De Novo Transcriptome Characterization of Iris Atropurpurea (The Royal Iris, Iris Section Oncocyclus) and Phylogenetic Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jordan Itinerary Wildlife Holiday Botanical Tour Irises Tulips Orchids
Jordan A Greentours Itinerary Day 1 Arrive Jordan Our direct British Airways flight arrives late in the evening so we’ll stay the first night in Madaba, just half an hour from the airport. Days 2 - 5 The Northern Hills, Ajlun, Jerash, and the Syrian border The hills that form the east bank of the Jordan Valley may come as a surprise to the first-time visitor to Jordan. Covered in a beguiling mix of olive groves, terraces, villages and some rather fine indigenous forest, they have a very rich natural as well as cultural heritage. The latter of course will play a significant part on our tour and so we’ll take time out to enjoy the Roman ruins at Jerash, the wonderful situation of Roman Pella, and the fairy-tale ruins of the Arab-built Crusader period castle that looms over Ajlun. However it is the fauna and flora that will take most of our attention. The hills reach around four thousand feet above sea level along their length, actually four thousand two hundred feet above the almost subtropical Jordan River in the valley below. The hills have a largely European avifauna but as one descends things become more exotic with first Blackstarts and Spectacled Bulbuls, and then White-throated Kingfisher and Little Green Bee- eater. The same is true of the flowers with the highest hills having an almost alpine component and the valley a rich mixture of Middle-eastern plants. Ajlun, a new nature reserve protecting an area of natural evergreen oak forest, is right on the very tops of the hills. -
Iris for the Home Gardener a Rainbow of Colors in Many Shapes and Sizes Bob Lyons
Iris for the Home Gardener A Rainbow of Colors in Many Shapes and Sizes Bob Lyons FEW PLANTS HAVE AS MUCH HISTORY and affection among gardeners than iris. In Greek mythology, Iris is the personification of the rainbow and messenger of the Gods, and indeed, Iris appear in many magical colors—a large and diverse genus. Some have large showy flowers, others more I. ‘Black Gamecock’ understated; some grow in clumps, others spread; some prefer I. ensata ‘Angelic Choir’ it dry, others are more partial to moist, even wet conditions; and some grow from bulbs, while others return each year from rhizomes just beneath the soil surface. How does one tell them apart and make the right choice for a home garden? Fortunately, horticulturists and iris enthusiasts have developed a system of organization to make sense out of the vast world of irises. Three groups that account for more than 75% of the commercial iris market today are the Bearded Iris, Siberian Iris, and Japanese Iris. Each group recognizes the best of the best with prestigious national awards, noted in the descriptions that follow. The Dykes Medal is awarded to the finest iris of any class. More iris plants are described in the “Plant Descriptions: I. ×pseudata ‘Aichi no Kagayaki’ I. ensata ‘Cascade Crest’ Perennial” section. Latin Name Common Name Mature Size Light Soil Pot Size Price Iris ‘Black Gamecock’ Louisiana Iris 2–3 .8 d 1 g $14 Late; stunning blue black, velvet-colored flowers; hummingbird haven; can grow in 4 inches of standing water; DeBaillon Medal. Iris ×pseudata ‘Aichi no Kagayaki’ Iris Hybrid 2 . -
Scanned Document
•••••OCTOBER · 19 7 4- Number 14 THE SPECIES IRIS STUDY GROUP OF THE AMERICAN IRIS SOCIETY Jean Witt, of Seattle, is the Director of the AIS Species Seed Exchange. he also is an expert at doing ink-line botanic illustrations. Her seed exchange list for 1974 will be exten ive - but it will NOT offer eeds of the pecies which she has drawn for this cover of SIGNA. Seeds of Iris afghanica, of tpe Regelia Section, are not yet available - because Iris afghanico is a newly discovered and newly described species. More details are on page 367. THE SPECIES IRIS STUDY GROUP of_ TH E AMERICAN IRIS SOCIETY OFFICERS OF THE SOCIETY Chairman- - - - - - - Roy Davidson- - - 911 Western Avenue,,_ Number 200 Seattle, Washington !:18104 phone 206-746- 2156 Secretary-Treasurer - - - Homer Metcalf - - Montana State Universi~i College of Agriculture BoLeman Montana 597 5 phone 46 6-586-5624 Librarian - - - - - - Jerry Flintoff- 5608 North 18th Street Tacoma, Washi:1gton 98406 Seed Exchange Director Jean Witt - 16516 25th, N.E. Seattle, Washington 98155 Species Robins Director- Lorena Reid 17225 McKenzie Highwa'i, Route 2 Springfield, Oregon 97477 Editor of SIGNA - - - Bill Gunther 740 Crest Road Del Ma.c, California 92014 phone , 14-755- 2798 Editor of Study Manual Roy Davidson- - 911 Western Avenue,,_ Number 200 Seattle, Washington !:18104 • • • • • • • • • • • SIGNA - - - Number 14 OCTOBER 1974 TABLE OF CONTENTS Cover--lris afghanica · Jean Witt - · · · 353 Notes on SIGNA 13 · - Roy Davidson - - · 355 It is a Gift! - - - - - Bill Gunther · · · 356 The Genus Iris: a review - - - - - - - P.J. Chittenden - - 357 Spuria Species as Garden Plants - E. -
Nature Conservation
J. Nat. Conserv. 11, – (2003) Journal for © Urban & Fischer Verlag http://www.urbanfischer.de/journals/jnc Nature Conservation Constructing Red Numbers for setting conservation priorities of endangered plant species: Israeli flora as a test case Yuval Sapir1*, Avi Shmida1 & Ori Fragman1,2 1 Rotem – Israel Plant Information Center, Dept. of Evolution, Systematics and Ecology,The Hebrew University, Jerusalem, 91904, Israel; e-mail: [email protected] 2 Present address: Botanical Garden,The Hebrew University, Givat Ram, Jerusalem 91904, Israel Abstract A common problem in conservation policy is to define the priority of a certain species to invest conservation efforts when resources are limited. We suggest a method of constructing red numbers for plant species, in order to set priorities in con- servation policy. The red number is an additive index, summarising values of four parameters: 1. Rarity – The number of sites (1 km2) where the species is present. A rare species is defined when present in 0.5% of the area or less. 2. Declining rate and habitat vulnerability – Evaluate the decreasing rate in the number of sites and/or the destruction probability of the habitat. 3. Attractivity – the flower size and the probability of cutting or exploitation of the plant. 4. Distribution type – scoring endemic species and peripheral populations. The plant species of Israel were scored for the parameters of the red number. Three hundred and seventy (370) species, 16.15% of the Israeli flora entered into the “Red List” received red numbers above 6. “Post Mortem” analysis for the 34 extinct species of Israel revealed an average red number of 8.7, significantly higher than the average of the current red list. -
These De Doctorat De L'universite Paris-Saclay
NNT : 2016SACLS250 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de doctorat (Biologie) Par Mlle Nour Abdel Samad Titre de la thèse (CARACTERISATION GENETIQUE DU GENRE IRIS EVOLUANT DANS LA MEDITERRANEE ORIENTALE) Thèse présentée et soutenue à « Beyrouth », le « 21/09/2016 » : Composition du Jury : M., Tohmé, Georges CNRS (Liban) Président Mme, Garnatje, Teresa Institut Botànic de Barcelona (Espagne) Rapporteur M., Bacchetta, Gianluigi Università degli Studi di Cagliari (Italie) Rapporteur Mme, Nadot, Sophie Université Paris-Sud (France) Examinateur Mlle, El Chamy, Laure Université Saint-Joseph (Liban) Examinateur Mme, Siljak-Yakovlev, Sonja Université Paris-Sud (France) Directeur de thèse Mme, Bou Dagher-Kharrat, Magda Université Saint-Joseph (Liban) Co-directeur de thèse UNIVERSITE SAINT-JOSEPH FACULTE DES SCIENCES THESE DE DOCTORAT DISCIPLINE : Sciences de la vie SPÉCIALITÉ : Biologie de la conservation Sujet de la thèse : Caractérisation génétique du genre Iris évoluant dans la Méditerranée Orientale. Présentée par : Nour ABDEL SAMAD Pour obtenir le grade de DOCTEUR ÈS SCIENCES Soutenue le 21/09/2016 Devant le jury composé de : Dr. Georges TOHME Président Dr. Teresa GARNATJE Rapporteur Dr. Gianluigi BACCHETTA Rapporteur Dr. Sophie NADOT Examinateur Dr. Laure EL CHAMY Examinateur Dr. Sonja SILJAK-YAKOVLEV Directeur de thèse Dr. Magda BOU DAGHER KHARRAT Directeur de thèse Titre : Caractérisation Génétique du Genre Iris évoluant dans la Méditerranée Orientale. Mots clés : Iris, Oncocyclus, région Est-Méditerranéenne, relations phylogénétiques, status taxonomique. Résumé : Le genre Iris appartient à la famille des L’approche scientifique est basée sur de nombreux Iridacées, il comprend plus de 280 espèces distribuées outils moléculaires et génétiques tels que : l’analyse de à travers l’hémisphère Nord. -
Pollen Dispersal and Interspecific Gene Flow in Louisiana Irises
Heredity 68 (1992) 399—404 Received 26Apr11 1991 OThe Genetical Society of Great Britain Pollen dispersal and interspecific gene flow in Louisiana irises M. L. ARNOLD*, J. J. ROBINSON, C. M. BUCKNER & B. D. BENNETt Department of Genetics, University of Georgia, Athens, GA 30602, USA An analysis of chloroplast DNA (cpDNA) variation was carried out for 106 individual plants from three natural populations of Louisiana irises. Two of the samples (59 individuals) represented I. brevicaulis populations. The third sample was from a population defined by allozyme markers as an area of contact between I. fidva, I. hexagona and I. brevicaulis. The cpDNA acts as a seed-specific genetic marker because it is inherited from the maternal parent. cpDNA markers were thus used to discriminate between (i) introgressive hybridization due to seed movement followed by pollen transfer and, (ii) introgression resulting from direct transfer of pollen between allopatric populations of the hybridizing taxa. Furthermore, the concurrent analysis of biparental and maternal markers for the same individuals allowed a test for any directionality in the introgression. A comparison of cpDNA results with data from previous nuclear analyses led to the conclusion that pollen flow occurred from allopatric populations of I. hexagona into an area of sympatry involving I. fulva and I. brevicaulis. In addition, the genotypes detected in the hybrid population indicate that 1. fulva and I. brevicaulis have acted as both pollen and seed parents to produce introgressant individuals. The results of the present study and those of previous nuclear and cpDNA analyses suggest that pollen dispersal is the most important avenue for gene flow between these Iris species. -
Hybrid Fitness, Adaptation and Evolutionary Diversification: Lessons
Heredity (2012) 108, 159–166 & 2012 Macmillan Publishers Limited All rights reserved 0018-067X/12 www.nature.com/hdy REVIEW Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises ML Arnold, ES Ballerini and AN Brothers Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin’s publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotypeÂenvironment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a ‘model system’ for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes. -
Positive and Negative Impacts of Non-Native Bee Species Around the World
Supplementary Materials: Positive and Negative Impacts of Non-Native Bee Species around the World Laura Russo Table S1. Selected references of potential negative impacts of Apis or Bombus species. Bold, underlined, and shaded text refers to citations with an empirical component while unbolded text refers to papers that refer to impacts only from a hypothetical standpoint. Light grey shading indicates species for which neither positive nor negative impacts have been recorded. “But see” refers to manuscripts that show evidence or describe the opposite of the effect and is capitalized when only contradictory studies could be found. Note that Apis mellifera scutellata (the “Africanized” honeybee), is treated separately given the abundance of research specifically studying that subspecies. Altering Non-native Nesting Floral Pathoens/ Invasive Introgres Decrease Pollination Species Sites Resources Parasites Weeds sion Plant Fitness Webs Apis cerana [1] [2] [1–3] [4] Apis dorsata Apis florea [5] [5] [37,45] But see [8–19] but [27–35] but [36–38] [39–43] [38,46,47] Apis mellifera [9,23–26] [4] [6,7] see [6,20–22] see [6] but see [44] [48,49] but see [50] Apis mellifera [51] but see [55–57] scutellata [52–54] Bombus [58,59] hortorum Bombus But see But see [60] [61] hypnorum [60] Bombus [62] [62,63] [26,64–66] [62] impatiens Bombus lucorum Bombus [28,58,59,6 [39] but see [67,68] [69,70] [36,39] ruderatus 9,71,72] [73] Bombus [59] subterraneous [67,70,74,75, [29,58,72,9 Bombus [25,26,70,7 [38,39,68,81,97,98 [4,76,88, [47,76,49,86,97 [74–76] 77–84] but 1–95] but terrestris 6,87–90] ] 99,100] ,101–103] see [85,86] see [96] Insects 2016, 7, 69; doi:10.3390/insects7040069 www.mdpi.com/journal/insects Insects 2016, 7, 69 S2 of S8 Table S2. -
Iridaceae – Iris Family
IRIDACEAE – IRIS FAMILY Plant: herbs, perennial; can be shrub-like elsewhere Stem: Root: growing from rhizomes, bulbs, or corms Leaves: simple, alternate or mostly basal (sheaths open or closed), most grass or sword-like with parallel veins Flowers: perfect, regular (actinomorphic) or irregular (zygomorphic); flowers showy, often solitary; flowers in 3’s (petals, sepals, and stamens), both sepals and petals often colored; regular as in Blue-Eyed grasses (looks like 6-plan), or irregular as in true Irises; flower subtended by 2 bracts; ovary mostly inferior, 3 carpels, 1 style Fruit: capsule with seed Other: Monocotyledons Group Genera: 65+ genera; locally Belamcanda (blackberry-lily), Iris (iris), Sisyrinchium (blue-eyed grass) WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Iridaceae (Iris Family) Examples of some common genera German Iris [Blue Flag] Iris germanica L. (Introduced Blackberry Lily Belamcanda chinensis (L.) DC. (Introduced) Dwarf Crested Iris Stout Blue-Eyed Grass Iris cristata Aiton Sisyrinchium angustifolium Mill. Copper [Red] Iris Iris fulva Ker Gawl. Prairie Blue-Eyed Grass Sisyrinchium campestre E.P. Bicknell IRIDACEAE – IRIS FAMILY Blackberry Lily; Belamcanda chinensis (L.) DC. (Introduced) Dwarf Crested Iris; Iris cristata Aiton Copper [Red] Iris; Iris fulva Ker Gawl. German Iris [Blue Flag]; Iris germanica L. (Introduced) Yellow Iris [Flag]; Iris pseudacorus L. (Introduced) Southern Blue Flag [Shreve's Iris]; Iris virginica L. var. shrevei (Small) E.S. Anderson Common Blue-Eyed Grass; Sisyrinchium albidum Raf. Stout Blue-Eyed Grass; Sisyrinchium angustifolium Mill. Eastern Blue-Eyed Grass; Sisyrinchium atlanticum E.P. Bicknell Prairie Blue-Eyed Grass; Sisyrinchium campestre E.P. -
Iris Sibirica and Others Iris Albicans Known As Cemetery
Iris Sibirica and others Iris Albicans Known as Cemetery Iris as is planted on Muslim cemeteries. Two different species use this name; the commoner is just a white form of Iris germanica, widespread in the Mediterranean. This is widely available in the horticultural trade under the name of albicans, but it is not true to name. True Iris albicans which we are offering here occurs only in Arabia and Yemen. It is some 60cm tall, with greyish leaves and one to three, strongly and sweetly scented, 9cm flowers. The petals are pure, bone- white. The bracts are pale green. (The commoner interloper is found across the Mediterranean basin and is not entitled to the name, which continues in use however. The wrongly named albicans, has brown, papery bracts, and off-white flowers). Our stock was first found near Sana’a, Yemen and is thriving here, outside, in a sunny, raised bed. Iris Sibirica and others Iris chrysographes Black Form Clumps of narrow, iris-like foliage. Tall sprays of darkest violet to almost black velvety flowers, Jun-Sept. Ht 40cm. Moist, well drained soil. Part shade. Deepest Purple which is virtually indistinguishable from black. Moist soil. Ht. 50cm Iris chrysographes Dykes (William Rickatson Dykes, 1911, China); Section Limniris, Series Sibericae; 14-18" (35-45 cm), B7D; Flowers dark reddish violet with gold streaks in the signal area giving it its name (golden writing); Collected by E. H. Wilson in 1908, in China; The Gardeners' Chronicle 49: 362. 1911. The Curtis's Botanical Magazine. tab. 8433 in 1912, gives the following information along with the color illustration. -
Horticulture Hints Spring 2017Pdfpdf
Horticulture Hints Spring 2017 Landscape Gardening and Ornamentals Spring 2017 It is very important to focus on weed control Louisiana SUPER this time of year in shrub and flowerbeds. Cool- season weeds are in active growth as the days get PLANTS! longer and warmer, and they will flower and set The Louisiana Super Plants seeds. Left unchecked, the prolific seed production program is an educational and marketing campaign of this spring will lead to even more problems next the LSU AgCenter that highlights tough and beautiful spring, so efforts made over the next couple of plants that perform well in Louisiana landscapes. Loui- months are especially critical. siana Super Plants have gone through several years of Ideally, all of your beds should be mulched university evaluations or have an established history of with about 2 to 3 inches of a mulching material, performing well throughout Louisiana. such as chopped leaves, pine straw, pine bark or Louisiana Super Plants have a proven track record; other suitable materials. Mulches help consider- they are “university tested and industry approved.” ably but are not totally weed-proof. If weeds do Homeowners and professionals alike can benefit from manage to make it through the mulch, dig them using Louisiana Super Plants to ensure successful land- out promptly making sure you get any bulbs or scaping efforts. roots in the ground that might resprout. Plants of the 2017 Louisiana Super Plants spring You may also carefully apply a herbicide, such selections should be available at participating area as glyphosate (Killzall, Eraser, Roundup and other nurseries by the time promotion begins. -
Pollinator Limitation on Reproductive Success in Iris Tuberosa
Research Article Pollinator limitation on reproductive success in Iris tuberosa Giuseppe Pellegrino* Department of Biology, Ecology and Earth Science, University of Calabria, I-87036 Rende, Italy Received: 22 September 2014; Accepted: 8 December 2014; Published: 19 December 2014 Associate Editor: James F. Cahill Citation: Pellegrino G. 2015. Pollinator limitation on reproductive success in Iris tuberosa. AoB PLANTS 7: plu089; doi:10.1093/aobpla/plu089 Abstract. Variation in plant and floral size can have conflicting effects on pollination and fruit production in flower- ing plants. This research examines the contributions of plant height, flower size and pollinator visitation to reproduct- ive success in four populations of Iris tuberosa. The plants were pollinated exclusively by hymenopteran species, primarily during sunny days. Pollination supplementation increased the proportion of flowers that matured into fruit, with 95 % fruit set for hand-pollinated compared with 74.15 % for naturally pollinated flowers. The pollinator visitation rate and the proportion of fruit produced were not significantly different between tall and short plants or between small and large flowers. Furthermore, the increase in plant size and floral display did not increase the frequency of pollinator visitations and so did not increase the fruit set. Thus, despite the widespread effects of flower- ing plant size on pollinator attraction and plant reproduction in other species, these effects are lacking in I. tuberosa. This study quantifies the role of pollinators in the reproductive success of I. tuberosa. Pollinators visited tall/short plants and large/small flowers in equal proportion, suggesting that plant and floral display size do not affect pollinator attraction and reproductive success in I.