Crebbp Loss Drives Small Cell Lung Cancer and Increases Sensitivity to HDAC Inhibition

Total Page:16

File Type:pdf, Size:1020Kb

Crebbp Loss Drives Small Cell Lung Cancer and Increases Sensitivity to HDAC Inhibition Published OnlineFirst September 4, 2018; DOI: 10.1158/2159-8290.CD-18-0385 RESEARCH ARTICLE Crebbp Loss Drives Small Cell Lung Cancer and Increases Sensitivity to HDAC Inhibition Deshui Jia1, Arnaud Augert1, Dong-Wook Kim2, Emily Eastwood1, Nan Wu1, Ali H. Ibrahim1, Kee-Beom Kim2, Colin T. Dunn2, Smitha P.S. Pillai3, Adi F. Gazdar4, Hamid Bolouri1, Kwon-Sik Park2, and David MacPherson1,5 Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst September 4, 2018; DOI: 10.1158/2159-8290.CD-18-0385 ABSTRACT CREBBP, encoding an acetyltransferase, is among the most frequently mutated genes in small cell lung cancer (SCLC), a deadly neuroendocrine tumor type. We report acceleration of SCLC upon Crebbp inactivation in an autochthonous mouse model. Extending these observations beyond the lung, broad Crebbp deletion in mouse neuroendocrine cells cooperated with Rb1/Trp53 loss to promote neuroendocrine thyroid and pituitary carcinomas. Gene expression analyses showed that Crebbp loss results in reduced expression of tight junction and cell adhesion genes, including Cdh1, across neuroendocrine tumor types, whereas suppression of Cdh1 promoted transformation in SCLC. CDH1 and other adhesion genes exhibited reduced histone acetylation with Crebbp inactivation. Treatment with the histone deacetylase (HDAC) inhibitor Pracinostat increased histone acetylation and restored CDH1 expression. In addition, a subset of Rb1/Trp53/Crebbp- deficient SCLC exhibited exceptional responses to Pracinostatin vivo. Thus, CREBBP acts as a potent tumor suppressor in SCLC, and inactivation of CREBBP enhances responses to a targeted therapy. SIGNIFICANCE: Our findings demonstrate that CREBBP loss in SCLC reduces histone acetylation and transcription of cellular adhesion genes, while driving tumorigenesis. These effects can be partially restored by HDAC inhibition, which exhibited enhanced effectiveness in Crebbp-deleted tumors. These data provide a rationale for selectively treating CREBBP-mutant SCLC with HDAC inhibitors. Cancer Discov; 8(11); 1–16. ©2018 AACR. INTRODUCTION been shown to abrogate CREBBP-mediated histone acetyla- tion (6). CREBBP and EP300 acetylation of lysine residues on Recent identification of the genomic alterations in small histone tails neutralizes their positive charge and can increase cell lung cancer (SCLC), a deadly type of lung cancer, may chromatin accessibility. Acetylation of a specific histone resi- provide new opportunities for therapeutic intervention (1–3). due, histone H3 lysine 27 (H3K27), by CREBBP/EP300 can Critical challenges remain, however, as few of these SCLC promote transcriptional enhancer function (7), and dele- alterations are readily actionable, and a majority of them tion of Crebbp/Ep300 in mouse fibroblasts eliminates the have not been validated for their roles in disease initiation vast majority of H3K27 acetylation (8). CREBBP/EP300 also and progression (4). Along with RB1 and TP53 inactivation, acetylates nonhistone proteins, such as p53 and BCL6 (9, 10). mutations in the CREBBP and EP300 acetyltransferases are CREBBP is mutated in lymphomas, urothelial carcinoma, and among the most frequent in SCLC, appearing in 15% to 17% other human tumor types (11–13). Studies employing mouse and 5% to 13% of tumors in patients with SCLC, respectively models have demonstrated that Crebbp functions as a tumor (1, 2, 5, 6). In SCLC, deletions and truncating mutations in suppressor in leukemia and lymphoma (14–17). However, CREBBP and EP300 genes along with missense mutations in vivo evidence that Crebbp functions as a tumor suppressor in the histone acetyltransferase (HAT) domain are frequent, in solid tumors is lacking. In lymphoma, it has been posited and these occur in a mutually exclusive manner. For CREBBP, that loss of CREBBP-mediated acetylation and activation of HAT domain mutations observed in SCLC samples have p53 drives tumorigenesis (13, 17). p53-dependent mecha- nisms of tumor suppression mediated by CREBBP are likely not relevant to tumors such as SCLC that almost invari- ably harbor TP53 mutations (1). Thus, elucidating roles for 1Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington. 2Department of Microbiology, Immunology, and p53-independent tumor-suppressive activities of CREBBP in Cancer Biology, University of Virginia School of Medicine, Charlottes- SCLC is important. In this study, we demonstrate p53-inde- ville, Virginia. 3Division of Comparative Medicine, Fred Hutchinson Cancer pendent Crebbp tumor-suppressor function not only in SCLC 4 Research Center, Seattle, Washington. The University of Texas South- but across multiple neuroendocrine tumor types. We report western Medical Center, Hamon Center for Therapeutic Oncology and Department of Pathology, Dallas, Texas. 5Department of Genome Sciences, CREBBP control of adhesion-related transcript expression, University of Washington, Seattle, Washington. including CDH1, encoding E-Cadherin, as contributing to Note: Supplementary data for this article are available at Cancer Discovery tumor suppression, and we identify a potential therapeutic Online (http://cancerdiscovery.aacrjournals.org/). approach for treating CREBBP-deficient SCLC. D. Jia, A. Augert, and D.-W. Kim contributed equally to this article. Corresponding Authors: David MacPherson, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109. Phone: RESULTS 206-667-6464; Fax: 206-667-2917; E-mail: [email protected]; and Kwon-Sik Park, University of Virginia School of Medicine, Charlottesville, Crebbp Mutation Promotes Tumorigenesis of VA 22908. Phone: 434-982-1947; E-mail: [email protected] Preneoplastic Neuroendocrine Cells doi: 10.1158/2159-8290.CD-18-0385 To study the potential role of Crebbp in SCLC tumor sup- ©2018 American Association for Cancer Research. pression, we mutated Crebbp in a cell-based model of early-stage NOVEMBER 2018 CANCER DISCOVERY | OF2 Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst September 4, 2018; DOI: 10.1158/2159-8290.CD-18-0385 RESEARCH ARTICLE Jia et al. A B C preSC preSC preSC sgControl sgControl sgCrebbp-1 sgControl sgControl 100 sgCrebbp-1 sgCrebbp-2 sgCrebbp-1 sgCrebbp-2 50 Survival (%) Log-rank test P = 0.0015 0 0204060 80 * Days 10 D Normal lung Crebbp-deficient tumor Crebbp-deficient tumor * 5 Fold change Fold 0 (number of colony/well) -1 -2 sgControl sgControl sgCrebbp sgCrebbp E Rb1/Trp53 (n = 28) G Rb1/Trp53 H Rb1/Tr p53 Rb1/Trp53/Crebbp (n = 48) 100 CGRP; DAPI TTF-1; DAPI Median survival 444 days Median survival 50 384 days Log-rank test Tumor-free survival Tumor-free P = 0.0003 Rb1/Tr p53/Crebbp Rb1/Tr p53/Crebbp 0 0 200 400 600 800 CGRP; DAPI TTF-1; DAPI Days F Rb1/Trp53 Rb1/Trp53/Crebbp 250 CREBBP 37 β-ACTIN Figure 1. Inactivation of Crebbp accelerates SCLC in mouse models. A, Representative images of control and Crebbp-targeted preSC cells in soft agar 3 weeks after seeding of 1 × 104 cells. Two independent single-guide RNAs were employed (sgCrebbp-1, sgCrebbp-2). Bottom, quantification of colonies > 0.1 mm in diameter (n = 4). Scale bar, 0.5 mm. *, P < 0.001, Student t-test. B, Images of preSC-derived allografts, 40 days after s.c. injec- tion of cells. Scale bars, 1 cm. C, Kaplan–Meier overall survival curves of mice injected with control-preSC cells (Control, n = 6) and mice injected with Crebbp-knockout preSC cells (n = 5 each). Statistical significance was calculated using the log-rank (Mantel–Cox) test. D, Images of UCHL1-stained sections of Crebbp-mutant tumor and normal lung. Arrow points to neuroepithelial body in the airway. Scale bars, 100 μm. Representative section of Crebbp-deficient tumors stained with H&E. Scale bar, 20μ m. E, Kaplan–Meier tumor-free survival curves of Rb1/Trp53-deficient (blue,n = 28) and Rb1/ Trp53/Crebbp-mutant (red, n = 48) mice from autochthonous model infected with Ad-CGRP-Cre (day 0). Statistical significance was calculated using the log-rank (Mantel–Cox) test. F, Representative immunoblotting results of CREBBP protein levels in 5 lung tumor tissues from each cohort (Rb1/ Trp53 vs. Rb1/Trp53/Crebbp). β-actin was used as a loading control. G, Representative H&E-stained section of SCLC in each cohort (Rb1/Trp53 vs. Rb1/Trp53/Crebbp). Scale bars, 20 μm. H, Representative immunofluorescence for SCLC markers TTF-1 and CGRP in each cohort Rb1/Trp53( vs. Rb1/ Trp53/Crebbp). DAPI was used as a nuclear stain. Original magnification,× 40. SCLC that we previously described (18). Rb1/Trp53/Rbl2- tumors, with delayed kinetics (Fig. 1C). Hematoxylin–eosin deficient “preSC” cells, derived from a mouse SCLC model at (H&E) staining showing typical SCLC morphology and immu- an early stage in tumorigenesis, become fully transformed with nostaining showed the expression of UCHL1 and CGRP, mark- ectopic expression of SCLC oncogenes such as MYCL (18). Here, ers of both SCLC and normal pulmonary neuroendocrine cells we expressed Cas9 and two single-guide RNAs (sgRNA) target- (Fig. 1D; Supplementary Fig. S1C). These data support a role ing DNA sequences encoding the HAT domain of the murine for CREBBP in SCLC tumor suppression. Crebbp gene and validated loss of CREBBP protein (Supple- mentary Fig. S1A and S1B). We found that Crebbp-mutant Crebbp Inactivation Accelerates SCLC in an preSC cells formed more and individually larger colonies in soft Autochthonous Mouse Model agar compared with control preSC cells (Fig. 1A). When preSC To further investigate the contribution of Crebbp inactiva- cells were injected into the flanks of immune-compromised tion to SCLC development in vivo, we employed an autoch- mice, tumors emerged at 30 to 50 days in the sites injected with thonous model. We performed a genetic cross to incorporate the Crebbp-mutant preSC cells but not in those injected with a floxedCrebbp allele (14) into an Rb1/Trp53-deleted model control cells (Fig. 1B). Further aging of the mice injected of SCLC that develops lung tumors with histopathologic with control preSC cells showed that these cells also formed and molecular features of human SCLC (19, 20).
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • MOZ and MORF, Two Large Mystic Hats in Normal and Cancer Stem Cells
    Oncogene (2007) 26, 5408–5419 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells X-J Yang and M Ullah Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montre´al, Que´bec, Canada Genes of the human monocytic leukemia zinc-finger protein pattern. For cancer biology, it is thus important to MOZ (HUGO symbol, MYST3) and its paralog MORF understand the fundamental mechanisms whereby chro- (MYST4) are rearranged in chromosome translocations matin structure and function are regulated. In the associated withacute myeloid leukemia and/or benign past two decades, our knowledge about regulation in uterine leiomyomata. Both proteins have intrinsic histone this field has exploded. Known regulatory mechanisms acetyltransferase activity and are components of quartet include chromatin assembly, ATP-dependent remodeling, complexes withnoncatalytic subunits containing thebromo- covalent modification, condensin-mediated condensation, domain, plant homeodomain-linked (PHD) finger and replacement with histone variants, and association of proline-tryptophan-tryptophan-proline (PWWP)-containing noncoding RNA (reviewed by Horn and Peterson, 2002; domain, three types of structural modules characteristic of Khorasanizadeh, 2004; Li et al., 2007). Covalent chromatin regulators. Although leukemia-derived fusion pro- modification can occur at both the DNA and histone teins suchas MOZ-TIF2 promote self-renewal of leukemic levels. With histones, modifications include acetylation, stem cells, recent studies indicate that murine MOZ and phosphorylation, methylation, ubiquitination, and many MORF are important for proper development of hema- others (for reviews, see Spencer and Davie, 1999; Strahl topoietic and neurogenic progenitors, respectively, thereby and Allis, 2000; Berger, 2002; Jason et al., 2002; highlighting the importance of epigenetic integrity in Kouzarides, 2007).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genome-Wide Profiling of Active Enhancers in Colorectal Cancer
    Genome-wide proling of active enhancers in colorectal cancer Min Wu ( [email protected] ) Wuhan University https://orcid.org/0000-0003-1372-4764 Qinglan Li Wuhan University Xiang Lin Wuhan University Ya-Li Yu Zhongnan Hospital, Wuhan University Lin Chen Wuhan University Qi-Xin Hu Wuhan University Meng Chen Zhongnan Hospital, Wuhan University Nan Cao Zhongnan Hospital, Wuhan University Chen Zhao Wuhan University Chen-Yu Wang Wuhan University Cheng-Wei Huang Wuhan University Lian-Yun Li Wuhan University Mei Ye Zhongnan Hospital, Wuhan University https://orcid.org/0000-0002-9393-3680 Article Keywords: Colorectal cancer, H3K27ac, Epigenetics, Enhancer, Transcription factors Posted Date: December 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-119156/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Genome-wide profiling of active enhancers in colorectal cancer Qing-Lan Li1, #, Xiang Lin1, #, Ya-Li Yu2, #, Lin Chen1, #, Qi-Xin Hu1, Meng Chen2, Nan Cao2, Chen Zhao1, Chen-Yu Wang1, Cheng-Wei Huang1, Lian-Yun Li1, Mei Ye2,*, Min Wu1,* 1 Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China 2Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, China #Equal contribution to the study. Contact information *Correspondence should be addressed to Dr. Min Wu, Email: [email protected], Tel: 86-27-68756620, or Dr.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • The Basic Region and Leucine Zipper Transcription Factor Mafk Is a New Nerve Growth Factor-Responsive Immediate Early Gene That Regulates Neurite Outgrowth
    The Journal of Neuroscience, October 15, 2002, 22(20):8971–8980 The Basic Region and Leucine Zipper Transcription Factor MafK Is a New Nerve Growth Factor-Responsive Immediate Early Gene That Regulates Neurite Outgrowth Be´ ata To¨ro¨ csik, James M. Angelastro, and Lloyd A. Greene Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032 We used serial analysis of gene expression to identify new mediated by an atypical isoform of PKC but not by mitogen- NGF-responsive immediate early genes (IEGs) with potential activated kinase kinase, phospholipase C␥, or phosphoinositide roles in neuronal differentiation. Among those identified was 3Ј-kinase. Interference with MafK expression or activity by small MafK, a small Maf family basic region and leucine zipper tran- interfering RNA and dominant negative strategies, respectively, scriptional repressor and coactivator expressed in immature suppresses NGF-promoted outgrowth and maintenance of neu- neurons. NGF treatment elevates the levels of both MafK tran- rites by PC12 cells and neurite outgrowth by immature telence- scripts and protein. In contrast, there is no effect on expression phalic neurons. Our findings support a role for MafK as a novel of the closely related MafG. Unlike many other NGF-responsive regulator of neuronal differentiation. IEGs, MafK regulation shows selectivity and is unresponsive to epidermal growth factor, depolarization, or cAMP derivatives. Key words: MafK; NGF; immediate early
    [Show full text]
  • Human Small Maf Proteins Form Heterodimers with CNC Family Transcription Factors and Recognize the NF-E2 Motif
    Oncogene (1997) 14, 1901 ± 1910 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF-E2 motif Tsutomu Toki1, Jugou Itoh2, Jun'ichi Kitazawa1, Koji Arai1, Koki Hatakeyama3, Jun-itsu Akasaka4, Kazuhiko Igarashi5, Nobuo Nomura6, Masaru Yokoyama1, Masayuki Yamamoto5 and Etsuro Ito1 1Department of Pediatrics, 2Medicine, School of Medicine; 3Department of Biology, Faculty of Sciences, Hirosaki University, Hirosaki 036; 4Department of Biochemistry, Tohoku University School of Medicine, Sendai 980-77; 5Center for TARA and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305; 6Kazusa DNA Institute, Kisarazu 292, Japan The transcription factor NF-E2, a heterodimeric protein Talbot et al., 1990; Talbot and Grosveld, 1991; complex composed of p45 and small Maf family Kotkow and Orkin, 1995). Recent analyses demon- proteins, is considered crucial for the regulation of strated that NF-E2 is composed of two subunits erythroid gene expression and platelet formation. To (Andrews et al., 1993a,b; Igarashi et al., 1994). The facilitate the characterization of NF-E2 functions in large p45 subunit belongs to a family of basic leucine- human cells, we isolated cDNAs encoding two members zipper (bZip) proteins that is closely related to the of the small Maf family, MafK and MafG. The human Drosophila Cap`n'colar (the CNC family) factor mafK and mafG genes encode proteins of 156 and 162 (Mohler et al., 1991). It cannot bind to the NF-E2 amino acid residues, respectively, whose deduced amino sequence as a homodimer, but does do after forming acid sequences show approximately 95% identity to their heterodimers with chicken small Maf family proteins, respective chicken counterparts.
    [Show full text]
  • Heterogeneous Nuclear Ribonucleoprotein C1 C2, Mecp1
    Heterogeneous nuclear ribonucleoprotein C1͞C2, MeCP1, and SWI͞SNF form a chromatin remodeling complex at the ␤-globin locus control region Milind C. Mahajan*, Geeta J. Narlikar†, Gokul Boyapaty*, Robert E. Kingston‡, and Sherman M. Weissman*§ *Department of Genetics, The Anlyan Center, Yale University School of Medicine, New Haven, CT 06511; †Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143; and ‡Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 Contributed by Sherman M. Weissman, August 31, 2005 Locus control regions (LCRs) are regulatory DNA sequences that are promoter (20–23). These studies suggest the possible association situated many kilobases away from their cognate promoters. LCRs of the LCR with specific chromatin remodeling activities, al- protect transgenes from position effect variegation and hetero- though such a LCR-specific chromatin remodeling activity has chromatinization and also promote copy-number dependence of not been isolated. In the present work, we describe the biochem- the levels of transgene expression. In this work, we describe the ical purification and properties of a previously undescribed biochemical purification of a previously undescribed LCR-associ- chromatin-remodeling complex that binds to the human ␤-globin ated remodeling complex (LARC) that consists of heterogeneous LCR HS2 in a sequence-specific manner. nuclear ribonucleoprotein C1͞C2, nucleosome remodeling SWI͞ SNF, and nucleosome remodeling and deacetylating (NuRD)͞ Materials and Methods MeCP1 as a single homogeneous complex. LARC binds to the Cell Culture and Preparation of Nuclear Extracts. Growth of the K562 hypersensitive 2 (HS2)-Maf recognition element (MARE) DNA in a cells and preparation of the nuclear extract is described in ref.
    [Show full text]
  • The Chemical Defensome of Five Model Teleost Fish
    www.nature.com/scientificreports OPEN The chemical defensome of fve model teleost fsh Marta Eide1,5, Xiaokang Zhang2,3,5, Odd André Karlsen1, Jared V. Goldstone4, John Stegeman4, Inge Jonassen2 & Anders Goksøyr1* How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fsh is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of fve fsh species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafsh (Danio rerio), medaka (Oryzias latipes), Atlantic killifsh (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved diferences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.
    [Show full text]
  • NF-E2p18/Mafk Is Required in DMSO-Induced Differentiation Of
    Leukemia (1997) 11, 273–280 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 NF-E2p18/mafK is required in DMSO-induced differentiation of Friend erythroleukemia cells by enhancing NF-E2 activity C Francastel, V Poindessous-Jazat, Y Augery-Bourget and J Robert-Le´ze´ne`s INSERM U268, Hoˆpital Paul Brousse, 94800 Villejuif, France When Friend murine erythroleukemia (F-MEL) cells are induced (LCR).6 The b-globin complex LCR (b-LCR) include four to differentiate by dimethylsulfoxide (DMSO), erythroid-specific erythroid-specific DNasel hypersensitive sites (designated HS- genes are transcriptionally activated. The erythroid transcrip- 1 to HS-4) and acts as a powerful enhancer of transcription tion factor NF-E2 is essential for enhancer activity of the globin 7,8 locus control regions. NF-E2 functions as a heterocomplex of globin promoters. While all four HS have LCR activity in consisting of a 45-kDa subunit (NF-E2p45) and a 18-kDa sub- transgenic mice, only one region (HS-2) is crucial for unit (NF-E2p18). The larger subunit NF-E2p45 is tissue-restric- enhancer activity when assayed in transient transfection ted and is believed to play a role in globin gene expression in systems.9–11 Within HS-2, the enhancer activity for globin F-MEL cells. The expression of the smaller subunit NF-E2p18, expression requires a tandem repeat of AP-1-like which is a Maf family member (MafK), is cell type- and develop- 12,13 mental stage-specific. We have investigated the possible role elements. This tandem motif was shown to bind two tran- of NF-E2p18 in Friend erythroid differentiation by stably trans- scription factors: the ubiquitous AP-1 protein and the lineage fecting either sense and antisense p18 constructs into differen- limited NF-E2 protein.14,15 The NF-E2 complex is a hetero- tiation-sensitive 745A and partially defective-differentiation dimer of two b-Zip proteins of 45 and 18 kDa.16,17 While NF- TFP10 cell lines.
    [Show full text]
  • A Pathologic Link Between Wilms Tumor Suppressor Gene, WT1, And
    Volume 10 Number 1 January 2008 pp. 69–78 69 www.neoplasia.com RESEARCH ARTICLE † Marianne K.-H. Kim*, Jacqueline M. Mason , A Pathologic Link between Wilms ‡ § Chi-Ming Li , Windy Berkofsky-Fessler , ∥ WT1 Le Jiang , Divaker Choubey¶, Paul E. Grundy#, Tumor Suppressor Gene, , ∥ and IFI161,2 Benjamin Tycko and Jonathan D. Licht* *Division of Hematology/Oncology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; †The Campbell Family Institute for Breast Cancer Research at the Ontario, Cancer Institute, Ontario, Canada; ‡Translational Medicine, Amgen, Thousand Oaks, CA, USA; §Section of Bioinformatics, Genetics and Genomics, Hoffmann-La Roche Inc, Nutley, NJ, USA; ∥Institute for Cancer Genetics and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA; ¶University of Cincinnati, Cincinnati, OH, USA; #University of Alberta, Alberta, Canada Abstract The Wilms tumor gene (WT1) is mutated or deleted in patients with heredofamilial syndromes associated with the development of Wilms tumors, but is infrequently mutated in sporadic Wilms tumors. By comparing the micro- array profiles of syndromic versus sporadic Wilms tumors and WT1-inducible Saos-2 osteosarcoma cells, we iden- tified interferon-inducible protein 16 (IFI16), a transcriptional modulator, as a differentially expressed gene and a candidate WT1 target gene. WT1 induction in Saos-2 osteosarcoma cells led to strong induction of IFI16 expression and its promoter activity was responsive to the WT1 protein. Immunohistochemical analysis showed that IFI16 and WT1 colocalized in WT1-replete Wilms tumors, but not in normal human midgestation fetal kidneys, suggesting that the ability of WT1 to regulate IFI16 in tumors represented an aberrant pathologic relationship.
    [Show full text]
  • JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation?
    International Journal of Molecular Sciences Review JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation? Gerhild Euler 1,* , Jens Kockskämper 2, Rainer Schulz 1 and Mariana S. Parahuleva 3 1 Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; [email protected] 2 Biochemical-Pharmacological Centre (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; [email protected] 3 Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, 35033 Marburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-0641-9947246; Fax: +49-0641-9947219 Abstract: Heart failure (HF) and atrial fibrillation (AF) are two major life-threatening diseases worldwide. Causes and mechanisms are incompletely understood, yet current therapies are unable to stop disease progression. In this review, we focus on the contribution of the transcriptional modulator, Jun dimerization protein 2 (JDP2), and on HF and AF development. In recent years, JDP2 has been identified as a potential prognostic marker for HF development after myocardial infarction. This close correlation to the disease development suggests that JDP2 may be involved in initiation and progression of HF as well as in cardiac dysfunction. Although no studies have been done in humans yet, studies on genetically modified mice impressively show involvement of JDP2 in HF and AF, making it an interesting therapeutic target. Citation: Euler, G.; Kockskämper, J.; Keywords: heart failure; atrial fibrillation; transcription factor; remodeling Schulz, R.; Parahuleva, M.S. JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation? Int.
    [Show full text]