Transmembrane Protein 63A Is a Partner Protein of Haemonchus

Total Page:16

File Type:pdf, Size:1020Kb

Transmembrane Protein 63A Is a Partner Protein of Haemonchus Yuan et al. Parasites & Vectors (2015) 8:211 DOI 10.1186/s13071-015-0816-3 RESEARCH Open Access Transmembrane protein 63A is a partner protein of Haemonchus contortus galectin in the regulation of goat peripheral blood mononuclear cells Cheng Yuan, Hui Zhang, Wang Wang, Yan Li, RuoFeng Yan, LiXin Xu, XiaoKai Song and XiangRui Li* Abstract Background: Hco-gal-m and -f were two isoforms of galectin cloned from male and female Haemonchus contortus, respectively, and it was demonstrated that recombinant Hco-gal-m and -f could act as immune suppressors. However, little is known about the receptors or binding partners of these galectins in the host. The research of the molecular mechanisms that govern the interactions between these galectins and host molecules will fill a gap in our understanding how parasite galectins interact with host cells. Methods: A yeast two-hybrid system was used to identify the binding partners of Hco-gal-m and -f in this research. The interaction between rHco-gal-m and candidate binding protein was validated by co-immunoprecipitation. The localization of transmembrane protein 63A (TMEM63A) in peripheral blood mononuclear cells (PBMCs) was detected by immunofluorescence. The distribution of TMEM63A in T cells, B cells and monocytes in PBMCs was detected by flow cytometry. The immunomodulatory effects of Hco-gal-m and TMEM63A on cell proliferation, migration, apoptosis, nitric oxide production and cytokine secretion were observed by co-incubation of rHco-gal-m and TMEM63A-siRNA with goat PBMCs and monocytes. Results: We found that TMEM63A, a functionally unknown protein, from goat PBMCs could bind to Hco-gal-m and -f. Immunofluorescence showed that TMEM63A was localized to the cell membrane. Flow cytometric analysis revealed that TMEM63A was expressed in the majority of goat PBMCs. After using RNA interference to knockdown expression of TMEM63A, the PBMC proliferation and migration were significantly increased, while the influence of rHco-gal-m on monocyte phagocytosis, PBMC nitric oxide production and migration were potently blocked. In addition, the production of IL-10, IFN-γ and TGF-β induced by rHco-gal-m were also altered. Conclusions: Our results show that TMEM63A is a binding partner of Hco-gal-m/f, and involved in the immune responses of host PBMCs induced by Hco-gal-m for the first time. Keywords: Galectin, Haemonchus contortus,Partnerprotein,TMEM63A Background been demonstrated that the interaction of galectin with Galectins are β-galactoside-binding lectins that are its receptor on the target cell governs the function of present not only in the cytosol and nucleus but also in the galectin. The carbohydrate-dependent binding of the extracellular space [1-3]. Secreted galectins of mam- galectin-4 secreted by intestinal epithelial cells to the malian can bind to the cell surface and exert a range of CD3 epitope is fully functional and inhibited T cell acti- functions, including leading to cell adhesion, activating vation, cycling and expansion [8]. Galectin-8 interacts signaling pathways of functional relevance in the control with several members of the integrin family and modu- of receptor endocytosis, host-pathogen interactions, and lates the interactions of integrin with the extracellular activation and homeostasis of immune cells [4-7]. It has matrix and thus regulates cell adhesion and cell survival [9]. Thurston et al. suggest that galectin-8 serves as a * Correspondence: [email protected] versatile receptor for vesicle-damaging pathogens in the College of Veterinary Medicine, Nanjing Agricultural University, Nanjing cytosol [10]. Galectin-9 and galectin-1 both kill thymocytes, 210095, People’s Republic of China © 2015 Yuan et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Yuan et al. Parasites & Vectors (2015) 8:211 Page 2 of 13 peripheral T cells, and T cell lines. However, Bi et al. still unknown. In the present research, we identified that have found that galectin-9 and galectin-1 require differ- the effects of Hco-gal-m/f on the proliferation, migration ent glycan ligands and glycoprotein receptors to trigger phagocytosis, nitric oxide and some cytokine productions T cell death [11]. Galectin-3 and galectin-9 can both of the goat PBMC were all altered after the TMEM63A recognize Leishmania major (L. major)bybindingto (NCBI accession number KF850508) gene was knocked the L. major-specific polygalactosyl epitope, but only down by specific small interference RNA (siRNA). Our re- galectin-9 can promote the interaction between L. major sults firstly show that TMEM63A is a binding partner of and macrophages [12,13]. Hco-gal-m/f, and involved in the immune responses of Galectin-like proteins have also been identified in para- host PBMCs induced by Hco-gal-m. sitic nematodes, cestodes and trematodes, such as Oncho- cerca volvulus, Teladorsagia circumcincta, Haemonchus Methods contortus, Trichostrongylus colubriformis, Taenia serialis Ethics statement and Fasciola hepatica [4]. Galectins secreted or excreted The animals were handled according to the guideline of the by parasitic nematodes or other helminths can signifi- Animal Ethics Committee, Nanjing Agricultural University, cantly modulate the host immune response [14-16]. How- China.Allanimalexperimentscomplied with the guidelines ever, little is known about the receptors or binding of the Animal Welfare Council of China. All experimental partners of these galectins in the host. In this case, the re- protocols were approved by the Science and Technology search of the molecular mechanisms that govern the inter- Agency of Jiangsu Province. The approval ID is SYXK (SU) actions between these galectins and host molecules will 2010–0005. The least hardship was certified. fill a gap in our understanding how parasite galectins interact with host cells. Haemonchus contortus (H. contortus) is one of the Animal and cell most economically important parasites of small rumi- Local crossbred goats (3–6-month-old) were fed with hay nants worldwide. Infection can lead to anaemia, loss of and whole shelled corn and watered with libitum and condition and death of the host, especially lambs [17,18]. housed indoor in pens healthily at Nanjing Agricultural Simultaneously, it can cause immunosuppression and re- University. All goats were dewormed twice at 2 week in- sults in a low level immunity in the host [19-21]. This tervals with levamisole (8 mg/kg bodyweight) orally at worm is also the most widely used model parasitic the time of housing to remove naturally acquired strongy- nematode in drug discovery [22], vaccine development lid infection [32]. After 2 weeks, a fecal sample from [23-25] and anthelmintic resistance research [26-29]. each goat was examined by microscopy for helminth eggs, Hco-gal-m (Acc. No. AY253330) and Hco-gal-f (Acc.No. according to standard parasitological techniques. Goats AY253331) are two isoforms of galectin which were cloned exhibiting no eggs were used in the subsequent study from male and female H. contortus respectively. Our previ- and daily health observations were performed throughout ous studies showed that recombinant Hco-gal-m/f (rHco- the experiment. gal-m/f) could bind to the surface of goat PBMCs, and Goat peripheral venous blood samples were collected function as immune suppressors by inducing cell apoptosis from healthy goats consistently. The goat PBMCs were and inhibiting the transcription of IL-1β,IL-4,IFN-γ and separated from blood of six healthy adult goats with the TNF-α mRNA in goat PBMCs in vitro [30,31]. Our further standard Ficoll-hypaque (GE Healthcare, USA) gradient research indicated that rHco-gal-m/f could influence cell centrifugation method [33] and were adjusted to a migration, T cell proliferation and differentiation, the ex- density of 1 × 106 cells/mL in RPMI 1640 or DMEM pression of MHC-II on monocytes and that of CD25 on (GIBCO,UK) containing 10% heat inactivated fetal calf T cells [30,32]. Meanwhile, a combined proteomic and tran- serum (GIBCO, UK), 100 IU/mL penicillin and 100 mg/mL scriptomic analysis revealed that the activations of vascular streptomycin (GIBCO, UK) at 37°C in a humidified atmos- endothelial growth factor pathway, free radical producing phere with 5% CO2. pathway, NFκB pathway and ubiquitin–proteasome path- Monocytes were isolated by their adherence to plastic wayingoatPBMCweredown-regulatedbyrHco-gal-m/f surface [34]. The goat PBMCs were seeded in a 6 wells [30]. These findings suggested that Hco-gal-m/f were multi- flat-bottom tissue culture plates (Corning, USA) in cell functional molecules that can influence many biological culture medium RPMI 1640 (GIBCO,UK) containing processes, especially those relevant to immune responses 10% heat inactivated fetal calfserum (GIBCO, UK), 100 or evasion. The discovery of the binding partner of Hco- U/mL penicillin and 100 mg/mL streptomycin (GIBCO, gal-m/f in goat PBMCs would challenge the current under- UK). Plates were incubated at 37°C in a humidified at- standing of the H. contortus parasite-host interactions. mosphere with 5% CO2 for 1 h [35]. Non-adherent cells Transmembrane protein 63A (TMEM63A) is a member were removed by washing twice with phosphate buffered of the transmembrane protein family. But its function is saline (PBS). The adherent cells were collected and Yuan et al. Parasites & Vectors (2015) 8:211 Page 3 of 13 adjusted to a density of 1 × 106 cells/mL in cell medium pH 7.4) [37], containing a protease inhibitor cocktail at 37°C in a humidified atmosphere with 5% CO2. (Merck, Darmstadt, Germany). Cell lysates were pre- Cells used for the experiments were freshly isolated from cleared by adding 1 μg rat normal IgG and 20 μL Protein goat peripheral blood.
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • A Pathologic Link Between Wilms Tumor Suppressor Gene, WT1, And
    Volume 10 Number 1 January 2008 pp. 69–78 69 www.neoplasia.com RESEARCH ARTICLE † Marianne K.-H. Kim*, Jacqueline M. Mason , A Pathologic Link between Wilms ‡ § Chi-Ming Li , Windy Berkofsky-Fessler , ∥ WT1 Le Jiang , Divaker Choubey¶, Paul E. Grundy#, Tumor Suppressor Gene, , ∥ and IFI161,2 Benjamin Tycko and Jonathan D. Licht* *Division of Hematology/Oncology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; †The Campbell Family Institute for Breast Cancer Research at the Ontario, Cancer Institute, Ontario, Canada; ‡Translational Medicine, Amgen, Thousand Oaks, CA, USA; §Section of Bioinformatics, Genetics and Genomics, Hoffmann-La Roche Inc, Nutley, NJ, USA; ∥Institute for Cancer Genetics and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA; ¶University of Cincinnati, Cincinnati, OH, USA; #University of Alberta, Alberta, Canada Abstract The Wilms tumor gene (WT1) is mutated or deleted in patients with heredofamilial syndromes associated with the development of Wilms tumors, but is infrequently mutated in sporadic Wilms tumors. By comparing the micro- array profiles of syndromic versus sporadic Wilms tumors and WT1-inducible Saos-2 osteosarcoma cells, we iden- tified interferon-inducible protein 16 (IFI16), a transcriptional modulator, as a differentially expressed gene and a candidate WT1 target gene. WT1 induction in Saos-2 osteosarcoma cells led to strong induction of IFI16 expression and its promoter activity was responsive to the WT1 protein. Immunohistochemical analysis showed that IFI16 and WT1 colocalized in WT1-replete Wilms tumors, but not in normal human midgestation fetal kidneys, suggesting that the ability of WT1 to regulate IFI16 in tumors represented an aberrant pathologic relationship.
    [Show full text]
  • NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • The Cuprizone Model: Dos and Do Nots
    cells Review The Cuprizone Model: Dos and Do Nots Jiangshan Zhan 1, Teresa Mann 1, Sarah Joost 1 , Newshan Behrangi 1, Marcus Frank 2 and Markus Kipp 1,* 1 Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany; [email protected] (J.Z.); [email protected] (T.M.); [email protected] (S.J.); [email protected] (N.B.) 2 Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Strempelstraße 14, 18057 Rostock, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-381-494-8401 Received: 25 February 2020; Accepted: 27 March 2020; Published: 31 March 2020 Abstract: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Various pre-clinical models with different specific features of the disease are available to study MS pathogenesis and to develop new therapeutic options. During the last decade, the model of toxic demyelination induced by cuprizone has become more and more popular, and it has contributed substantially to our understanding of distinct yet important aspects of the MS pathology. Here, we aim to provide a practical guide on how to use the cuprizone model and which pitfalls should be avoided. Keywords: multiple sclerosis; cuprizone model; histological analyses 1. Introduction Multiple sclerosis (MS) is a frequent disease of the central nervous system (CNS) affecting predominantly young adults. On the histopathological level, the disease is characterized by focal white and grey matter demyelination, caused by the interplay of brain resident cells (such as microglia and astrocytes) and peripheral immune cells (such as lymphocytes and monocytes).
    [Show full text]
  • Flipping Between Polycomb Repressed and Active Transcriptional States Introduces Noise in Gene Expression
    bioRxiv preprint doi: https://doi.org/10.1101/117267; this version posted March 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression Gozde Kar1, Jong Kyoung Kim1, Aleksandra A. Kolodziejczyk1, 2, Kedar Nath Natarajan1, 2, Elena Torlai Triglia3, Borbala Mifsud4, 5, 6, Sarah Elderkin7, John C. Marioni1, 2, 8, Ana Pombo3, Sarah A. Teichmann1,2 Affiliations 1European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK 2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK 3Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert Roessle Strasse, 13125 Berlin-Buch, Germany. 4Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK 5Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, UK 6William Harvey Research Institute, Queen Mary University London, Charterhouse Square, London EC1M 6BQ, UK 7Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK 8Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK 1 bioRxiv preprint doi: https://doi.org/10.1101/117267; this version posted March 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Common Genetic Variation at the IL1RL1 Locus Regulates IL- 33/ST2 Signaling
    Common genetic variation at the IL1RL1 locus regulates IL- 33/ST2 signaling Jennifer E. Ho, … , Richard T. Lee, Thomas J. Wang J Clin Invest. 2013;123(10):4208-4218. https://doi.org/10.1172/JCI67119. Research Article Immunology The suppression of tumorigenicity 2/IL-33 (ST2/IL-33) pathway has been implicated in several immune and inflammatory diseases. ST2 is produced as 2 isoforms. The membrane-bound isoform (ST2L) induces an immune response when bound to its ligand, IL-33. The other isoform is a soluble protein (sST2) that is thought to be a decoy receptor for IL-33 signaling. Elevated sST2 levels in serum are associated with an increased risk for cardiovascular disease. We investigated the determinants of sST2 plasma concentrations in 2,991 Framingham Offspring Cohort participants. While clinical and environmental factors explained some variation in sST2 levels, much of the variation in sST2 production was driven by genetic factors. In a genome-wide association study (GWAS), multiple SNPs within IL1RL1 (the gene encoding ST2) demonstrated associations with sST2 concentrations. Five missense variants of IL1RL1 correlated with higher sST2 levels in the GWAS and mapped to the intracellular domain of ST2, which is absent in sST2. In a cell culture model, IL1RL1 missense variants increased sST2 expression by inducing IL-33 expression and enhancing IL-33 responsiveness (via ST2L). Our data suggest that genetic variation in IL1RL1 can result in increased levels of sST2 and alter immune and inflammatory signaling through the ST2/IL-33 pathway. Find the latest version: https://jci.me/67119/pdf Research article Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling Jennifer E.
    [Show full text]
  • Predict AID Targeting in Non-Ig Genes Multiple Transcription Factor
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 is online at: average * The Journal of Immunology published online 20 March 2013 from submission to initial decision 4 weeks from acceptance to publication Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke, Man Liu, Gur Yaari, Ashraf M. Khalil, Mary M. Tomayko, Mark J. Shlomchik, David G. Schatz and Steven H. Kleinstein J Immunol http://www.jimmunol.org/content/early/2013/03/20/jimmun ol.1202547 Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/03/20/jimmunol.120254 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 26, 2021. Published March 20, 2013, doi:10.4049/jimmunol.1202547 The Journal of Immunology Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes Jamie L. Duke,* Man Liu,†,1 Gur Yaari,‡ Ashraf M. Khalil,x Mary M. Tomayko,{ Mark J. Shlomchik,†,x David G.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology published online 1 July 2016 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2016/07/01/jimmun ol.1600589 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. Published July 1, 2016, doi:10.4049/jimmunol.1600589 The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh,* Sonia M. Leach,† Brandon L. Moore,* Tullia C. Bruno,* Jonathan D. Buhrman,* and Jill E.
    [Show full text]