Current Events in Container Storage

Total Page:16

File Type:pdf, Size:1020Kb

Current Events in Container Storage Current Events in Container Storage Keith Hudgins Docker 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 1 Container Community Orgs ▪ Cloud Native Computing Foundation (CNCF) ▪ https://www.cncf.io/ ▪ Open Container Initiative (OCI) ▪ https://www.opencontainers.org/ ▪ Both are part of the Linux Foundation ▪ https://www.linuxfoundation.org/ 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 2 Container Runtimes ▪ Docker ▪ Default for most container installs, widest user base ▪ 20 million+ Docker Community Engine installs alone ▪ Containerd ▪ Fully graduated CNCF project (as of Feb 2019) ▪ Windows and Linux container runtime ▪ Upstream of Docker (for Linux, anyway) ▪ CoreOS (rkt) ▪ CoreOS acquired by RedHat May 2018 ▪ rkt archived by CNCF as of 8/16/2019 ▪ CRI-O ▪ Default runtime for RH OpenShift as of 4.0, June 2019 ▪ Intended to be Kubernetes-native runtime ▪ Fully open-source ▪ Upstream of these projects* are CNCF efforts. *Docker has non-CNCF upstream 3 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. Components as well Container Storage Lifecycle 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 4 Container Storage Lifecycle (cont) ▪ Containers use storage in 3 primary contexts: ▪ Raw container image ▪ At rest, either as a file on disk or object storage ▪ At runtime ▪ One of several graph drivers ▪ These are NOT persistent ▪ Persistent storage ▪ Volumes attached to containers for persistent data ▪ Most of this talk will focus on this type of storage 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 5 Graph Driver Overview ▪ Disk image of container at runtime ▪ Most graph drivers are Copy-On-Write (COW) or UnionFS based ▪ For Docker/Containerd, refer to support matrix for which driver to use ▪ https://docs.docker.com/storage/storagedriver/select-storage-driver/ ▪ Intended for images that don’t write to disk much ▪ Can have performance issues if too many writes ▪ Drivers include Overlay2, AUFS, Btrfs, Zfs, LCFS (Experimental) 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 6 Graph Driver Deep Links ▪ https://docs.docker.com/storage/storagedriver/ ▪ https://blog.mobyproject.org/where-are-containerds-graph-drivers-145fc9b7255 ▪ https://integratedcode.us/2016/08/30/storage-drivers-in-docker-a-deep-dive/ ▪ https://github.com/portworx/lcfs ▪ https://docs.docker.com/engine/extend/plugins_graphdriver/ 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 7 What You’ve All Been Waiting For... Persistent storage is, continually, one of the hardest problems to solve in the container space. 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 8 In the Beginning…. OS Containers are NOT NEW. chroot was released in 1979 But when Docker introduced immutable containers in 2013, Everything changed for storage. 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 9 Immutable Containers Each instanced container is meant to be a pluggable component of an application stack. In production, a container tends to spin up and down, as well as move between nodes rapidly depending on orchestration. Not every container will need persistence. But, your data needs to go somewhere! 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 10 Just a quick timeline 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 11 So, how about that data? Prior to pluggable, dynamic volume management: ▪ Data was stored in a bind-mounted volume ▪ Volume was just a directory on disk ▪ Production typically used SAN or NAS directly mounted on the host OS 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 12 Modern container storage For persistent storage, there are two primary interfaces: ▪ Docker Volume Driver ▪ Container Storage Interface ▪ For Kubernetes, there’s also: ▪ Native in-tree plugins ▪ FlexVolume ▪ Both are deprecated-ish in favor of CSI 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 13 Docker Volume Driver Overview ▪ Standard persistence interface for Docker Swarm and Mesosphere ▪ Runs as a container on each host node ▪ Each container implements 2 interfaces: ▪ Orchestrator-facing REST API service ▪ Storage-facing interface ▪ Finally, requires a unique description file (manifest.json) to request privileges and declare requirements for install. ▪ Supports all platforms Docker runs on (Linux, Windows*, i386, ARM) ▪ You will need native drivers for each supported platform ▪ Windows support uses the older, v1 driver API 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 14 Docker Volume Driver Key Items Interface is very stable ▪ No changes since 2017 ▪ No cross-node knowledge ▪ Can cause problems with scaling ▪ Every volume needs to be exposed to every node in each cluster ▪ Docker EE tracks volumes out-of-band based on Volume ID Deep Links https://docs.docker.com/engine/extend/plugins_volume/ https://docs.docker.com/registry/spec/manifest-v2-2/ http://mesos.apache.org/documentation/latest/isolators/docker-volume/ 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 15 Container Storage Interface Emerging standard, becoming the default ▪ 1.0 spec released in late 2018 ▪ Supported by Kubernetes 1.13+, Mesos, and Cloud Foundry ▪ Initially supports basic CRUD operations on volumes ▪ Expanded feature support coming via microservices-like controllers 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 16 What does a CSI Driver Look Like? CSI drivers need 3 fundamental features: ▪ Node service ▪ Controller service* ▪ Identity service All of these communicate via gRPC - https://grpc.io/ * See next slide for caveats 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 17 Breaking things down Controller service is for: ▪ Volume Operations ▪ Create, Delete, List volumes ▪ “Publish” operations ▪ This designates a volume to a given node ▪ Required for scheduling volumes at runtime ▪ If you don’t do volume operations, you can skip the controller service (See iSCSI, NFS drivers) 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 18 Breaking things down 2 Node service is for: ▪ Node operations ▪ Mount/unmount volumes on a node ▪ “Staging” operations ▪ Basically prep ops on a new volume ▪ Create filesystem, etc ▪ Also used in multiple mount scenarios 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 19 Breaking things down 3 Identity service is for: ▪ API grease ▪ GetCapability and GetPluginInfo requests ▪ Should be implemented on both Node and Controller 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 20 So I need two different containers for CSI? Not necessarily, but probably. You can absolutely put Node and Controller ops in the same container if you wish BUT…. Check out what’s new and interesting: 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 21 Proposed CSI Features ▪ Volume Snapshots ▪ Implemented as a separate service (own container) ▪ Dynamic Volume Resize operations ▪ Likewise separate service ▪ Raw Block Volume Support ▪ Windows CSI Support Deep Links https://github.com/kubernetes/enhancements/blob/master/keps/sig-windows/20190714-windows-csi-support.md https://kubernetes-csi.github.io/docs/features.html 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 22 How to Deploy a CSI Driver ▪ This is a possible topology ▪ Driver is deployed via kube application yaml definition ▪ Or Helm Chart ▪ Or Docker Compose ▪ Or…… ▪ Really recommend standard application yaml - it’s universally supported 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 23 CSI Further Reading ▪ https://github.com/kubernetes/community/tree/master/sig-storage ▪ https://medium.com/google-cloud/understanding-the-container-storage-interface-csi-ddbeb966a3b ▪ https://arslan.io/2018/06/21/how-to-write-a-container-storage-interface-csi-plugin/ ▪ https://kubernetes-csi.github.io/docs/ Also, Special Thanks to Deep Debroy and Anusha Ragunathan at Docker for reviewing this talk and keeping me accurate! 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 24 Questions? Please take a moment to rate this session. Your feedback matters to us. 2019 Storage Developer Conference. © Docker, Inc. All Rights Reserved. 25.
Recommended publications
  • CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N
    CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N. Gutierrez Center for Education and Research Information Assurance and Security Purdue University, West Lafayette, IN 47907-2086 DECEPTIVE MEMORY SYSTEMS ADissertation Submitted to the Faculty of Purdue University by Christopher N. Gutierrez In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2017 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL Dr. Eugene H. Spa↵ord, Co-Chair Department of Computer Science Dr. Saurabh Bagchi, Co-Chair Department of Computer Science Dr. Dongyan Xu Department of Computer Science Dr. Mathias Payer Department of Computer Science Approved by: Dr. Voicu Popescu by Dr. William J. Gorman Head of the Graduate Program iii This work is dedicated to my wife, Gina. Thank you for all of your love and support. The moon awaits us. iv ACKNOWLEDGMENTS Iwould liketothank ProfessorsEugeneSpa↵ord and SaurabhBagchi for their guidance, support, and advice throughout my time at Purdue. Both have been instru­ mental in my development as a computer scientist, and I am forever grateful. I would also like to thank the Center for Education and Research in Information Assurance and Security (CERIAS) for fostering a multidisciplinary security culture in which I had the privilege to be part of. Special thanks to Adam Hammer and Ronald Cas­ tongia for their technical support and Thomas Yurek for his programming assistance for the experimental evaluation. I am grateful for the valuable feedback provided by the members of my thesis committee, Professor Dongyen Xu, and Professor Math­ ias Payer.
    [Show full text]
  • HTTP-FUSE Xenoppix
    HTTP-FUSE Xenoppix Kuniyasu Suzaki† Toshiki Yagi† Kengo Iijima† Kenji Kitagawa†† Shuichi Tashiro††† National Institute of Advanced Industrial Science and Technology† Alpha Systems Inc.†† Information-Technology Promotion Agency, Japan††† {k.suzaki,yagi-toshiki,k-iijima}@aist.go.jp [email protected], [email protected] Abstract a CD-ROM. Furthermore it requires remaking the entire CD-ROM when a bit of data is up- dated. The other solution is a Virtual Machine We developed “HTTP-FUSE Xenoppix” which which enables us to install many OSes and ap- boots Linux, Plan9, and NetBSD on Virtual plications easily. However, that requires in- Machine Monitor “Xen” with a small bootable stalling virtual machine software. (6.5MB) CD-ROM. The bootable CD-ROM in- cludes boot loader, kernel, and miniroot only We have developed “Xenoppix” [1], which and most part of files are obtained via Internet is a combination of CD/DVD bootable Linux with network loopback device HTTP-FUSE “KNOPPIX” [2] and Virtual Machine Monitor CLOOP. It is made from cloop (Compressed “Xen” [3, 4]. Xenoppix boots Linux (KNOP- Loopback block device) and FUSE (Filesys- PIX) as Host OS and NetBSD or Plan9 as Guest tem USErspace). HTTP-FUSE CLOOP can re- OS with a bootable DVD only. KNOPPIX construct a block device from many small block is advanced in automatic device detection and files of HTTP servers. In this paper we describe driver integration. It prepares the Xen environ- the detail of the implementation and its perfor- ment and Guest OSes don’t need to worry about mance. lack of device drivers.
    [Show full text]
  • How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise
    How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise Abstract This paper will document a process to create a custom Live CD for secure remote incident handling on Windows and Linux systems. The process will include how to configure SSH for remote access to the Live CD even when running behind a NAT device. The combination of customization and secure remote access will make this process valuable to incident handlers working in enterprise environments with limited remote IT support. Bert Hayes, [email protected] How to Create a Custom Live CD for Remote Incident Handling 2 Table of Contents Abstract ...........................................................................................................................................1 1. Introduction ............................................................................................................................5 2. Making Your Own Customized Debian GNU/Linux Based System........................................7 2.1. The Development Environment ......................................................................................7 2.2. Making Your Dream Incident Handling System...............................................................9 2.3. Hardening the Base Install.............................................................................................11 2.3.1. Managing Root Access with Sudo..........................................................................11 2.4. Randomizing the Handler Password at Boot Time ........................................................12
    [Show full text]
  • In Search of the Ideal Storage Configuration for Docker Containers
    In Search of the Ideal Storage Configuration for Docker Containers Vasily Tarasov1, Lukas Rupprecht1, Dimitris Skourtis1, Amit Warke1, Dean Hildebrand1 Mohamed Mohamed1, Nagapramod Mandagere1, Wenji Li2, Raju Rangaswami3, Ming Zhao2 1IBM Research—Almaden 2Arizona State University 3Florida International University Abstract—Containers are a widely successful technology today every running container. This would cause a great burden on popularized by Docker. Containers improve system utilization by the I/O subsystem and make container start time unacceptably increasing workload density. Docker containers enable seamless high for many workloads. As a result, copy-on-write (CoW) deployment of workloads across development, test, and produc- tion environments. Docker’s unique approach to data manage- storage and storage snapshots are popularly used and images ment, which involves frequent snapshot creation and removal, are structured in layers. A layer consists of a set of files and presents a new set of exciting challenges for storage systems. At layers with the same content can be shared across images, the same time, storage management for Docker containers has reducing the amount of storage required to run containers. remained largely unexplored with a dizzying array of solution With Docker, one can choose Aufs [6], Overlay2 [7], choices and configuration options. In this paper we unravel the multi-faceted nature of Docker storage and demonstrate its Btrfs [8], or device-mapper (dm) [9] as storage drivers which impact on system and workload performance. As we uncover provide the required snapshotting and CoW capabilities for new properties of the popular Docker storage drivers, this is a images. None of these solutions, however, were designed with sobering reminder that widespread use of new technologies can Docker in mind and their effectiveness for Docker has not been often precede their careful evaluation.
    [Show full text]
  • Understanding the Performance of Container Execution Environments
    Understanding the performance of container execution environments Guillaume Everarts de Velp, Etienne Rivière and Ramin Sadre [email protected] EPL, ICTEAM, UCLouvain, Belgium Abstract example is an automatic grading platform named INGIn- Many application server backends leverage container tech- ious [2, 3]. This platform is used extensively at UCLouvain nologies to support workloads formed of short-lived, but and other institutions around the world to provide computer potentially I/O-intensive, operations. The latency at which science and engineering students with automated feedback container-supported operations complete impacts both the on programming assignments, through the execution of se- users’ experience and the throughput that the platform can ries of unit tests prepared by instructors. It is necessary that achieve. This latency is a result of both the bootstrap and the student code and the testing runtime run in isolation from execution time of the containers and is impacted greatly by each others. Containers answer this need perfectly: They the performance of the I/O subsystem. Configuring appro- allow students’ code to run in a controlled and reproducible priately the container environment and technology stack environment while reducing risks related to ill-behaved or to obtain good performance is not an easy task, due to the even malicious code. variety of options, and poor visibility on their interactions. Service latency is often the most important criteria for We present in this paper a benchmarking tool for the selecting a container execution environment. Slow response multi-parametric study of container bootstrap time and I/O times can impair the usability of an edge computing infras- performance, allowing us to understand such interactions tructure, or result in students frustration in the case of IN- within a controlled environment.
    [Show full text]
  • Container-Based Virtualization for Byte-Addressable NVM Data Storage
    2016 IEEE International Conference on Big Data (Big Data) Container-Based Virtualization for Byte-Addressable NVM Data Storage Ellis R. Giles Rice University Houston, Texas [email protected] Abstract—Container based virtualization is rapidly growing Storage Class Memory, or SCM, is an exciting new in popularity for cloud deployments and applications as a memory technology with the potential of replacing hard virtualization alternative due to the ease of deployment cou- drives and SSDs as it offers high-speed, byte-addressable pled with high-performance. Emerging byte-addressable, non- volatile memories, commonly called Storage Class Memory or persistence on the main memory bus. Several technologies SCM, technologies are promising both byte-addressability and are currently under research and development, each with dif- persistence near DRAM speeds operating on the main memory ferent performance, durability, and capacity characteristics. bus. These new memory alternatives open up a new realm of These include a ReRAM by Micron and Sony, a slower, but applications that no longer have to rely on slow, block-based very large capacity Phase Change Memory or PCM by Mi- persistence, but can rather operate directly on persistent data using ordinary loads and stores through the cache hierarchy cron and others, and a fast, smaller spin-torque ST-MRAM coupled with transaction techniques. by Everspin. High-speed, byte-addressable persistence will However, SCM presents a new challenge for container-based give rise to new applications that no longer have to rely on applications, which typically access persistent data through slow, block based storage devices and to serialize data for layers of block based file isolation.
    [Show full text]
  • DMFS - a Data Migration File System for Netbsd
    DMFS - A Data Migration File System for NetBSD William Studenmund Veridian MRJ Technology Solutions NASAAmes Research Center" Abstract It was designed to support the mass storage systems de- ployed here at NAS under the NAStore 2 system. That system supported a total of twenty StorageTek NearLine ! have recently developed DMFS, a Data Migration File tape silos at two locations, each with up to four tape System, for NetBSD[I]. This file system provides ker- drives each. Each silo contained upwards of 5000 tapes, nel support for the data migration system being devel- and had robotic pass-throughs to adjoining silos. oped by my research group at NASA/Ames. The file system utilizes an underlying file store to provide the file The volman system is designed using a client-server backing, and coordinates user and system access to the model, and consists of three main components: the vol- files. It stores its internal metadata in a flat file, which man master, possibly multiple volman servers, and vol- resides on a separate file system. This paper will first man clients. The volman servers connect to each tape describe our data migration system to provide a context silo, mount and unmount tapes at the direction of the for DMFS, then it will describe DMFS. It also will de- volman master, and provide tape services to clients. The scribe the changes to NetBSD needed to make DMFS volman master maintains a database of known tapes and work. Then it will give an overview of the file archival locations, and directs the tape servers to move and mount and restoration procedures, and describe how some typi- tapes to service client requests.
    [Show full text]
  • Unionfs: User- and Community-Oriented Development of a Unification File System
    Unionfs: User- and Community-Oriented Development of a Unification File System David Quigley, Josef Sipek, Charles P. Wright, and Erez Zadok Stony Brook University {dquigley,jsipek,cwright,ezk}@cs.sunysb.edu Abstract If a file exists in multiple branches, the user sees only the copy in the higher-priority branch. Unionfs allows some branches to be read-only, Unionfs is a stackable file system that virtually but as long as the highest-priority branch is merges a set of directories (called branches) read-write, Unionfs uses copy-on-write seman- into a single logical view. Each branch is as- tics to provide an illusion that all branches are signed a priority and may be either read-only writable. This feature allows Live-CD develop- or read-write. When the highest priority branch ers to give their users a writable system based is writable, Unionfs provides copy-on-write se- on read-only media. mantics for read-only branches. These copy- on-write semantics have lead to widespread There are many uses for namespace unifica- use of Unionfs by LiveCD projects including tion. The two most common uses are Live- Knoppix and SLAX. In this paper we describe CDs and diskless/NFS-root clients. On Live- our experiences distributing and maintaining CDs, by definition, the data is stored on a read- an out-of-kernel module since November 2004. only medium. However, it is very convenient As of March 2006 Unionfs has been down- for users to be able to modify the data. Uni- loaded by over 6,700 unique users and is used fying the read-only CD with a writable RAM by over two dozen other projects.
    [Show full text]
  • We Get Letters Sept/Oct 2018
    SEE TEXT ONLY WeGetletters by Michael W Lucas letters@ freebsdjournal.org tmpfs, or be careful to monitor tmpfs space use. Hey, FJ Letters Dude, Not that you’ll configure your monitoring system Which filesystem should I use? to watch tmpfs, because it’s temporary. And no matter what, one day you’ll forget —FreeBSD Newbie that you used memory space as a filesystem. You’ll stash something vital in that temporary space, then reboot. And get really annoyed Dear FreeBSD Newbie, when that vital data vanishes into the ether. First off, welcome to FreeBSD. The wider com- Some other filesystems aren’t actively terrible. munity is glad to help you. The device filesystem devfs(5) provides device Second, please let me know who told you to nodes. Filesystems that can’t store user data are start off by writing me. I need to properly… the best filesystems. But then some clever sysad- “thank” them. min decides to hack on /etc/devfs.rules to Filesystems? Sure, let’s talk filesystems. change the standard device nodes for their spe- Discussing which filesystem is the worst is like cial application, or /etc/devd.conf to create or debating the merits of two-handed swords as reconfigure device nodes, and the whole system compared to lumberjack-grade chainsaws and goes down the tubes. industrial tulip presses. While every one of them Speaking of clever sysadmins, now and then has perfectly legitimate uses, in the hands of the people decide that they want to optimize disk novice they’re far more likely to maim everyone space or cut down how many copies of a file involved.
    [Show full text]
  • Ubuntu Server Guide Basic Installation Preparing to Install
    Ubuntu Server Guide Welcome to the Ubuntu Server Guide! This site includes information on using Ubuntu Server for the latest LTS release, Ubuntu 20.04 LTS (Focal Fossa). For an offline version as well as versions for previous releases see below. Improving the Documentation If you find any errors or have suggestions for improvements to pages, please use the link at thebottomof each topic titled: “Help improve this document in the forum.” This link will take you to the Server Discourse forum for the specific page you are viewing. There you can share your comments or let us know aboutbugs with any page. PDFs and Previous Releases Below are links to the previous Ubuntu Server release server guides as well as an offline copy of the current version of this site: Ubuntu 20.04 LTS (Focal Fossa): PDF Ubuntu 18.04 LTS (Bionic Beaver): Web and PDF Ubuntu 16.04 LTS (Xenial Xerus): Web and PDF Support There are a couple of different ways that the Ubuntu Server edition is supported: commercial support and community support. The main commercial support (and development funding) is available from Canonical, Ltd. They supply reasonably- priced support contracts on a per desktop or per-server basis. For more information see the Ubuntu Advantage page. Community support is also provided by dedicated individuals and companies that wish to make Ubuntu the best distribution possible. Support is provided through multiple mailing lists, IRC channels, forums, blogs, wikis, etc. The large amount of information available can be overwhelming, but a good search engine query can usually provide an answer to your questions.
    [Show full text]
  • Scibian 9 HPC Installation Guide
    Scibian 9 HPC Installation guide CCN-HPC Version 1.9, 2018-08-20 Table of Contents About this document . 1 Purpose . 2 Structure . 3 Typographic conventions . 4 Build dependencies . 5 License . 6 Authors . 7 Reference architecture. 8 1. Hardware architecture . 9 1.1. Networks . 9 1.2. Infrastructure cluster. 10 1.3. User-space cluster . 12 1.4. Storage system . 12 2. External services . 13 2.1. Base services. 13 2.2. Optional services . 14 3. Software architecture . 15 3.1. Overview . 15 3.2. Base Services . 16 3.3. Additional Services. 19 3.4. High-Availability . 20 4. Conventions . 23 5. Advanced Topics . 24 5.1. Boot sequence . 24 5.2. iPXE Bootmenu Generator. 28 5.3. Debian Installer Preseed Generator. 30 5.4. Frontend nodes: SSH load-balancing and high-availability . 31 5.5. Service nodes: DNS load-balancing and high-availability . 34 5.6. Consul and DNS integration. 35 5.7. Scibian diskless initrd . 37 Installation procedure. 39 6. Overview. 40 7. Requirements . 41 8. Temporary installation node . 44 8.1. Base installation . 44 8.2. Administration environment . 44 9. Internal configuration repository . 46 9.1. Base directories . 46 9.2. Organization settings . 46 9.3. Cluster directories . 48 9.4. Puppet configuration . 48 9.5. Cluster definition. 49 9.6. Service role . 55 9.7. Authentication and encryption keys . 56 10. Generic service nodes . 62 10.1. Temporary installation services . 62 10.2. First Run. 62 10.3. Second Run . 64 10.4. Base system installation. 64 10.5. Ceph deployment . 66 10.6. Consul deployment.
    [Show full text]
  • LSF ’07: 2007 Linux Storage & Filesystem Workshop Namically Adjusted According to the Current Popularity of Its Hot Zone
    June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 84 PRO: A Popularity-Based Multi-Threaded Reconstruction overhead of PRO is O(n), although if a priority queue is Optimization for RAID-Structured Storage Systems used in the PRO algorithm the computation overhead can Lei Tian and Dan Feng, Huazhong University of Science and be reduced to O(log n). The entire PRO implementation in Technology; Hong Jiang, University of Nebraska—Lincoln; Ke the RAIDFrame software only added 686 lines of code. Zhou, Lingfang Zeng, Jianxi Chen, and Zhikun Wang, Hua- Work on PRO is ongoing. Future work includes optimiz - zhong University of Science and Technology and Wuhan ing the time slice, scheduling strategies, and hot zone National Laboratory for Optoelectronics; Zhenlei Song, length. Currently, PRO is being ported into the Linux soft - Huazhong University of Science and Technology ware RAID. Finally, the authors plan on further investigat - ing use of access patterns to help predict user accesses and Hong Jiang began his talk by discussing the importance of of filesystem semantic knowledge to explore accurate re - data recovery. Disk failures have become more common in construction. RAID-structured storage systems. The improvement in disk capacity has far outpaced improvements in disk band - The first questioner asked about the average rate of recov - width, lengthening the overall RAID recovery time. Also, ery for PRO. Hong answered that the average reconstruc - disk drive reliability has improved slowly, resulting in a tion time is several hundred seconds in the experimental very high overall failure rate in a large-scale RAID storage setup.
    [Show full text]