Mouse Slc22a14 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Slc22a14 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Slc22a14 Knockout Project (CRISPR/Cas9) Objective: To create a Slc22a14 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Slc22a14 gene (NCBI Reference Sequence: NM_001037749 ; Ensembl: ENSMUSG00000070280 ) is located on Mouse chromosome 9. 12 exons are identified, with the ATG start codon in exon 3 and the TAG stop codon in exon 12 (Transcript: ENSMUST00000093775). Exon 3~10 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit severe male infertility associated with asthenozoospermia, impaired sperm capacitation, decreased fertilization frequency, abnormal sperm flagellar bending, and abnormal sperm annulus morphology. Exon 3 starts from the coding region. Exon 3~10 covers 78.64% of the coding region. The size of effective KO region: ~8985 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 6 7 8 9 10 12 Legends Exon of mouse Slc22a14 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1403 bp section downstream of Exon 10 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(21.15% 423) | C(26.3% 526) | T(32.1% 642) | G(20.45% 409) Note: The 2000 bp section upstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(1403bp) | A(26.44% 371) | C(23.38% 328) | T(26.59% 373) | G(23.59% 331) Note: The 1403 bp section downstream of Exon 10 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr9 - 119181028 119183027 2000 browser details YourSeq 159 804 1373 2000 86.1% chr8 + 70625906 70626325 420 browser details YourSeq 144 811 978 2000 92.2% chr12 - 77150656 77150822 167 browser details YourSeq 144 806 973 2000 91.0% chr1 - 190963661 190963826 166 browser details YourSeq 144 792 964 2000 94.5% chr1 - 52478945 52479119 175 browser details YourSeq 143 692 973 2000 93.9% chr4 - 134694535 134695019 485 browser details YourSeq 142 808 974 2000 91.5% chr4 - 48794236 48794389 154 browser details YourSeq 140 811 964 2000 96.2% chr2 - 69802560 69802728 169 browser details YourSeq 138 808 975 2000 91.8% chr9 - 42529570 42529735 166 browser details YourSeq 138 804 975 2000 90.8% chr13 - 105191691 105191860 170 browser details YourSeq 137 779 976 2000 85.9% chr6 - 79593951 79594116 166 browser details YourSeq 137 811 972 2000 91.1% chr14 - 59580876 59581034 159 browser details YourSeq 137 811 974 2000 94.8% chrX + 74441554 74441717 164 browser details YourSeq 136 799 963 2000 92.1% chr15 - 91450376 91450541 166 browser details YourSeq 136 791 972 2000 96.6% chr13 - 26619361 26619854 494 browser details YourSeq 136 811 971 2000 94.8% chr5 + 93395540 93395700 161 browser details YourSeq 135 807 973 2000 89.5% chr8 - 123099695 123099848 154 browser details YourSeq 135 811 973 2000 89.2% chr1 - 156716450 156716605 156 browser details YourSeq 134 804 961 2000 90.1% chr2 - 162007445 162007595 151 browser details YourSeq 134 811 973 2000 91.1% chr13 - 55605036 55605196 161 Note: The 2000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 1403 1 1403 1403 100.0% chr9 - 119170640 119172042 1403 browser details YourSeq 98 751 1044 1403 80.4% chr3 - 33688997 33689302 306 browser details YourSeq 95 742 997 1403 85.9% chr12 + 8225855 8226114 260 browser details YourSeq 94 705 1034 1403 79.3% chr13 + 55045860 55046182 323 browser details YourSeq 88 729 1070 1403 88.6% chr18 - 68030823 68031195 373 browser details YourSeq 86 722 864 1403 82.8% chr6 - 115832106 115832239 134 browser details YourSeq 84 701 865 1403 92.0% chr4 - 48745885 48746049 165 browser details YourSeq 83 734 987 1403 91.9% chr6 - 67424962 67425223 262 browser details YourSeq 83 697 858 1403 92.1% chr12 - 25790774 25790935 162 browser details YourSeq 82 700 951 1403 92.8% chr17 + 48783606 48783880 275 browser details YourSeq 81 734 949 1403 89.6% chr6 - 94013648 94013861 214 browser details YourSeq 81 697 876 1403 79.3% chr12 - 17556264 17556432 169 browser details YourSeq 81 732 952 1403 89.3% chr18 + 60542839 60543056 218 browser details YourSeq 81 704 959 1403 91.8% chr1 + 85609011 85706189 97179 browser details YourSeq 79 790 1013 1403 90.0% chr17 - 6418145 6418386 242 browser details YourSeq 79 789 1013 1403 89.3% chr17 + 6667660 6667902 243 browser details YourSeq 79 697 960 1403 86.2% chr1 + 6390296 6390553 258 browser details YourSeq 77 710 864 1403 86.7% chr12 - 11066489 11066669 181 browser details YourSeq 76 722 864 1403 88.1% chr2 - 118243558 118243698 141 browser details YourSeq 76 711 986 1403 87.8% chr7 + 63518334 63518614 281 Note: The 1403 bp section downstream of Exon 10 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Slc22a14 solute carrier family 22 (organic cation transporter), member 14 [ Mus musculus (house mouse) ] Gene ID: 382113, updated on 3-Sep-2019 Gene summary Official Symbol Slc22a14 provided by MGI Official Full Name solute carrier family 22 (organic cation transporter), member 14 provided by MGI Primary source MGI:MGI:2685974 See related Ensembl:ENSMUSG00000070280 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Gm1128 Expression Restricted expression toward testis adult (RPKM 114.3) See more Orthologs human all Genomic context Location: 9; 9 F3 See Slc22a14 in Genome Data Viewer Exon count: 13 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 9 NC_000075.6 (119169453..119190430, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 9 NC_000075.5 (119078574..119099511, complement) Chromosome 9 - NC_000075.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 4 transcripts Gene: Slc22a14 ENSMUSG00000070280 Description solute carrier family 22 (organic cation transporter), member 14 [Source:MGI Symbol;Acc:MGI:2685974] Gene Synonyms LOC382113 Location Chromosome 9: 119,169,455-119,365,553 reverse strand. GRCm38:CM001002.2 About this gene This gene has 4 transcripts (splice variants), 445 orthologues, 26 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Slc22a14-201 ENSMUST00000093775.11 2213 629aa ENSMUSP00000091289.5 Protein coding CCDS23609 Q497L9 TSL:1 GENCODE basic APPRIS P1 Slc22a14-204 ENSMUST00000170400.8 2110 629aa ENSMUSP00000131982.2 Protein coding CCDS23609 Q497L9 TSL:5 GENCODE basic APPRIS P1 Slc22a14-203 ENSMUST00000152061.1 589 196aa ENSMUSP00000117967.1 Protein coding - F7AMC9 CDS 5' and 3' incomplete TSL:3 Slc22a14-202 ENSMUST00000127794.1 340 20aa ENSMUSP00000120144.1 Protein coding - D3YUH1 CDS 3' incomplete TSL:5 Page 7 of 9 https://www.alphaknockout.com 216.10 kb Forward strand 119.20Mb 119.25Mb 119.30Mb 119.35Mb Genes Gm47289-201 >lncRNA Acaa1a-208 >nonsense mediated decay (Comprehensive set... Gm10608-201 >processed pseudogene Xylb-204 >nonsense mediated decay Xylb-205 >nonsense mediated decay Acaa1a-206 >protein coding Acaa1a-210 >protein coding Acaa1a-201 >protein coding Acaa1a-209 >retained intron Acaa1a-204 >retained intron Acaa1a-207 >protein coding Acaa1a-203 >protein coding Acaa1a-205 >retained intron Acaa1a-202 >retained intron Xylb-201 >protein coding Xylb-203 >lncRNA Contigs < AC055818.9 < AC128702.4 Genes (Comprehensive set... < Slc22a14-201protein coding < Slc22a13b-201polymorphic pseudogene < Gm22729-201snoRNA< Myd88-201protein coding < Slc22a14-204protein coding < Slc22a14-203protein coding < Oxsr1-201protein coding < Myd88-203retained intron < Slc22a14-202protein coding < Oxsr1-202nonsense mediated
Recommended publications
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Differential Expression of Hydroxyurea Transporters in Normal and Polycythemia Vera Hematopoietic Stem and Progenitor Cell Subpopulations
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Differential expression of hydroxyurea transporters in normal and polycythemia vera hematopoietic stem and progenitor cell subpopulations Tan, Ge ; Meier-Abt, Fabienne Abstract: Polycythemia vera (PV) is a myeloproliferative neoplasm marked by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. Hydroxyurea (HU) is a standard treat- ment for high-risk patients with PV. Because disease-driving mechanisms are thought to arise in PV stem cells, effective treatments should target primarily the stem cell compartment. We tested for theantipro- liferative effect of patient treatment with HU in fluorescence-activated cell sorting-isolated hematopoietic stem/multipotent progenitor cells (HSC/MPPs) and more committed erythroid progenitors (common myeloid/megakaryocyte-erythrocyte progenitors [CMP/MEPs]) in PV using RNA-sequencing and gene set enrichment analysis. HU treatment led to significant downregulation of gene sets associated with cell proliferation in PV HSCs/MPPs, but not in PV CMP/MEPs. To explore the mechanism underlying this finding, we assessed for expression of solute carrier membrane transporters, which mediate trans- membrane movement of drugs such as HU into target cells. The active HU uptake transporter OCTN1 was upregulated in HSC/MPPs compared with CMP/MEPs of untreated patients with PV, and the HU diffusion facilitator urea transporter B (UTB) was downregulated in HSC/MPPs compared withCM- P/MEPs in all patient and control groups tested. These findings indicate a higher accumulation ofHU within PV HSC/MPPs compared with PV CMP/MEPs and provide an explanation for the differential effects of HU in HSC/MPPs and CMP/MEPs of patients with PV.
    [Show full text]
  • Analysis of OAT, OCT, OCTN, and Other Family Members Reveals 8
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887299; this version posted December 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Reclassification of SLC22 Transporters: Analysis of OAT, OCT, OCTN, and other Family Members Reveals 8 Functional Subgroups Darcy Engelhart1, Jeffry C. Granados2, Da Shi3, Milton Saier Jr.4, Michael Baker6, Ruben Abagyan3, Sanjay K. Nigam5,6 1Department of Biology, University of California San Diego, La Jolla 92093 2Department of Bioengineering, University of California San Diego, La Jolla 92093 3School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093 4Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, San Diego, CA, USA 5Department of Pediatrics, University of California San Diego, La Jolla 92093 6Department of Medicine, University of California San Diego, La Jolla 92093 *To whom correspondence should be addressed: [email protected] Running title: Functional subgroups for SLC22 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.887299; this version posted December 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Among transporters, the SLC22 family is emerging as a central hub of endogenous physiology.
    [Show full text]
  • Figure S1. Basic Information of RNA-Seq Results. (A) Bar Plot of Reads Component for Each Sample
    Figure S1. Basic information of RNA-seq results. (A) Bar plot of reads component for each sample. (B) Dot plot shows the principal component analysis (PCA) of each sample. (C) Venn diagram of DEGs for three time points, the overlap part of the circles represents common differentially expressed genes between combinations. Figure S2. Scatter plot of DEGs for each time point. The X and Y axes represent the logarithmic value of gene expression. Red represents up-regulated DEG, blue represents down-regulated DEG, and gray represents non-DEG. Table S1. Primers used for quantitative real-time PCR analysis of DEGs. Gene Primer Sequence Forward 5’-CTACGAGTGGATGGTCAAGAGC-3’ FOXO1 Reverse 5’-CCAGTTCCTTCATTCTGCACACG-3’ Forward 5’-GACGTCCGGCATCAGAGAAA-3’ IRS2 Reverse 5’-TCCACGGCTAATCGTCACAG-3’ Forward 5’-CACAACCAGGACCTCACACC-3’ IRS1 Reverse 5’-CTTGGCACGATAGAGAGCGT-3’ Forward 5’-AGGATACCACTCCCAACAGACCT-3’ IL6 Reverse 5’-CAAGTGCATCATCGTTGTTCATAC-3’ Forward 5’-TCACGTTGTACGCAGCTACC-3’ CCL5 Reverse 5’-CAGTCCTCTTACAGCCTTTGG-3’ Forward 5’-CTGTGCAGCCGCAGTGCCTACC-3’ BMP7 Reverse 5’-ATCCCTCCCCACCCCACCATCT-3’ Forward 5’-CTCTCCCCCTCGACTTCTGA-3’ BCL2 Reverse 5’-AGTCACGCGGAACACTTGAT-3’ Forward 5’-CTGTCGAACACAGTGGTACCTG-3’ FGF7 Reverse 5’-CCAACTGCCACTGTCCTGATTTC-3’ Forward 5’-GGGAGCCAAAAGGGTCATCA-3’ GAPDH Reverse 5’-CGTGGACTGTGGTCATGAGT-3’ Supplementary material: Differentially expressed genes log2(SADS-CoV_12h/ Qvalue (SADS-CoV _12h/ Gene Symbol Control_12h) Control_12h) PTGER4 -1.03693 6.79E-04 TMEM72 -3.08132 3.66E-04 IFIT2 -1.02918 2.11E-07 FRAT2 -1.09282 4.66E-05
    [Show full text]
  • View a Copy of This Licence, Visit
    Robertson et al. BMC Biology (2020) 18:103 https://doi.org/10.1186/s12915-020-00826-z RESEARCH ARTICLE Open Access Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets Matthew J. Robertson1,2, Katarzyna Kent3,4,5, Nathan Tharp3,4,5, Kaori Nozawa3,5, Laura Dean3,4,5, Michelle Mathew3,4,5, Sandra L. Grimm2,6, Zhifeng Yu3,5, Christine Légaré7,8, Yoshitaka Fujihara3,5,9,10, Masahito Ikawa9, Robert Sullivan7,8, Cristian Coarfa1,2,6*, Martin M. Matzuk1,3,5,6 and Thomas X. Garcia3,4,5* Abstract Background: The development of a safe, effective, reversible, non-hormonal contraceptive method for men has been an ongoing effort for the past few decades. However, despite significant progress on elucidating the function of key proteins involved in reproduction, understanding male reproductive physiology is limited by incomplete information on the genes expressed in reproductive tissues, and no contraceptive targets have so far reached clinical trials. To advance product development, further identification of novel reproductive tract-specific genes leading to potentially druggable protein targets is imperative. Results: In this study, we expand on previous single tissue, single species studies by integrating analysis of publicly available human and mouse RNA-seq datasets whose initial published purpose was not focused on identifying male reproductive tract-specific targets. We also incorporate analysis of additional newly acquired human and mouse testis and epididymis samples to increase the number of targets identified. We detected a combined total of 1178 genes for which no previous evidence of male reproductive tract-specific expression was annotated, many of which are potentially druggable targets.
    [Show full text]
  • WO 2013/184908 A2 12 December 2013 (12.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/184908 A2 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: Jr.; One Procter & Gamble Plaza, Cincinnati, Ohio 45202 G06F 19/00 (201 1.01) (US). HOWARD, Brian, Wilson; One Procter & Gamble Plaza, Cincinnati, Ohio 45202 (US). (21) International Application Number: PCT/US20 13/044497 (74) Agents: GUFFEY, Timothy, B. et al; c/o The Procter & Gamble Company, Global Patent Services, 299 East 6th (22) Date: International Filing Street, Sycamore Building, 4th Floor, Cincinnati, Ohio 6 June 2013 (06.06.2013) 45202 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/656,218 6 June 2012 (06.06.2012) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: THE PROCTER & GAMBLE COMPANY HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, [US/US]; One Procter & Gamble Plaza, Cincinnati, Ohio KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 45202 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (72) Inventors: XU, Jun; One Procter & Gamble Plaza, Cincin SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, nati, Ohio 45202 (US).
    [Show full text]
  • Phylogenetic, Syntenic, and Tissue Expression Analysis of Slc22 Genes in Zebrafish (Danio Rerio)
    Mihaljevic et al. BMC Genomics (2016) 17:626 DOI 10.1186/s12864-016-2981-y RESEARCH ARTICLE Open Access Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio) Ivan Mihaljevic1†, Marta Popovic1,2†, Roko Zaja1,3 and Tvrtko Smital1* Abstract Background: SLC22 protein family is a member of the SLC (Solute carriers) superfamily of polyspecific membrane transporters responsible for uptake of a wide range of organic anions and cations, including numerous endo- and xenobiotics. Due to the lack of knowledge on zebrafish Slc22 family, we performed initial characterization of these transporters using a detailed phylogenetic and conserved synteny analysis followed by the tissue specific expression profiling of slc22 transcripts. Results: We identified 20 zebrafish slc22 genes which are organized in the same functional subgroups as human SLC22 members. Orthologies and syntenic relations between zebrafish and other vertebrates revealed consequences of the teleost-specific whole genome duplication as shown through one-to-many orthologies for certain zebrafish slc22 genes. Tissue expression profiles of slc22 transcripts were analyzed using qRT-PCR determinations in nine zebrafish tissues: liver, kidney, intestine, gills, brain, skeletal muscle, eye, heart, and gonads. Our analysis revealed high expression of oct1 in kidney, especially in females, followed by oat3 and oat2c in females, oat2e in males and orctl4 in females. oct1 was also dominant in male liver. oat2d showed the highest expression in intestine with less noticeable gender differences. All slc22 genes showed low expression in gills, and moderate expression in heart and skeletal muscle. Dominant genes in brain were oat1 in females and oct1 in males, while the highest gender differences were determined in gonads, with dominant expression of almost all slc22 genes in testes and the highest expression of oat2a.
    [Show full text]
  • Dlec1 Is Required for Spermatogenesis and Male Fertility in Mice
    www.nature.com/scientificreports OPEN Dlec1 is required for spermatogenesis and male fertility in mice Yu Okitsu1, Mamoru Nagano1, Takahiro Yamagata2, Chizuru Ito 3, Kiyotaka Toshimori3, Hideo Dohra 4, Wataru Fujii 5 & Keiichiro Yogo1,2,6* Deleted in lung and esophageal cancer 1 (DLEC1) is a tumour suppressor gene that is downregulated in various cancers in humans; however, the physiological and molecular functions of DLEC1 are still unclear. This study investigated the critical role of Dlec1 in spermatogenesis and male fertility in mice. Dlec1 was signifcantly expressed in testes, with dominant expression in germ cells. We disrupted Dlec1 in mice and analysed its function in spermatogenesis and male fertility. Dlec1 deletion caused male infertility due to impaired spermatogenesis. Spermatogenesis progressed normally to step 8 spermatids in Dlec1−/− mice, but in elongating spermatids, we observed head deformation, a shortened tail, and abnormal manchette organization. These phenotypes were similar to those of various intrafagellar transport (IFT)-associated gene-defcient sperm. In addition, DLEC1 interacted with tailless complex polypeptide 1 ring complex (TRiC) and Bardet–Biedl Syndrome (BBS) protein complex subunits, as well as α- and β-tubulin. DLEC1 expression also enhanced primary cilia formation and cilia length in A549 lung adenocarcinoma cells. These fndings suggest that DLEC1 is a possible regulator of IFT and plays an essential role in sperm head and tail formation in mice. Spermatogenesis is a complex process in which spermatogonial stem cells diferentiate into haploid sperm1. Sper- matogonia proliferate by mitosis and diferentiate into spermatocytes, which undergo two consecutive meiotic divisions to produce round spermatids. Tese round spermatids further undergo dynamic morphological and structural changes, such as elongation of the nucleus, condensation of chromatin, and formation of a fagel- lum, to form mature sperm.
    [Show full text]
  • Table SI. Enriched Genes in the Upregulated Genes of the Recovery Group According to the GO Molecular Function Terms. A, Downreg
    Table SI. Enriched genes in the upregulated genes of the recovery group according to the GO Molecular Function terms. A, Downregulated genes Adjusted Total Molecular Rank P‑value genes (n) Function Genes 1 <0.001 266 GO:0019899 Raf1 Timp1 Tbc1d8 Ube2g2 Ube2z enzyme binding Lonrf3 Tbc1d15 Rnf144a Ube2g1 Shc3 Rgcc Rnf19a Ube2j2 Rnf138 Atg13 Cks1b Ube2j1 Rnf19b Trib1 Trib3 Abtb2 Rnf125 Cdc42ep3 Nploc4 Cdc42ep4 Cdc42ep2 Rab11fip5 Arih2 Brms1 Tmem189 Mef2d Hspb1 Cdk9 Ksr1 Tnfaip3 Net1 Rnf180 Fgr Bhlhe41 Irs2 Ppp1r15a Asb4 Trim72 Zfp36 Sfn Xpo6 Fap Sox9 Mapk7 Itga3 Tubb5 Daxx Klf4 Stat3 Gab2 Myo9b Cstb Hmox1 Por Bcl2l1 Plin5 Chp1 Ube2i Sash1 Sqstm1 Rxra Slpi Sdc4 Tnfaip1 Cd40 Slc12a4 Map2k3 Ywhah Ppp1r12a Cry1 Plek Egfr Tnip1 Npc1l1 Rock2 Map2k6 Per1 Nfkbia Bdkrb2 Prkch Hif1a Golga5 Ripk1 Map3k1 Glud1 Nufip1 Clu Spry2 Hcls1 Ifnar2 Tuba1b Cdkn1a Sik1 Tmem173 Map3k2 Tnf Riok3 Ptpn2 Cep192 Smad2 Fas Jak2 Ankrd1 Rela Rps6ka4 Ankrd2 Rabgef1 Prkar1b Nop58 Casp8 Cflar Hdac4 Sele Nek2 Optn Nek6 Lcn2 Stom Traf6 Spred1 Nop56 Src Ccnl1 Ptpn22 Il6ra Pip5k1a F3 Bcl10 3110043O21Rik Tnfrsf1b Slc2a1 Sfpq Rpa2 Errfi1 Mad2l2 Tbc1d14 Uchl1 Glmn Scarb2 Ulk1 Ung Rad18 Mef2a Ctsc Ipo5 Mvp Kctd13 Msn Eif4ebp1 Casp3 Smad1 Ubash3b Ets1 Tirap Smad3 Tgfbr2 Ptgs2 Prr5l Micall1 Cnppd1 Map2k4 Tnks1bp1 Ppp1r32 Prdm4 Midn Ibtk Rusc2 Fmnl2 Ptpn23 Sh3bp4 Nop14 Kdm1a Serpine1 Gch1 Inf2 Csf3 Snx10 Txnip Egr1 Ranbp9 Akap12 Rab3gap2 Ddx58 Bcor Rabggta Pik3r1 Pkp2 Usp22 Shc1 Ptpn11 Fzd5 Cxcr4 Plaur Bag5 Maml1 Camk2n2 Taf7 Ywhag Ezr Jun Camk2d Parp4 Nod2 Ptafr Hmga2 Zfp746 Ptk2b Flot1
    [Show full text]
  • 82712428.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Genomics 90 (2007) 595–609 www.elsevier.com/locate/ygeno Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family ⁎ Josefin A. Jacobsson, Tatjana Haitina, Jonas Lindblom, Robert Fredriksson Department of Neuroscience, Unit of Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden Received 5 February 2007; accepted 24 March 2007 Available online 22 August 2007 Abstract The solute carrier family 22 (SLC22) is a large family of organic cation and anion transporters. These are transmembrane proteins expressed predominantly in kidneys and liver and mediate the uptake and excretion of environmental toxins, endogenous substances, and drugs from the body. Through a comprehensive database search we identified six human proteins not yet cloned or annotated in the reference sequence databases. Five of these belong to the SLC22 family, SLC22A20, SLC22A23, SLC22A24, SLC22A25, and SPNS3, and the sixth gene, SVOPL, is a paralog to the synaptic vesicle protein SVOP. We identified the orthologs for these genes in mouse and rat and additional homologous proteins and performed the first phylogenetic analysis on the entire SLC22 family in human, mouse, and rat. In addition, we performed a phylogenetic analysis which showed that SVOP and SV2A-C are, in a comparison with all vertebrate proteins, most similar to the SLC22 family. Finally, we performed a tissue localization study on 15 genes on a panel of 30 rat tissues using quantitative real-time polymerase chain reaction.
    [Show full text]
  • Supplemental Figures 04 12 2017
    Jung et al. 1 SUPPLEMENTAL FIGURES 2 3 Supplemental Figure 1. Clinical relevance of natural product methyltransferases (NPMTs) in brain disorders. (A) 4 Table summarizing characteristics of 11 NPMTs using data derived from the TCGA GBM and Rembrandt datasets for 5 relative expression levels and survival. In addition, published studies of the 11 NPMTs are summarized. (B) The 1 Jung et al. 6 expression levels of 10 NPMTs in glioblastoma versus non‐tumor brain are displayed in a heatmap, ranked by 7 significance and expression levels. *, p<0.05; **, p<0.01; ***, p<0.001. 8 2 Jung et al. 9 10 Supplemental Figure 2. Anatomical distribution of methyltransferase and metabolic signatures within 11 glioblastomas. The Ivy GAP dataset was downloaded and interrogated by histological structure for NNMT, NAMPT, 12 DNMT mRNA expression and selected gene expression signatures. The results are displayed on a heatmap. The 13 sample size of each histological region as indicated on the figure. 14 3 Jung et al. 15 16 Supplemental Figure 3. Altered expression of nicotinamide and nicotinate metabolism‐related enzymes in 17 glioblastoma. (A) Heatmap (fold change of expression) of whole 25 enzymes in the KEGG nicotinate and 18 nicotinamide metabolism gene set were analyzed in indicated glioblastoma expression datasets with Oncomine. 4 Jung et al. 19 Color bar intensity indicates percentile of fold change in glioblastoma relative to normal brain. (B) Nicotinamide and 20 nicotinate and methionine salvage pathways are displayed with the relative expression levels in glioblastoma 21 specimens in the TCGA GBM dataset indicated. 22 5 Jung et al. 23 24 Supplementary Figure 4.
    [Show full text]
  • Supplementary Data
    SUPPLEMENTAL INFORMATION A study restricted to chemokine receptors as well as a genome-wide transcript analysis uncovered CXCR4 as preferentially expressed in Ewing's sarcoma (Ewing's sarcoma) cells of metastatic origin (Figure 4). Transcriptome analyses showed that in addition to CXCR4, genes known to support cell motility and invasion topped the list of genes preferentially expressed in metastasis-derived cells (Figure 4D). These included kynurenine 3-monooxygenase (KMO), galectin-1 (LGALS1), gastrin-releasing peptide (GRP), procollagen C-endopeptidase enhancer (PCOLCE), and ephrin receptor B (EPHB3). KMO, a key enzyme of tryptophan catabolism, has not been linked to metastasis. Tryptophan and its catabolites, however, are involved in immune evasion by tumors, a process that can assist in tumor progression and metastasis (1). LGALS1, GRP, PCOLCE and EPHB3 have been linked to tumor progression and metastasis of several cancers (2-4). Top genes preferentially expressed in L-EDCL included genes that suppress cell motility and/or potentiate cell adhesion such as plakophilin 1 (PKP1), neuropeptide Y (NPY), or the metastasis suppressor TXNIP (5-7) (Figure 4D). Overall, L-EDCL were enriched in gene sets geared at optimizing nutrient transport and usage (Figure 4D; Supplementary Table 3), a state that may support the early stages of tumor growth. Once tumor growth outpaces nutrient and oxygen supplies, gene expression programs are usually switched to hypoxic response and neoangiogenesis, which ultimately lead to tumor egress and metastasis. Accordingly, gene sets involved in extracellular matrix remodeling, MAPK signaling, and response to hypoxia were up-regulated in M-EDCL (Figure 4D; Supplementary Table 4), consistent with their association to metastasis in other cancers (8, 9).
    [Show full text]