applied sciences Article Numerical Analysis of the Take-Off Performance of a Seaplane in Calm Water Yang Guo , Dongli Ma, Muqing Yang * and Xing’an Liu School of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China;
[email protected] (Y.G.);
[email protected] (D.M.);
[email protected] (X.L.) * Correspondence:
[email protected] Featured Application: This paper provided a numerical approach to predict the resistance and attitude of a seaplane taking off in calm water. The investigations on take-off performance of the seaplane would provide some guidance in the integrated design of aerodynamics and hydrody- namics of the seaplanes. Abstract: Nowadays, with the escalating tensions in maritime dispute and the development of marine economy, there has been renewed interest in seaplanes for their special capacity of taking off and landing on water. Prediction of take-off performance, involving aerodynamic analysis and hydrodynamic analysis, is a main challenge in seaplane design, while the prediction methods have been little improved since the 1960s. This paper aims to investigate the attitude and resistance characteristics of a seaplane at different speeds during the take-off by numerically modeling the air-water flow field using RANS equations with VOF method. The trim and heave motion of seaplane in response to aerodynamic forces, hydrodynamic forces, hydrostatic forces, and propeller thrust was realized by solving rigid body dynamics equations and adopting dynamic overset mesh technique. The variations in heave, trim angle, and resistance characteristics during the takeoff were investigated, Citation: Guo, Y.; Ma, D.; Yang, M.; and their inherent relationships with the aerodynamic, hydrodynamic, and hydrostatic performance Liu, X.