UC Irvine Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Irvine Electronic Theses and Dissertations UC Irvine UC Irvine Electronic Theses and Dissertations Title Contribution of C5aR1 to Neuroinflammation and Neuronal Dysfunction in Alzheimer’s Disease Permalink https://escholarship.org/uc/item/7s66m6tf Author Hernandez, Michael Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Contribution of C5aR1 to Neuroinflammation and Neuronal Dysfunction in Alzheimer’s Disease DISSERTATION submitted in partial satisfaCtion of the requirements for the degree of DOCTOR OF PHILOSOPHY in BiomediCal Sciences by MiChael Hernandez Dissertation Committee: Professor Andrea J. Tenner, Chair Professor Edwin S. Monuki AssoCiate Professor Kim Green 2017 © 2017 MiChael Hernandez DEDICATION To My sister, Jennifer, who has been there for me the entire way, and my friends, old and new. Thank you for your support and the many adventures we’ve shared. ii TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES viii ACKNOWLEDGMENTS x CURRICULUM VITAE xi ABSTRACT OF THE DISSERTATION xv CHAPTER 1: IntroduCtion 1 CHAPTER 2: C5a Increases the Injury to Primary Neurons EliCited by 20 Fibrillar Amyloid Beta CHAPTER 3: Prevention of C5aR1 Signaling Delays Microglial 47 Inflammatory Polarization, Favors Clearance Pathways and Suppresses Cognitive Loss CHAPTER 4: Comparing SurfaCe Expression of Proteins on MiCroglia 130 in vitro vs in vivo and MiCroglial Changes in AD CHAPTER 5: Summary and Future DireCtions 172 iii LIST OF FIGURES Page Figure 1.1. SChematiC diagram of Complement aCtivation by 6 fibrillar β-amyloid. Figure 1.2. C5aR1 inhibition maintains benefiCial response of 14 Complement aCtivation and inhibits detrimental response. Figure 2.1. CirCular diChroism of amyloid beta preparation Confirms 26 beta sheet structure. Figure 2.2. C5a at a ConCentration of 100 nM inCreases MAP-2 loss in 28 the presenCe of fAβ. Figure 2.3. C5aR1 expression on primary neurons. 32 Figure 2.4. C5a Causes MAP-2 loss in a dose-dependent manner. 34 Figure 2.5. C5a increases toxicity in fAβ-treated neurons. 35 Figure 2.6. Primary neuronal Cultures inClude GABAergiC and 37 glutamatergiC neurons. iv Figure 2.7. fAβ and C5a kill both GABAergiC and glutamatergiC neurons 38 in culture. Figure 3.1. Representative habituation performanCe during testing and 53 performanCe during training. Figure 3.2. PerformanCe in novel objeCt and objeCt location memory 62 tasks. Figure 3.3. Fibrillar plaque and CD45 miCroglial expression in 64 hippocampus. Figure 3.4. Aβ plaque load and CD45 expression in ArCtiC heterozygous 66 for CX3CR1 and CCR2. Figure 3.5. Glia clustering around plaques are CX3CR1+CCR2-. 69 Figure 3.6. Temporal gene expression profiles aCross four genotypes. 71 Figure 3.7. DynamiC gene expression profiles of remaining 7 Clusters. 73 Figure 3.8. Gene expression profiles of seleCted genes in inflammation 75 pathways. v Figure 3.9. Gene expression profiles of seleCted genes in lysosome and 78 phagosome pathways. Figure 3.10. Proposed meChanism by whiCh C5aR1 stimulation Contributes 84 to AD progression. Figure 4.1. CR1, CD200R, and TREM2 cell surface expression in M0, M1, 138 and M2a-polarized BV2 and primary neonatal miCroglia. Figure 4.2. Surface expression of CR1, CD200R, and TREM2 on miCroglia 139 isolated from adult miCe. Figure 4.3. Quality Control of 24 samples assayed. 142 Figure 4.4. Differentially expressed genes identified in the immunology 144 panel. Figure 4.5. Interferon signaling pathway. 146 Figure 4.6. Differentially expressed genes identified in the custom 155 neurodegeneration panel. vi Figure 4.7. Differentially expressed genes shared between immunology 160 and neurodegeneration Nanostring panels. Figure 5.1. PMX53 does not rescue fAb-induCed MAP-2 loss. 181 vii LIST OF TABLES Page Table 3.1. RNA quality Control. 88 Table 3.2. Gene ontology enriChment analysis. 89 Table 3.3. Pathway analysis. 95 Table 3.4. Genes found in eaCh maSigPro Cluster. 102 Table 4.1. Canonical pathways predicted to be activated or inhibited 149 in the ArCtiC brain relative to WT from immunology panel. Table 4.2. Diseases and funCtions enriChed in the ArCtiC brain relative 150 to WT from immunology panel. Table 4.3. Canonical pathways predicted to be activated or inhibited 153 in the ArCtiC C5aR1KO brain relative to ArCtiC from immunology panel. Table 4.4. Diseases and funCtions enriChed in the ArCtiC C5aR1KO 154 relative to ArCtiC from immunology panel. Table 4.5. Genes in Neurodegeneration Nanostring panel. 156 viii Table 4.6. Canonical pathways predicted to be activated or inhibited 157 in the ArCtiC brain relative to WT from neurodegeneration panel. Table 4.7. Diseases and funCtions enriChed in the ArCtiC relative to 158 WT from neurodegeneration panel. ix ACKNOWLEDGMENTS I would like to express the deepest appreCiation to my Committee Chair, Dr. Andrea Tenner, who has guided and enCouraged me throughout my graduate work. When things weren’t going well, and I wanted to Call it quits, she believed in me and enCouraged me to power through the tough times and appreCiate all the viCtories, both big and small. Thank you to all the Tenner lab members, both Current and past. They have truly made Coming to lab suCh an enjoyable experienCe. SpeCial thanks to Dr. Marisa FonseCa, Dr. Elizabeth Clarke, and Sophie Chu who were always there to offer help. Thank you to my undergraduates: Naomi, Karina, Anaïs, Pouya, and Eric – they helped make this possible. I would like to thank my Committee members, Dr. Edwin Monuki and Dr. Kim Green, their adviCe sinCe advanCing was instrumental to move my projeCts along. Thank you, Dr. Ali Mortazavi and Mandy Jiang, for the wonderful collaboration. I would also like to thank Dr. Lodoen and Dr. Nelson, and their respeCtive lab members, for the great feedback at each joint lab meeting. I’d like to espeCially thank Dr. Lanny Gov for being the best colleague I could ever hope for. Our walks to coffee and lunch dates offered muCh needed respite. In addition, thank you to Dr. Luis Mota-Bravo, Dr. Marlene de la Cruz; they enCouraged me to get involved in researCh when I was an undergraduate and have been my biggest cheerleaders ever since. Thank you to all the staff at MB&B and Pathology. Special thanks to Stefani Ching for being amazing and so very helpful. Thank you, Bessy Varela and Morgan Oldham for keeping my payCheCks Coming despite the Chaos of being involved with three departments. Finally, I would like to thank my friends and family. Thank you, Jennifer, for all your support. Couldn’t have asked for a more Caring and loving sister. Thank you, Snellings family, for so muCh that I Can’t even begin to list. Thank you, NiCk and Jason, for your friendship and many adventures we have shared, and for introduCing me to tons of new friends. Thank you, Brandon Bennett, for being the best gym husband at 5 A.M; I don’t think I Could have stayed sane without our morning workouts. Thank you, Lesly for your friendship since undergrad. Lastly, thank you to an amazing man, Jason Estep, who has made these last six months very speCial. The studies presented in this dissertation were supported by NIH grants NS 35144, AG00538, TG GM055246, T32 AG000096, and The Alzheimer’s AssoCiation. x CURRICULUM VITAE Michael Hernandez Professional Address: 2419 McGaugh Hall Department of MoleCular Biology & BioChemistry University of California, Irvine, 92697-3900 Email: [email protected] Telephone: 949-824-3266 Education: 2010-2017 Ph.D. BiomediCal SCienCes, Department of Pathology and Laboratory MediCine, University of California, Irvine 2005-2010: B.S. Biological Sciences, University of California, Irvine Honors and Awards: 2011-2014: NIH ResearCh Supplement to Promote Diversity in Health-Related Research 2014-2016: NIH Neurobiology of Aging Training Grant T32 -AG000096 2014: Travel Award from UCI SChool of MediCine 2015: Travel Award from UCI SChool of MediCine 2016: NIH UC Irvine Initiative for Maximizing Student Development (IMSD) Training Grant GM055246 2016: Travel Award from International Complement SoCiety 2017: Invited speaker for REMIND Emerging SCientists Symposium Teaching Experience: Fall, 2011: TeaChing Assistant: Neurobiology lab, N113L Winter 2016: TeaChing Assistant: BioChemistry, Bio SCi 98 TeaChing Assistant: Immunology, M121 Publications: Benoit M.E., Hernandez M.X., Dinh M.L., Benavente F., Vasquez O., Tenner A.J. 2013 C1q induced LRP1B and GPR6 Proteins Expressed Early in Alzheimer Disease Mouse Models, Are Essential for the C1q-mediated ProteCtion against Amyloid-beta NeurotoxiCity. J Biol Chem 288:654-665 RiCe R.A., Spangenberg E.E., Yamate-Morgan H., Lee R.J., Arora R.P., Hernandez M.X., Tenner A.J., West B.L., Green K.N. 2015 Elimination of MiCroglia Improves FunCtional OutComes Following Extensive Neuronal Loss in the HippoCampus. J Neurosci 35:9977- 9989 xi Hernandez M.X., Namiranian P., Nguyen E., FonseCa M.I., and Tenner A.J. 2017 C5a Increases the Injury to Primary Neurons EliCited by Fibrillar Amyloid Beta. ASN Neuro 9:1759091416687871 Fonseca, M.I., Chu, S., Hernandez, M.X., Fang, M.J., Modarresi, L., Selvan, P., MacGregor G.R. and Tenner, A.J., 2017 Cell speCifiC deletion of C1qa identifies miCroglia as the dominant sourCe of C1q in mouse brain. J Neuroinflammation 14:48 Hernandez M.X., Jiang S., Cole T.A., Chu S., FonseCa M.I., Wetsel R.A., Mortazavi A., and Tenner A.J. 2017 Prevention of C5aR1 Signaling on MiCroglia Favors ClearanCe Pathways, Delays Inflammatory Polarization and Suppresses Cognitive Loss. Manuscript submitted Alhoshani, A., Vu, V, V., Hernandez, M.X., Namiranian, P., Oakes, M., Tenner, A.J., Luptak, A., Cocco, M.J. 2017 DNA Aptamers that Bind Nogo-66 Promote Neuronal Outgrowth. Manuscript in preparation Abstracts and Meeting Presentations: Hernandez M., Ochoa-de la Paz L., Martinez-Torres A. Electrophysiological characterization of a current in Xenopus tropicalis oocytes.
Recommended publications
  • ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/Receptors
    ENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Supplemental Table S1
    Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Suppl 1.1 All Data Dimethyl Labled
    Fasta headers Protein names Gene names Uniprot Ratio H/L normalized exp01 Ratio H/L normalized exp02 Ratio H/L normalized exp03 Ratio H/L normalized exp04 Ratio H/L normalized exp05 Ratio H/L normalized exp06 Ratio H/L normalized exp07 Ratio H/L normalized exp08 Ratio H/L normalized exp09 Ratio H/L normalized exp10 Ratio H/L normalized exp11b Ratio H/L normalized exp12b Peptides exp01 Peptides exp02 Peptides exp03 Peptides exp04 Peptides exp05 Peptides exp06 Peptides exp07 Peptides exp08 Peptides exp09 Peptides exp10 Peptides exp11b Peptides exp12b Unique peptides exp01 Unique peptides exp02 Unique peptides exp03 Unique peptides exp04 Unique peptides exp05 Unique peptides exp06 Unique peptides exp07 Unique peptides exp08 >sp|P01876|IGHA1_HUMAN Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2Ig alpha-1 chain C region IGHA1 P01876 1,90 0,62 2,03 12,53 11,35 0,80 1,87 0,60 0,88 1,60 1,33 1,34 7 6 11 8 10 6 8 8 4 3 7 7 3 3 5 4 5 3 4 3 >sp|P02647|APOA1_HUMAN Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1;>tr|F8W696|F8W696_HUMAN Truncated apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1Apolipoprotein A-I;Truncated apolipoprotein A-I APOA1 P02647 1,71 1,13 0,77 1,73 0,89 1,12 0,61 0,84 1,53 1,46 1,16 0,86 17 16 17 18 16 14 13 16 17 13 14 17 17 16 17 18 16 14 13 16 >sp|P01024|CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2Complement C3;Complement C3 beta chain;Complement C3 alpha chain;C3a anaphylatoxin;Acylation stimulating protein;Complement C3b alpha chain;Complement C3c alpha chain fragment 1;Complement C3dg
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Differential Expression of Hydroxyurea Transporters in Normal and Polycythemia Vera Hematopoietic Stem and Progenitor Cell Subpopulations
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Differential expression of hydroxyurea transporters in normal and polycythemia vera hematopoietic stem and progenitor cell subpopulations Tan, Ge ; Meier-Abt, Fabienne Abstract: Polycythemia vera (PV) is a myeloproliferative neoplasm marked by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. Hydroxyurea (HU) is a standard treat- ment for high-risk patients with PV. Because disease-driving mechanisms are thought to arise in PV stem cells, effective treatments should target primarily the stem cell compartment. We tested for theantipro- liferative effect of patient treatment with HU in fluorescence-activated cell sorting-isolated hematopoietic stem/multipotent progenitor cells (HSC/MPPs) and more committed erythroid progenitors (common myeloid/megakaryocyte-erythrocyte progenitors [CMP/MEPs]) in PV using RNA-sequencing and gene set enrichment analysis. HU treatment led to significant downregulation of gene sets associated with cell proliferation in PV HSCs/MPPs, but not in PV CMP/MEPs. To explore the mechanism underlying this finding, we assessed for expression of solute carrier membrane transporters, which mediate trans- membrane movement of drugs such as HU into target cells. The active HU uptake transporter OCTN1 was upregulated in HSC/MPPs compared with CMP/MEPs of untreated patients with PV, and the HU diffusion facilitator urea transporter B (UTB) was downregulated in HSC/MPPs compared withCM- P/MEPs in all patient and control groups tested. These findings indicate a higher accumulation ofHU within PV HSC/MPPs compared with PV CMP/MEPs and provide an explanation for the differential effects of HU in HSC/MPPs and CMP/MEPs of patients with PV.
    [Show full text]
  • Transcriptome Sequencing and Genome-Wide Association Analyses Reveal Lysosomal Function and Actin Cytoskeleton Remodeling in Schizophrenia and Bipolar Disorder
    Molecular Psychiatry (2015) 20, 563–572 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp ORIGINAL ARTICLE Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder Z Zhao1,6,JXu2,6, J Chen3,6, S Kim4, M Reimers3, S-A Bacanu3,HYu1, C Liu5, J Sun1, Q Wang1, P Jia1,FXu2, Y Zhang2, KS Kendler3, Z Peng2 and X Chen3 Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of post-mortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q ⩽ 0.01, 53 genes; q ⩽ 0.05, 213 genes; q ⩽ 0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (Po10 − 7) and BPD (P = 0.029). To our knowledge, this is the first time that a substantially large number of genes show concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor-mediated phagocytosis, regulation of actin cytoskeleton pathways, along with several cancer pathways.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]