.47 publicat her t iles creat is h t L f M of and ot X om yles, r f st version print posed e h heading Copyright © National Academy ofSciences. -
July 3, 2017 (Monday)
2017 Asia-Pacific Regional IAU Meeting 3-7 July 2017, TAIPEI, TAIWAN APR M July 3, 2017 (Monday) 16:00-16:30 Room 201 BCDE, 2F Opening Ceremony Meeting Chairman You-Hua Chu (The Astronomical Society of the Republic of China (ASROC) / Academia Sinica (ASIAA)) July 3, 2017 (Monday) Norio Kaifu (Former IAU President/ National Astronomical Observatory of Japan (NAOJ)) Yuan-Tseh Lee (President Emeritus of Academia Sinica) 16:30-18:00 Room 201 BCDE, 2F Plenary Session 1 Chair: Albert Kong (National Tsing Hua University) 16:30 PL1-1 Keynote Lecture Dark Matter Particle Explorer: The First Chinese Astronomical Satellite Jin Chang (Purple Mountain Observatory) 17:30 PL1-2 Topical Lecture Early Science results from the Ultra-Violet Imaging Telescope on ASTROSAT Annapurni Subramaniam (Indian Institute of Astrophysics) 2017 Asia-Pacific Regional IAU Meeting 3-7 July 2017, TAIPEI, TAIWAN APR M July 4, 2017 (Tuesday) 09:00-10:30 Room 201 BCDE, 2F Plenary Session 2 Chair: Lister Staveley-Smith (ICRAR / UWA / CAASTRO / CAASTRO-3D) 09:00 PL2-1 Keynote Lecture The Renaissance of Millisecond Pulsars July 4, 2017 (Tuesday) Albert Kong (National Tsing Hua University) 10:00 PL2-2 Topical Lecture The East Asian Observatory Paul Ho (Academia Sinica (ASIAA)) 11:00-12:30 Room 102, 1F Session 6-1: Observing Facilities and International Collaboration Chair: Masahiko Hayashi (National Astronomical Observatory of Japan) 11:00 S6-1-1 Invited Talk Thirty Meter Telescope (TMT) Project Status Tomonori Usuda (National Astronomical Observatory of Japan / SOKENDAI) 11:15 -
Using Asteroseismology to Find the Radius and Mass Of
Inference on Radii and Masses of Red Giants that host exoplanets from Solar-like Oscillations Yifan Chen Abstract Asteroseismology is the study of natural oscillations in stars. By observing a star's oscillation frequencies, it is possible to directly infer its stellar properties. Here we measure the solar-like oscillations in 6 planet- hosting red giants using data from the Transiting Exoplanet Survey Satellite (TESS) mission. Fourier transformation could be applied to the light curves obtained and passed into the pysyd pipeline to measure the frequency of maximum power (νmax) and made into an ´echelle diagram to measure the large separation of oscillations (∆ν) By using the scaling relations of νmax and ∆ν, the radius and mass of the stars can be obtained and compared with existing published values. Overall, the results demonstrated radius and mass obtained using asteroseismology to have a lower uncertainty compared to other methods. 1 Introduction 1.1 Asteroseismology A star is a ball of gas consisting of mainly hydrogen, some helium, and a bit of other elements (which as- tronomers call metals). Whie seismology is the study of earthquakes and seismic waves that move through the Earth, the study of Asteroseismology looks at \starquakes", or oscillations of stars. Spherical waves form in the interior of a star, forming oscillation modes and patterns of compression (similar to how air would form standing waves in a wind instrument). These oscillations would cause energy to rise up to the surface, resulting in the intensity of light emitted to change (Bedding 2009). The first discovery of oscillations in stars date back to 1596, yet not many oscillations (apart for the Sun's, which has its own branch of astronomy called helioseismology) can be studied closely for hundreds of years due to technological limitations. -
Constellation / Galaxie Polaris Condensed Uppercase Romans
CONSTELLATION / GALAXIE POLARIS CONDENSED UPPERCASE ROMANS 170PT ZUNYI 150PT YUMEN 135PT VILLAGE XYLOMA 120PT WAXWING 105PT VESTMENTS WWW.VLLG.COM 1 CONSTELLATION / GALAXIE POLARIS CONDENSED UPPERCASE ITALICS 170PT ULTRA 150PT TRITON 135PT VILLAGE SIGLARE 120PT REEDBIRD 105PT QUANTITATE WWW.VLLG.COM 2 CONSTELLATION / GALAXIE POLARIS CONDENSED LOWERCASE ROMANS 170PT power 150PT oxnard 135PT VILLAGE numeric 120PT multipath 105PT lineamental WWW.VLLG.COM 3 CONSTELLATION / GALAXIE POLARIS CONDENSED LOWERCASE ITALICS 170PT kotow 150PT journal 135PT VILLAGE idoneity 120PT headlines 105PT grecianized WWW.VLLG.COM 4 CONSTELLATION / GALAXIE POLARIS CONDENSED ALL WEIGHTS & STYLES HEAVY & HEAVY ITALIC 30PT ADALINE BERMED catalyst debated BOLD & BOLD ITALIC 30PT EDIFIERS FIRMURA glabrous heliozoic MEDIUM & MEDIUM ITALIC 30PT IMMENSE JETSOMS VILLAGE klaxoned longueuil BOOK & BOOK ITALIC 30PT MATRICES NOSHERIE odalisque phonetist LIGHT & LIGHT ITALIC 30PT QUALTAGH RINGSIDER sentiment trekschuit WWW.VLLG.COM 5 CONSTELLATION / GALAXIE POLARIS CONDENSED SAMPLE TEXT SETTINGS BOLD & BOLD ITALIC 14PT Polaris, designated Ursae Minoris (Latinized to Alpha Ursae Minoris, abbreviated A lpha UMi), commonly the North Star or Pole Star, is the brightest star in the conste llation of Ursa Minor. It is very close to the north celestial pole, making it the curre nt northern pole star. The revised Hipparcos parallax gives a distance to Polaris of about 433 light-years, while calculations by other methods derive distances arou nd 30% closer. Polaris is a triple star system, composed of the primary star, Polar is Aa, in orbit with a smaller companion (Polaris Ab); the pair in orbit with Polaris B (discovered in August 1779 by William Herschel). There were once thought to be tw o more distant components—Polaris C and Polaris D—but these have been sho wn not to be physically associated with the Polaris system. -
Observational Astronomy at the University of Pennsylvania 1751 - 2007
OBSERVATIONAL ASTRONOMY AT THE UNIVERSITY OF PENNSYLVANIA 1751 - 2007 corrected, revised, and enlarged from OBSERVATIONAL ASTRONOMY AT THE UNIVERSITY OF PENNSYLVANIA 1751 - 1996 published privately in 5 print copies in 2005 ROBERT H. KOCH 2008 2010 - Revision B includes 2009 and 2010 Addenda and Errata For Joanne Koch and in memory of Harry and Veronica Koch Copyright © 2008, 2009, 2010 by Robert H. Koch Permission is hereby granted to any user of this file freely to store and transmit copies of it for non-commercial purposes. The original form without modification must be preserved but attributed quotations, with or without ellipses, may be used. 2 CONTENTS Preface 4 Acknowledgements 7 References 9 A Selective Astronomical Primer 10 Early Days 36 References 45 The Flower Observatory(FO) 47 References 87 The Roslyn House Observatory(RHO) of Gustavus Wynne Cook 90 References 111 The FCO and the SO 113 References 159 Some Afterthoughts 163 Name Index 165 Subject Index 173 Quiz to accompany Observational Astronomy at the University of Pennsylvania 1751 – 2007 174 Addenda and Errata: 2009 and 2010 A-1 3 PREFACE INTRODUCTION In May 2003 Il-Seong Nha asked that I prepare a poster paper on the history of The Flower Observatory (FO) for the IAU General Assembly in Sydney. The two-month deadline was impractical but the idea seemed appealing and so led to a part of this document. Afterwards, Ben Shen suggested that I finish the job with a description of the two following observatories. I turned these ideas somewhat around and composed a text that starts with the 18th century beginnings of the University and ends in 2007 with the almost certain termination of local ground-based observing.