Identification of Small Regulatory Rnas and Their Targets in Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Small Regulatory Rnas and Their Targets in Bacteria Identification of Small Regulatory RNAs and Their Targets in Bacteria Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Technischen Fakultat¨ der Universitat¨ Bielefeld vorgelegt von Cynthia Mira Sharma Bielefeld, im Mai 2009 Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Technischen Fakultat¨ der Universitat¨ Bielefeld. Vorgelegt von: Dipl.-Biol. Cynthia Mira Sharma Angefertigt im: Max-Planck-Institut fur¨ Infektionsbiologie, Berlin Tag der Einreichung: 04. Mai 2009 Tag der Verteidigung: 22. Juli 2009 Gutachter: Prof. Dr. Robert Giegerich, Universitat¨ Bielefeld Dr. Jorg¨ Vogel, Max-Planck-Institut fur¨ Infektionsbiologie, Berlin Prof. Dr. Wolfgang Hess, Universitat¨ Freiburg Prufungsausschuss:¨ Prof. Dr. Jens Stoye, Universitat¨ Bielefeld Prof. Dr. Robert Giegerich, Universitat¨ Bielefeld Dr. Jorg¨ Vogel, Max-Planck-Institut fur¨ Infektionsbiologie, Berlin Prof. Dr. Wolfgang Hess, Universitat¨ Freiburg Dr. Marilia Braga, Universitat¨ Bielefeld Gedruckt auf alterungsbestandigem¨ Papier nach ISO 9706. Dedicated to my parents, Ingrid Sharma and Som Deo Sharma ACKNOWLEDGEMENTS At this point, I would like to thank everybody who contributed in whatever form to this thesis. In particular, I am grateful to the following persons: . my supervisor Dr. Jorg¨ Vogel for giving me the opportunity to work in a superb scientific environment and for his continuous support and guidance throughout the past several years, . Prof. Dr. Robert Giegerich for enabling me to submit this thesis to the University of Bielefeld and for valuable suggestions during several visits to his institute, . Prof. Dr. Wolfgang Hess for his willingness to evaluate this thesis, . Dr. Fabien Darfeuille (a. k. a. the “master of the gels”) for a great stay in his lab in Bordeaux and many fruitful discussions, . Dr. Steve Hoffmann, Kai Papenfort, Dr. Titia Plantinga, and Dr. Alexandra Sittka for their contributions to this thesis, helpful discussions, and enjoyable collaborations, . Dr. Marc Rehmsmeier for initial suggestions about sRNA target predictions using RNAhybrid, . Franziska “Franntz” Seifert and Sandy Pernitzsch for technical assistance in various experiments, . Birgit Grett, unserer guten Fee“ im Labor, fur¨ ihren Beitrag zum Gelingen unserer ” Experimente, . all proofreaders of this thesis, especially Kathrin “Kathi” Frohlich¨ for her final scrutiny and Kai “Lillifee” Papenfort for his critical comments and, in addition, for a lot of fun with them in the lab, their support and help, . all my colleagues and former members of the Vogel lab for a fantastic time and kind cooperation, . last but not least my parents, my sister, and my friends for their patience and encouragement, . and, of course, Nikolaus for immensely supporting and encouraging me, especially during the past few months. U G C G A G C U A C T C T AAAA GCGC T A U A G A C A A C C G A C GG A G A C G C G G G G G U A C U G G C C CA C C G C G G C G C U G G A C G A U A U U A G C A U U A C G G C U G C G C G C G hankA U ou! CONTENTS ListofFigures ........................................ xvii ListofTables ......................................... ......... xx Abbreviations ......................................... ........ xxi Units ................................................ xxii Multiples .............................................. xxiii 1. Introduction ................................................... .. 1 2. Biological Background .............................................. 5 2.1. Regulation of gene expression by regulatory RNAs in bacteria . ......... 7 2.1.1. Translational repression . ......... 7 2.1.2. Translational activation . ....... 9 2.1.3. sRNA mediated sequestration of protein activity . 10 2.1.3.1. 6SRNA ......................................... 10 2.1.3.2. CsrB,CsrC ..................................... 11 2.1.4. Riboswitches and RNA thermosensors . ..... 12 2.1.5. Cis-endodedsRNAs ...................................... 12 2.1.6. sRNAs with dual functions . ...... 13 2.2. Additional factors involved in gene regulation by bacterial sRNAs . ......... 13 2.2.1. The Sm-like protein Hfq . 14 2.2.2. Ribonucleases .................................... ........ 15 2.3. Approaches for the identification of bacterial sRNAs . .......... 17 2.3.1. Direct Labelling . ...... 17 2.3.2. Geneticscreens ................................... ........ 18 2.3.3. Biocomputational screens . ...... 19 2.3.4. Identification of sRNAs by transcription factor binding sites . 22 2.3.5. RNomics .......................................... ..... 23 2.3.6. Homologysearches ................................. ....... 24 2.3.7. Microarray detection . ....... 25 2.3.8. Co-purification with proteins . ..... 26 x 2.4. Target identification and verification of bacterial sRNAs . .......... 26 2.4.1. Experimental approaches . ........ 27 2.4.1.1. Proteomics . 27 2.4.1.2. Microarrays .................................... 28 2.4.1.3. Co-immunoprecipitation of direct interaction partners . 28 2.4.2. Biocomputational target predictions . ..... 29 2.5. Multiple targeting by sRNAs in bacteria . ...... 31 2.6. Model pathogens used in this study . .......... 32 2.6.1. Salmonella enterica SerovarTyphimurium ....................... 32 2.6.1.1. Hfqphenotype ................................... 33 2.6.1.2. Salmonella sRNAs .................................. 33 2.6.2. Helicobacter pylori ........................................ 34 2.6.2.1. Small regulatory RNAs in H. pylori ...................... 34 3. Multiple targeting of ABC transporter mRNAs by GcvB sRNA ............... 35 3.1. Results ........................................... ........... 37 3.1.1. Characterization of GcvB sRNA in Salmonella .................... 37 3.1.2. GcvB targets dppA and oppA mRNAs in vivo and in vitro ............ 40 3.1.3. A conserved G/U-rich region mediates GcvB repression in vivo ........ 43 3.1.4. MoreGcvBtargets .................................. ...... 45 3.1.5. GcvB inhibits translation initiation in vitro ....................... 49 3.1.6. GcvB inhibits gltI translation by binding far upstream of the start codon . 51 3.1.7. The C/A-rich target site enhances gltI translation . 53 3.1.8. Creation of an upstream C/A-rich target site permits translational control of anunrelatedmRNA ....................................... 53 3.2. Discussion ........................................ ............ 53 4. GcvB RNA, a global regulator of genes involved in amino acid metabolism ...... 61 4.1. Results ........................................... ........... 62 4.1.1. Expression of GcvB from an arabinose inducible plasmid . 62 4.1.2. Microarray-based identification of GcvB target mRNAs in Salmonella . 62 4.1.3. Prediction of C/A elements reveals further targets . 68 4.1.4. Identification of additional mRNAs that contain the GcvB target site . 71 4.1.5. GcvB represses expression of the glycine transporter CycA . ........ 74 xi 4.1.6. GcvB binds to cycA mRNA in vitro ............................ 76 4.1.7. Diverse GcvB mutants indicate multiple binding sites for cycA mRNA . 77 4.1.8. GcvB inhibits translation initiation of cycA mRNA in vitro ............ 81 4.2. Discussion ........................................ ............ 82 5. Analysis of Hfq-bound RNAs in Salmonella by 454 pyrosequencing ........... 89 5.1. Results ........................................... ........... 91 5.1.1. Experimental setup for deep sequencing of Hfq-associated RNAs ....... 91 5.1.2. Biocomputational analysis of 454 data . 93 5.1.2.1. Removal of 5’ end linker sequences and poly(A) tails . 93 5.1.2.2. Read length distribution . 94 5.1.2.3. Removalofshortreads ............................ 95 5.1.2.4. Read mapping to a reference genome . 96 5.1.2.5. Overlaps to annotations . 97 5.1.2.6. Visualization of mapped sequences . 99 5.1.3. Analysis of cDNA sequencing results of Hfq-associated RNA . 100 5.1.4. Visualizing Hfq-dependent RNAs at the nucleotide level . 101 5.1.5. Hfq-dependent sRNAs are highly associated with Hfq . 103 5.1.6. Identification of expressed Salmonella sRNAs .................... 104 5.2. Discussion ........................................ ............ 109 6. Deep sequencing reveals the primary transcriptome of Helicobacter pylori ...... 113 6.1. Results ........................................... ........... 115 6.1.1. Biocomputational prediction of ncRNAs in H. pylori ................ 115 6.1.2. Depletion of processed RNAs . 121 6.1.3. Deep sequencing of Helicobacter cDNAlibraries .................. 121 6.1.4. Mapping of transcriptional start sites . 127 6.1.5. Global TSS annotation . 128 6.1.6. 454 sequencing reveals a 6S RNA homologue of H. pylori ............ 130 6.1.7. NovelsRNAs ..................................... ....... 132 6.1.8. Additional short ORFs within the H. pylori genome ................. 134 6.2. Discussion ........................................ ............ 137 xii 7. Conclusions ................................................... ... 147 8. Material and Methods .............................................. 149 8.1. Material .......................................... ............ 149 8.2. GeneralMethods ................................... ............ 153 8.2.1. Bacterial cell culture . ....... 153 8.2.1.1. Media .......................................... 153 8.2.1.2. Preparation of electrocompetent Salmonella cells . 154 8.2.1.3. Transformation of chemically competent E. coli cells . 154 8.2.1.4. Growthcurves ..................................
Recommended publications
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Novel Missense Mutation in PTPN22 in a Chinese Pedigree With
    Gong et al. BMC Endocrine Disorders (2018) 18:76 https://doi.org/10.1186/s12902-018-0305-8 RESEARCHARTICLE Open Access Novel missense mutation in PTPN22 in a Chinese pedigree with Hashimoto’s thyroiditis Licheng Gong1†, Beihong Liu2,3†, Jing Wang4, Hong Pan3, Anhui Qi2,3, Siyang Zhang2,3, Jinyi Wu1, Ping Yang1* and Binbin Wang3,4,5* Abstract Background: Hashimoto’s thyroiditis is a complex autoimmune thyroid disease, the onset of which is associated with environmental exposures and specific susceptibility genes. Its incidence in females is higher than its incidence in males. Thus far, although some susceptibility loci have been elaborated, including PTPN22, FOXP3, and CD25, the aetiology and pathogenesis of Hashimoto’s thyroiditis remains unclear. Methods: Four affected members from a Chinese family with Hashimoto’s thyroiditis were selected for whole-exome sequencing. Missense, nonsense, frameshift, or splicing-site variants shared by all affected members were identified after frequency filtering against public and internal exome databases. Segregation analysis was performed by Sanger sequencing among all members with available DNA. Results: We identified a missense mutation in PTPN22 (NM_015967.5; c. 77A > G; p.Asn26Ser) using whole-exome sequencing. PTPN22 is a known susceptibility gene associated with increased risks of multiple autoimmune diseases. Cosegregation analysis confirmed that all patients in this family, all of whom were female, carried the mutation. All public and private databases showed that the missense mutation was extremely rare. Conclusions: We found a missense mutation in PTPN22 in a Chinese HT pedigree using whole-exome sequencing. Our study, for the first time, linked a rare variant of PTPN22 to Hashimoto’s thyroiditis, providing further evidence of the disease-causing or susceptibility role of PTPN22 in autoimmune thyroid disease.
    [Show full text]
  • Interplay Between Ompa and Rpon Regulates Flagellar Synthesis in Stenotrophomonas Maltophilia
    microorganisms Article Interplay between OmpA and RpoN Regulates Flagellar Synthesis in Stenotrophomonas maltophilia Chun-Hsing Liao 1,2,†, Chia-Lun Chang 3,†, Hsin-Hui Huang 3, Yi-Tsung Lin 2,4, Li-Hua Li 5,6 and Tsuey-Ching Yang 3,* 1 Division of Infectious Disease, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; [email protected] 2 Department of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] 3 Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] (C.-L.C.); [email protected] (H.-H.H.) 4 Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan 5 Department of Pathology and Laboratory Medicine, Taipei Veterans General Hosiptal, Taipei 112, Taiwan; [email protected] 6 Ph.D. Program in Medical Biotechnology, Taipei Medical University, Taipei 110, Taiwan * Correspondence: [email protected] † Liao, C.-H. and Chang, C.-L. contributed equally to this work. Abstract: OmpA, which encodes outer membrane protein A (OmpA), is the most abundant transcript in Stenotrophomonas maltophilia based on transcriptome analyses. The functions of OmpA, including adhesion, biofilm formation, drug resistance, and immune response targets, have been reported in some microorganisms, but few functions are known in S. maltophilia. This study aimed to elucidate the relationship between OmpA and swimming motility in S. maltophilia. KJDOmpA, an ompA mutant, Citation: Liao, C.-H.; Chang, C.-L.; displayed compromised swimming and failure of conjugation-mediated plasmid transportation. The Huang, H.-H.; Lin, Y.-T.; Li, L.-H.; hierarchical organization of flagella synthesis genes in S.
    [Show full text]
  • Subunit of RNA Polymerase and the Transcriptional Regulators Rsd from Escherichia Coli and Algq from Pseudomonas Aeruginosa
    Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa. The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dove, S. L., and A. Hochschild. 2001. “Bacterial Two-Hybrid Analysis of Interactions between Region 4 of the 70 Subunit of RNA Polymerase and the Transcriptional Regulators Rsd from Escherichia Coli and AlgQ from Pseudomonas Aeruginosa.” Journal of Bacteriology 183 (21): 6413–21. https://doi.org/10.1128/ jb.183.21.6413-6421.2001. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41483172 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA JOURNAL OF BACTERIOLOGY, Nov. 2001, p. 6413–6421 Vol. 183, No. 21 0021-9193/01/$04.00ϩ0 DOI: 10.1128/JB.183.21.6413–6421.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Bacterial Two-Hybrid Analysis of Interactions between Region 4 of the ␴70 Subunit of RNA Polymerase and the Transcriptional Regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa SIMON L. DOVE AND ANN HOCHSCHILD* Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 Received 3 May 2001/Accepted 6 August 2001 A number of transcriptional regulators mediate their effects through direct contact with the ␴70 subunit of Escherichia coli RNA polymerase (RNAP).
    [Show full text]
  • Symbiotic Adaptations in the Fungal Cultivar of Leaf-Cutting Ants
    ARTICLE Received 15 Apr 2014 | Accepted 24 Oct 2014 | Published 1 Dec 2014 DOI: 10.1038/ncomms6675 Symbiotic adaptations in the fungal cultivar of leaf-cutting ants Henrik H. De Fine Licht1,w, Jacobus J. Boomsma2 & Anders Tunlid1 Centuries of artificial selection have dramatically improved the yield of human agriculture; however, strong directional selection also occurs in natural symbiotic interactions. Fungus- growing attine ants cultivate basidiomycete fungi for food. One cultivar lineage has evolved inflated hyphal tips (gongylidia) that grow in bundles called staphylae, to specifically feed the ants. Here we show extensive regulation and molecular signals of adaptive evolution in gene trancripts associated with gongylidia biosynthesis, morphogenesis and enzymatic plant cell wall degradation in the leaf-cutting ant cultivar Leucoagaricus gongylophorus. Comparative analysis of staphylae growth morphology and transcriptome-wide expressional and nucleotide divergence indicate that gongylidia provide leaf-cutting ants with essential amino acids and plant-degrading enzymes, and that they may have done so for 20–25 million years without much evolutionary change. These molecular traits and signatures of selection imply that staphylae are highly advanced coevolutionary organs that play pivotal roles in the mutualism between leaf-cutting ants and their fungal cultivars. 1 Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. 2 Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark. w Present Address: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark. Correspondence and requests for materials should be addressed to H.H.D.F.L.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Supplementary Material Toxicological Impacts and Likely Protein Targets Of
    Supplementary Material Toxicological impacts and likely protein targets of bisphenol A in Paramecium caudatum Marcus V. X. Senra† & Ana Lúcia Fonseca Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais – Brazil †To whom correspondence should be addressed – [email protected]; Orcid - 0000-0002-3866- 8837 Table S1. Annotation data on the P. caudatum 3D modelled proteins and their binding energies to BPA. BINDING ID DESCRIPTION CHROMOSOME NT_START NT_END ENERGIES (kcal/mol) PCAU.43c3d.1.P00010012 Tryptophan synthase beta subunit-like PLP-dependent enzyme scaffold_0001 23197 24853 -7.4 PCAU.43c3d.1.P00010015 Ribosomal protein L32e scaffold_0001 26373 26859 -6.2 PCAU.43c3d.1.P00010044 Catalase, mono-functional, haem-containing scaffold_0001 71821 73367 -6.5 PCAU.43c3d.1.P00010050 Dihydroorotate dehydrogenase, class 1/ 2 scaffold_0001 76614 79650 -6.6 PCAU.43c3d.1.P00010054 Serine/threonine/dual specificity protein kinase, catalytic domain scaffold_0001 83399 84653 -6.7 PCAU.43c3d.1.P00010070 Peptidyl-prolyl cis-trans isomerase, FKBP-type scaffold_0001 104909 105387 -5.9 PCAU.43c3d.1.P00010103 V-ATPase proteolipid subunit C-like domain scaffold_0001 168736 169346 -5.6 PCAU.43c3d.1.P00010112 DNA-directed RNA polymerase, RBP11-like dimerisation domain scaffold_0001 180310 181372 -6.0 PCAU.43c3d.1.P00010165 Vacuolar (H+)-ATPase G subunit scaffold_0001 252653 253112 -5.6 PCAU.43c3d.1.P00010176 Coproporphyrinogen III oxidase, aerobic scaffold_0001 262051 263168 -6.7 PCAU.43c3d.1.P00010205 Metalloenzyme,
    [Show full text]
  • Cell-Specific Bioorthogonal Tagging of Glycoproteins in Co- Culture
    Cell-specific Bioorthogonal Tagging of Glycoproteins in Co- culture Supporting Information Supporting Figures Experimentals Anna Ciocea,b, Beatriz Callea,b, Andrea Marchesia,b, Ganka Bineva-Toddb, Helen Flynnc, Zhen Lia,b, Omur Y. Tastanb, Chloe Roustand, Tessa Keenane, Peter Bothf, Kun Huangf, Fabio Parmeggianif, Ambrosius P. Snijdersc, Svend Kjaerd, Martin A. Fascionee, Sabine Flitschf, Benjamin Schumanna,b,* aDepartment of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom. bThe Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Rd, NW1 1AT London, United Kingdom. cProteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom. dStructural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom. eDepartment of Chemistry, University of York, YO10 5DD York, United Kingdom. fManchester Institute of Biotechnology & School of Chemistry, The University of Manchester, M1 7DN Manchester, United Kingdom. *Correspondence should be addressed to: [email protected]. Supporting Figures Fig. S1: Active site architectures of human enzymes of the GalNAc salvage pathway. In AGX1, the N-acyl side chain in UDP-GalNAc is in proximity to Phe381 and Phe383. In GALK2, the N-acyl side chain of GalNAc-1-phosphate is in proximity with amino acids forming a hydrogen network (Glu179, Ser147 and Ser148). 2 Fig. S2: Evaluation of enzymatic turnover of GalN6yne-Based metabolites. A, in vitro UDP- sugar formation by AGX1 after 2 h incubation, as assessed by LC-MS. Data are means ± SD from three independent experiments. B, in vitro GalN6yne-1-phosphate formation by human and bacterial GalNAc kinases, as assessed by LC-MS and integrated ion count.
    [Show full text]
  • Identification of Mycoparasitism-Related Genes Against the Phytopathogen Sclerotinia Sclerotiorum Through Transcriptome and Expr
    Steindorff et al. BMC Genomics 2014, 15:204 http://www.biomedcentral.com/1471-2164/15/204 RESEARCH ARTICLE Open Access Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum Andrei Stecca Steindorff1, Marcelo Henrique Soller Ramada2, Alexandre Siqueira Guedes Coelho3, Robert Neil Gerard Miller1, Georgios Joannis Pappas Júnior1, Cirano José Ulhoa4* and Eliane Ferreira Noronha1 Abstract Background: The species of T. harzianum are well known for their biocontrol activity against plant pathogens. However, few studies have been conducted to further our understanding of its role as a biological control agent against S. sclerotiorum, a pathogen involved in several crop diseases around the world. In this study, we have used RNA-seq and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum gene expression during growth on cell wall of S. sclerotiorum (SSCW) or glucose. RT-qPCR was also used to examine genes potentially involved in biocontrol, during confrontation between T. harzianum and S. sclerotiorum. Results: Data obtained from six RNA-seq libraries were aligned onto the T. harzianum CBS 226.95 reference genome and compared after annotation using the Blast2GO suite. A total of 297 differentially expressed genes were found in mycelia grown for 12, 24 and 36 h under the two different conditions: supplemented with glucose or SSCW. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on SSCW or glucose. We identified various genes of biotechnological value encoding proteins with functions such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis.
    [Show full text]
  • Proteomics of the Lysosome
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1793 (2009) 625–635 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Review Proteomics of the lysosome Torben Lübke a, Peter Lobel b,c, David E. Sleat b,c,⁎ a Zentrum Biochemie und Molekulare Zellbiologie, Abteilung Biochemie II, Georg-August Universität Göttingen, 37073 Göttingen, Germany b Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA c Department of Pharmacology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA article info abstract Article history: Defects in lysosomal function have been associated with numerous monogenic human diseases typically Received 16 May 2008 classified as lysosomal storage diseases. However, there is increasing evidence that lysosomal proteins are Received in revised form 24 September 2008 also involved in more widespread human diseases including cancer and Alzheimer disease. Thus, there is a Accepted 30 September 2008 continuing interest in understanding the cellular functions of the lysosome and an emerging approach to this Available online 15 October 2008 is the identification of its constituent proteins by proteomic analyses. To date, the mammalian lysosome has been shown to contain ∼60 soluble luminal proteins and ∼25 transmembrane proteins. However, recent Keywords: fi fi Lysosomal protein proteomic studies based upon af nity puri cation of soluble components or subcellular fractionation to Proteomic obtain both soluble and membrane components suggest that there may be many more of both classes of Mass spectrometry protein resident within this organelle than previously appreciated.
    [Show full text]
  • Identification and Characterization of Molecular Targets for Disease Management in Tree Fruit Pathogens
    IDENTIFICATION AND CHARACTERIZATION OF MOLECULAR TARGETS FOR DISEASE MANAGEMENT IN TREE FRUIT PATHOGENS By Jingyu Peng A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Plant Pathology – Doctor of Philosophy 2020 ABSTRACT IDENTIFICATION AND CHARACTERIZATION OF MOLECULAR TARGETS FOR DISEASE MANAGEMENT IN TREE FRUIT PATHOGENS By Jingyu Peng Fire blight, caused by Erwinia amylovora, is a devastating bacterial disease threatening the worldwide production of pome fruit trees, including apple and pear. Within host xylem vessels, E. amylovora cells restrict water flow and cause wilting symptoms through formation of biofilms, that are matrix-enmeshed surface-attached microcolonies of bacterial cells. Biofilm matrix of E. amylovora is primarily composed of several exopolysaccharides (EPSs), including amylovora, levan, and, cellulose. The final step of biofilm development is dispersal, which allows dissemination of a subpopulation of biofilm cells to resume the planktonic mode of growth and consequentially cause systemic infection. In this work, we demonstrate that identified the Hfq-dependent small RNA (sRNA) RprA positively regulates amylovoran production, T3SS, and flagellar-dependent motility, and negatively affects levansucrase activity and cellulose production. We also identified the in vitro and in vivo conditions that activate RprA, and demonstrated that RprA activation leads to decreased formation of biofilms and promotes the dispersal movement of biofilm cells. This work supports the involvement of RprA in the systemic infection of E. amylovora during its pathogenesis. Bacterial toxin-antitoxin (TA) systems are small genetic loci composed of a proteinaceous toxin and a counteracting antitoxin. In this work, we identified and characterized a chromosomally encoded hok/sok-like type I TA system in Erwinia amylovora Ea1189.
    [Show full text]
  • Tese Jucimar Zacaria.Pdf (4.725Mb)
    UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE INSTITUTO DE BIOTECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA DIVERSIDADE, CLONAGEM E CARACTERIZAÇÃO DE NUCLEASES EXTRACELULARES DE Aeromonas spp. JUCIMAR ZACARIA CAXIAS DO SUL 2016 JUCIMAR ZACARIA DIVERSIDADE, CLONAGEM E CARACTERIZAÇÃO DE NUCLEASES EXTRACELULARES DE Aeromonas spp. Tese apresentada ao programa de Pós- graduação em Biotecnologia da Universidade de Caxias do Sul, visando à obtenção de grau de Doutor em Biotecnologia. Orientador: Dr. Sergio Echeverrigaray Co-orientador: Dra. Ana Paula Longaray Delamare Caxias do Sul 2016 ii Z13d Zacaria, Jucimar Diversidade, clonagem e caracterização de nucleases extracelulares de Aeromonas spp. / Jucimar Zacaria. – 2016. 258 f.: il. Tese (Doutorado) - Universidade de Caxias do Sul, Programa de Pós- Graduação em Biotecnologia, 2016. Orientação: Sergio Echeverrigaray. Coorientação: Ana Paula Longaray Delamare. 1. Aeromas. 2. DNases extracelulares. 3. Termoestabilidade. 4. Dns. 5. Aha3441. I. Echeverrigaray, Sergio, orient. II. Delamare, Ana Paula Longaray, coorient. III. Título. Elaborado pelo Sistema de Geração Automática da UCS com os dados fornecidos pelo(a) autor(a). JUCIMAR ZACARIA DIVERSIDADE, CLONAGEM E CARACTERIZAÇÃO DE NUCLEASES EXTRACELULARES DE Aeromonas spp. Tese apresentada ao Programa de Pós-graduação em Biotecnologia da Universidade de Caxias do Sul, visando à obtenção do título de Doutor em Biotecnologia. Orientador: Prof. Dr. Sergio Echeverrigaray Laguna Co-orientadora: Profa. Dra. Ana Paula Longaray
    [Show full text]