NF-E2p18/Mafk Is Required in DMSO-Induced Differentiation Of

Total Page:16

File Type:pdf, Size:1020Kb

NF-E2p18/Mafk Is Required in DMSO-Induced Differentiation Of Leukemia (1997) 11, 273–280 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 NF-E2p18/mafK is required in DMSO-induced differentiation of Friend erythroleukemia cells by enhancing NF-E2 activity C Francastel, V Poindessous-Jazat, Y Augery-Bourget and J Robert-Le´ze´ne`s INSERM U268, Hoˆpital Paul Brousse, 94800 Villejuif, France When Friend murine erythroleukemia (F-MEL) cells are induced (LCR).6 The b-globin complex LCR (b-LCR) include four to differentiate by dimethylsulfoxide (DMSO), erythroid-specific erythroid-specific DNasel hypersensitive sites (designated HS- genes are transcriptionally activated. The erythroid transcrip- 1 to HS-4) and acts as a powerful enhancer of transcription tion factor NF-E2 is essential for enhancer activity of the globin 7,8 locus control regions. NF-E2 functions as a heterocomplex of globin promoters. While all four HS have LCR activity in consisting of a 45-kDa subunit (NF-E2p45) and a 18-kDa sub- transgenic mice, only one region (HS-2) is crucial for unit (NF-E2p18). The larger subunit NF-E2p45 is tissue-restric- enhancer activity when assayed in transient transfection ted and is believed to play a role in globin gene expression in systems.9–11 Within HS-2, the enhancer activity for globin F-MEL cells. The expression of the smaller subunit NF-E2p18, expression requires a tandem repeat of AP-1-like which is a Maf family member (MafK), is cell type- and develop- 12,13 mental stage-specific. We have investigated the possible role elements. This tandem motif was shown to bind two tran- of NF-E2p18 in Friend erythroid differentiation by stably trans- scription factors: the ubiquitous AP-1 protein and the lineage fecting either sense and antisense p18 constructs into differen- limited NF-E2 protein.14,15 The NF-E2 complex is a hetero- tiation-sensitive 745A and partially defective-differentiation dimer of two b-Zip proteins of 45 and 18 kDa.16,17 While NF- TFP10 cell lines. Overexpression of NF-E2p18 induced E2p45 expression is restricted to cells of the erythroid megaka- expression of globin transcripts in both cell lines and increased ryocyte and mast cell lineage, the expression of the smaller their sensitivity to erythroid differentiation when exposed to subunit NF-E2p18 is cell type- and developmental stage-spe- DMSO. Conversely, inhibition of p18 expression by antisense 18 transcripts resulted in the inhibition of DMSO-induced differen- cific. Since p45 homodimers bind very poorly to NF-E2 tiation in both cell lines. These results indicate that NF-E2p18 motifs, NF-E2p45 protein binds as an obligate heterodimer is necessary for globin expression in F-MEL cells and that it is with NF-E2p18 protein,16 to form the NF-E2 complex which the predominant gene of the Maf family involved in DMSO- has been described as the transcriptional activator of NF-E2 induced erythroid differentiation. Moreover F-MEL clones over- enhancer elements.19 The smaller subunit NF-E2p18 protein expressing NF-E2p18 showed an increase in specific NF-E2 DNA-binding activity whereas this activity was decreased in is encoded by a Maf family gene, the mafK gene, and lacks 20,21 clones expressing antisense p18. Finally, studies using transi- the putative trans-activator domain. Enhancer activity of ent transfection assays showed that p18 activated NF-E2 site- the a-globin locus HS-40 element is also dependent on NF- dependent transcription in F-MEL cells. These data suggest E2/AP-1 sequences.22 Beside a- and b-globin LCR, NF-E2/AP- that NF-E2p18 can participate in DMSO-induced erythroid 1 binding sites are also present in the promoters of three genes differentiation of F-MEL cells by enhancing NF-E2 activity. encoding heme biosynthetic enzymes, porphobilinogen Keywords: Friend erythroleukemia; NF-E2p18; Maf protein; 14 23 erythroid differentiation; globin expression deaminase, 5-aminolevulinate synthetase and ferrochelat- ase24 suggesting a broad role for the protein NF-E2 in erythroid-specific gene expression. The role of the NF-E2 complex and its subunits p45 and Introduction p18 in the DMSO- or HMBA-induced erythroid differentiation of F-MEL cells is unclear. It was reported that both NF-E2 DNA Friend murine erythroleukemia (F-MEL) cells are virus-trans- binding and NF-E2 site-dependent transcriptional activities formed erythroid precursors cells blocked at an early stage increase during the induction of MEL differentiation.13,14,25,26 in erythroid differentiation. This arrest can be overcome by Recent studies on one Friend erythroleukemia cell line, which exposure to a variety of chemical inducers, including DMSO lacks NF-E2 p45 due to Friend virus integration, showed a and HMBA.1,2 Variants of F-MEL cells have been obtained drastic reduction in expression of the a- and b-globin genes.27 which differ in their response to chemical inducers. These cell Reintroduction of the NF-E2p45 gene into this cell line par- models are useful for studying the mechanism of erythroid dif- tially restores globin RNA expression suggesting that it may ferentiation since induced F-MEL cells undergo phenotypic be critical for differentiation of F-MEL cells. The presence of changes that resemble the final changes of normal erythropo- NF-E2p18 in the NF-E2 complex increases binding specificity iesis. Induction of erythroid differentiation of MEL cells by for the bases lying outside the AP-1 core of the NF-E2 consen- DMSO or HMBA is characterized by the cessation of DNA sus binding site, suggesting its possible role in transcription synthesis and by the expression of hemoglobin in the cells.3 activation of the globin gene.17 Igarashi et al28 have recently The most striking feature during the process of induced differ- reported that overexpression of mafK induces spontaneous entiation of F-MEL cells is the increased synthesis of globin erythroid differentiation of a Friend cell line. However, the chains which results from the activation of a and b globin molecular basis of this induction of differentiation by gene transcription.4,5 p18/mafK, specially the involvement of NF-E2 activity, has not Expression of mammalian globin genes depends on been clarified. upstream regulated elements, termed locus control regions In order to gain better understanding of the function of NF- E2p18/MafK during the DMSO-induced differentiation of F-MEL cell, we have introduced NF-E2p18 expression vectors Correspondence: J Robert-Le´ze´ne`s INSERM U268, Hoˆpital Paul- Brousse, 14 avenue Paul Vaillant Couturier, 94807 Villejuif cedex, in both sense and antisense orientations into differentiation- France sensitive 745A and partially defective TFP10 Friend cell lines. Received 26 July 1996; accepted 24 October 1996 Sense p18 vectors increase the sensitivity to DMSO-induced NF-E2p18 and erythroid differentiation C Francastel et al 274 Figure 1 Expression of NF-E2p45 and NF-E2p18 mRNAs in F-MEL cells (strains 745A and TFP10), following stimulation with DMSO. Poly(A)+ mRNA (5 mg) was isolated at the time points indicated (in hours) after addition of 2% (v/v) DMSO. Northern blots were hybridized sequentially to probes homologous to NF-E2p45, NF-E2p18 and GAPDH followed by autoradiography. The different transcripts migrate as follows: NF- E2p45 1.8 kb; NF-E2p18 3.1 kb; GAPDH 1.4 kb. Figure 2 NF-E2p45 protein expression and NF-E2 DNA complex formation in F-MEL cells following stimulation with 2% of DMSO. (a) Western blot analysis of total proteins using a NF-E2p45-specific antibody. Total protein 50 mg were separated by SDS-PAGE and blotted onto nitrocellulose. The blots were developed using the alkaline phosphatase system. The time in hours of DMSO treatment is indicated. (b) DNA- binding activity of NF-E2 in nuclear extracts proteins from F-MEL cells before DMSO treatment. The oligonucleotide probe containing NF-E2 consensus sequence was incubated with 10 mg of nuclear extract protein and EMSA were performed as described in Materials and methods. Specificity of binding was confirmed by competition with excess unlabeled oligonucleotide probe (not shown). Where indicated, 1 ml of anti- NF-E2p45 antiserum was added before addition of probe. (c) DNA-binding activity of NF-E2 in nuclear extracts proteins from F-MEL cells after DMSO treatment (4 days). erythroid differentiation of both cell lines. Conversely, trans- increasing both NF-E2 DNA-binding and NF-E2 transcrip- fection with antisense p18 vectors inhibits the induction of tional activities. F-MEL erythroid differentiation by the DMSO suggesting that NFE2p18/MafK is necessary to induce globin expression in F- MEL cells during the process of differentiation. In an effort to Materials and methods elucidate the molecular mechanism that underlie the relation- ship between p18/MafK and F-MEL differentiation, we show a Plasmid constructs specific increase of the NF-E2 DNA-binding activity in clones overexpressing p18. In addition, we demonstrate that NF- The expression vector used for the construct was pcDNA3 E2p18 induces an increase of NF-E2 site-dependent transcrip- (Invitrogen, San Diego, CA, USA). Murine NF-E2p18 cDNA tional activity in both F-MEL cell lines suggesting that it can containing one ORF (open reading frame) was excised from be a positive regulator in erythroid cells which contain NF- its plasmid vector (gift from N Andrews, Dana-Farber Cancer E2p45. Taken together, these findings indicate that p18/MafK Institute, Boston, MA, USA) as 0.51-kb EcoRI fragment and can participate in erythroid differentiation of F-MEL cells by ligated into EcoRI-digested pcDNA3 with the sense and anti- NF-E2p18 and erythroid differentiation C Francastel et al 275 Figure 3 Construction of NF-E2p18 sense and antisense vectors (pcDNA3-p18S and pcDNA3-p18AS). A 510-bp EcoRI/EcoRI cDNA fragment encompassing the entire coding region was inserted into the corresponding sites of the expression pcDNA3 vector (Invitrogen).
Recommended publications
  • MOZ and MORF, Two Large Mystic Hats in Normal and Cancer Stem Cells
    Oncogene (2007) 26, 5408–5419 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells X-J Yang and M Ullah Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montre´al, Que´bec, Canada Genes of the human monocytic leukemia zinc-finger protein pattern. For cancer biology, it is thus important to MOZ (HUGO symbol, MYST3) and its paralog MORF understand the fundamental mechanisms whereby chro- (MYST4) are rearranged in chromosome translocations matin structure and function are regulated. In the associated withacute myeloid leukemia and/or benign past two decades, our knowledge about regulation in uterine leiomyomata. Both proteins have intrinsic histone this field has exploded. Known regulatory mechanisms acetyltransferase activity and are components of quartet include chromatin assembly, ATP-dependent remodeling, complexes withnoncatalytic subunits containing thebromo- covalent modification, condensin-mediated condensation, domain, plant homeodomain-linked (PHD) finger and replacement with histone variants, and association of proline-tryptophan-tryptophan-proline (PWWP)-containing noncoding RNA (reviewed by Horn and Peterson, 2002; domain, three types of structural modules characteristic of Khorasanizadeh, 2004; Li et al., 2007). Covalent chromatin regulators. Although leukemia-derived fusion pro- modification can occur at both the DNA and histone teins suchas MOZ-TIF2 promote self-renewal of leukemic levels. With histones, modifications include acetylation, stem cells, recent studies indicate that murine MOZ and phosphorylation, methylation, ubiquitination, and many MORF are important for proper development of hema- others (for reviews, see Spencer and Davie, 1999; Strahl topoietic and neurogenic progenitors, respectively, thereby and Allis, 2000; Berger, 2002; Jason et al., 2002; highlighting the importance of epigenetic integrity in Kouzarides, 2007).
    [Show full text]
  • Genome-Wide Profiling of Active Enhancers in Colorectal Cancer
    Genome-wide proling of active enhancers in colorectal cancer Min Wu ( [email protected] ) Wuhan University https://orcid.org/0000-0003-1372-4764 Qinglan Li Wuhan University Xiang Lin Wuhan University Ya-Li Yu Zhongnan Hospital, Wuhan University Lin Chen Wuhan University Qi-Xin Hu Wuhan University Meng Chen Zhongnan Hospital, Wuhan University Nan Cao Zhongnan Hospital, Wuhan University Chen Zhao Wuhan University Chen-Yu Wang Wuhan University Cheng-Wei Huang Wuhan University Lian-Yun Li Wuhan University Mei Ye Zhongnan Hospital, Wuhan University https://orcid.org/0000-0002-9393-3680 Article Keywords: Colorectal cancer, H3K27ac, Epigenetics, Enhancer, Transcription factors Posted Date: December 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-119156/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Genome-wide profiling of active enhancers in colorectal cancer Qing-Lan Li1, #, Xiang Lin1, #, Ya-Li Yu2, #, Lin Chen1, #, Qi-Xin Hu1, Meng Chen2, Nan Cao2, Chen Zhao1, Chen-Yu Wang1, Cheng-Wei Huang1, Lian-Yun Li1, Mei Ye2,*, Min Wu1,* 1 Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China 2Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, China #Equal contribution to the study. Contact information *Correspondence should be addressed to Dr. Min Wu, Email: [email protected], Tel: 86-27-68756620, or Dr.
    [Show full text]
  • The Basic Region and Leucine Zipper Transcription Factor Mafk Is a New Nerve Growth Factor-Responsive Immediate Early Gene That Regulates Neurite Outgrowth
    The Journal of Neuroscience, October 15, 2002, 22(20):8971–8980 The Basic Region and Leucine Zipper Transcription Factor MafK Is a New Nerve Growth Factor-Responsive Immediate Early Gene That Regulates Neurite Outgrowth Be´ ata To¨ro¨ csik, James M. Angelastro, and Lloyd A. Greene Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032 We used serial analysis of gene expression to identify new mediated by an atypical isoform of PKC but not by mitogen- NGF-responsive immediate early genes (IEGs) with potential activated kinase kinase, phospholipase C␥, or phosphoinositide roles in neuronal differentiation. Among those identified was 3Ј-kinase. Interference with MafK expression or activity by small MafK, a small Maf family basic region and leucine zipper tran- interfering RNA and dominant negative strategies, respectively, scriptional repressor and coactivator expressed in immature suppresses NGF-promoted outgrowth and maintenance of neu- neurons. NGF treatment elevates the levels of both MafK tran- rites by PC12 cells and neurite outgrowth by immature telence- scripts and protein. In contrast, there is no effect on expression phalic neurons. Our findings support a role for MafK as a novel of the closely related MafG. Unlike many other NGF-responsive regulator of neuronal differentiation. IEGs, MafK regulation shows selectivity and is unresponsive to epidermal growth factor, depolarization, or cAMP derivatives. Key words: MafK; NGF; immediate early
    [Show full text]
  • Human Small Maf Proteins Form Heterodimers with CNC Family Transcription Factors and Recognize the NF-E2 Motif
    Oncogene (1997) 14, 1901 ± 1910 1997 Stockton Press All rights reserved 0950 ± 9232/97 $12.00 Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF-E2 motif Tsutomu Toki1, Jugou Itoh2, Jun'ichi Kitazawa1, Koji Arai1, Koki Hatakeyama3, Jun-itsu Akasaka4, Kazuhiko Igarashi5, Nobuo Nomura6, Masaru Yokoyama1, Masayuki Yamamoto5 and Etsuro Ito1 1Department of Pediatrics, 2Medicine, School of Medicine; 3Department of Biology, Faculty of Sciences, Hirosaki University, Hirosaki 036; 4Department of Biochemistry, Tohoku University School of Medicine, Sendai 980-77; 5Center for TARA and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305; 6Kazusa DNA Institute, Kisarazu 292, Japan The transcription factor NF-E2, a heterodimeric protein Talbot et al., 1990; Talbot and Grosveld, 1991; complex composed of p45 and small Maf family Kotkow and Orkin, 1995). Recent analyses demon- proteins, is considered crucial for the regulation of strated that NF-E2 is composed of two subunits erythroid gene expression and platelet formation. To (Andrews et al., 1993a,b; Igarashi et al., 1994). The facilitate the characterization of NF-E2 functions in large p45 subunit belongs to a family of basic leucine- human cells, we isolated cDNAs encoding two members zipper (bZip) proteins that is closely related to the of the small Maf family, MafK and MafG. The human Drosophila Cap`n'colar (the CNC family) factor mafK and mafG genes encode proteins of 156 and 162 (Mohler et al., 1991). It cannot bind to the NF-E2 amino acid residues, respectively, whose deduced amino sequence as a homodimer, but does do after forming acid sequences show approximately 95% identity to their heterodimers with chicken small Maf family proteins, respective chicken counterparts.
    [Show full text]
  • Heterogeneous Nuclear Ribonucleoprotein C1 C2, Mecp1
    Heterogeneous nuclear ribonucleoprotein C1͞C2, MeCP1, and SWI͞SNF form a chromatin remodeling complex at the ␤-globin locus control region Milind C. Mahajan*, Geeta J. Narlikar†, Gokul Boyapaty*, Robert E. Kingston‡, and Sherman M. Weissman*§ *Department of Genetics, The Anlyan Center, Yale University School of Medicine, New Haven, CT 06511; †Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143; and ‡Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 Contributed by Sherman M. Weissman, August 31, 2005 Locus control regions (LCRs) are regulatory DNA sequences that are promoter (20–23). These studies suggest the possible association situated many kilobases away from their cognate promoters. LCRs of the LCR with specific chromatin remodeling activities, al- protect transgenes from position effect variegation and hetero- though such a LCR-specific chromatin remodeling activity has chromatinization and also promote copy-number dependence of not been isolated. In the present work, we describe the biochem- the levels of transgene expression. In this work, we describe the ical purification and properties of a previously undescribed biochemical purification of a previously undescribed LCR-associ- chromatin-remodeling complex that binds to the human ␤-globin ated remodeling complex (LARC) that consists of heterogeneous LCR HS2 in a sequence-specific manner. nuclear ribonucleoprotein C1͞C2, nucleosome remodeling SWI͞ SNF, and nucleosome remodeling and deacetylating (NuRD)͞ Materials and Methods MeCP1 as a single homogeneous complex. LARC binds to the Cell Culture and Preparation of Nuclear Extracts. Growth of the K562 hypersensitive 2 (HS2)-Maf recognition element (MARE) DNA in a cells and preparation of the nuclear extract is described in ref.
    [Show full text]
  • The Chemical Defensome of Five Model Teleost Fish
    www.nature.com/scientificreports OPEN The chemical defensome of fve model teleost fsh Marta Eide1,5, Xiaokang Zhang2,3,5, Odd André Karlsen1, Jared V. Goldstone4, John Stegeman4, Inge Jonassen2 & Anders Goksøyr1* How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fsh is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of fve fsh species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafsh (Danio rerio), medaka (Oryzias latipes), Atlantic killifsh (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved diferences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.
    [Show full text]
  • JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation?
    International Journal of Molecular Sciences Review JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation? Gerhild Euler 1,* , Jens Kockskämper 2, Rainer Schulz 1 and Mariana S. Parahuleva 3 1 Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; [email protected] 2 Biochemical-Pharmacological Centre (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany; [email protected] 3 Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, 35033 Marburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-0641-9947246; Fax: +49-0641-9947219 Abstract: Heart failure (HF) and atrial fibrillation (AF) are two major life-threatening diseases worldwide. Causes and mechanisms are incompletely understood, yet current therapies are unable to stop disease progression. In this review, we focus on the contribution of the transcriptional modulator, Jun dimerization protein 2 (JDP2), and on HF and AF development. In recent years, JDP2 has been identified as a potential prognostic marker for HF development after myocardial infarction. This close correlation to the disease development suggests that JDP2 may be involved in initiation and progression of HF as well as in cardiac dysfunction. Although no studies have been done in humans yet, studies on genetically modified mice impressively show involvement of JDP2 in HF and AF, making it an interesting therapeutic target. Citation: Euler, G.; Kockskämper, J.; Keywords: heart failure; atrial fibrillation; transcription factor; remodeling Schulz, R.; Parahuleva, M.S. JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation? Int.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Conditional Expression of the Ubiquitous Transcription Factor
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 7445-7449, August 1995 Biochemistry Conditional expression of the ubiquitous transcription factor MafK induces erythroleukemia cell differentiation (erythroid/NF-E2/maf) KAZUHIKO IGARASHI*, KEN ITOH*, NORIo HAYASHI*, MAKOTO NISHIZAWAt, AND MASAYUKI YAMAMOTO* *Department of Biochemistry, Tohoku University School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai 980-77; and tDepartment of Molecular Oncology, Kyoto University School of Medicine, Yoshida-Konoecho, Sakyo-ku, Kyoto 606, Japan Communicated by Irving M Klotz, Northwestern University, Evanston, IL, March 20, 1995 ABSTRACT Transcription factor NF-E2 activity is expression accompanying the in vitro differentiation of eryth- thought to be crucial for the transcriptional regulation of roleukemia cells. One of the key mediators appears to be many erythroid-specific genes. The three small Maf family NF-E2, since during such induced differentiation, both DNA proteins (MafF, MafG, and MafK) that are closely related to binding activity to, and enhancer activities of, NF-E2 sites the c-Maf protooncoprotein constitute half of the NF-E2 increase (15-20). However, the level of p45 RNA does not activity by forming heterodimers with the large tissue- change significantly during DMSO-induced MEL cell differ- restricted subunit of NF-E2 called p45. We have established entiation (21). These observations suggested that hetero- and characterized murine erythroleukemia cells that condi- dimeric partners of p45 (i.e., the small Maf family proteins) tionally overexpress MafK from a metallothionein promoter. might be limiting in MEL cells prior to DMSO treatment. The conditional expression of MafK caused accumulation of To analyze the potential regulatory role of the small Maf hemoglobin, an indication of terminal differentiation along family proteins during erythroid differentiation, we prepared the erythroid pathway.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • A MAFG-Lncrna Axis Links Systemic Nutrient Abundance to Hepatic Glucose Metabolism
    ARTICLE https://doi.org/10.1038/s41467-020-14323-y OPEN A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism Marta Pradas-Juni et al.# Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced 1234567890():,; obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease. #A full list of authors and their affiliations appears at the end of the paper. NATURE COMMUNICATIONS | (2020) 11:644 | https://doi.org/10.1038/s41467-020-14323-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14323-y ellular and organism-level energy homeostasis and nutri- by MAFG and CRISPR–Cas9-mediated knockout, or antisense- Cent partitioning are instrumental for survival. In higher mediated RNA interference of LincIRS2 causes hyperglycemia, organisms, multi-organ systems evolved to react to shifts insulin resistance, likely caused by alterations in glucogenic in energy supply by storing (anabolic) or metabolizing (catabolic) gene expression in lean mice.
    [Show full text]
  • Variations in Microrna-25 Expression Influence the Severity of Diabetic
    BASIC RESEARCH www.jasn.org Variations in MicroRNA-25 Expression Influence the Severity of Diabetic Kidney Disease † † † Yunshuang Liu,* Hongzhi Li,* Jieting Liu,* Pengfei Han, Xuefeng Li, He Bai,* Chunlei Zhang,* Xuelian Sun,* Yanjie Teng,* Yufei Zhang,* Xiaohuan Yuan,* Yanhui Chu,* and Binghai Zhao* *Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People’s Republic of China; and †Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People’s Republic of China ABSTRACT Diabetic nephropathy is characterized by persistent albuminuria, progressive decline in GFR, and second- ary hypertension. MicroRNAs are dysregulated in diabetic nephropathy, but identification of the specific microRNAs involved remains incomplete. Here, we show that the peripheral blood from patients with diabetes and the kidneys of animals with type 1 or 2 diabetes have low levels of microRNA-25 (miR-25) compared with those of their nondiabetic counterparts. Furthermore, treatment with high glucose decreased the expression of miR-25 in cultured kidney cells. In db/db mice, systemic administration of an miR-25 agomir repressed glomerular fibrosis and reduced high BP. Notably, knockdown of miR-25 in normal mice by systemic administration of an miR-25 antagomir resulted in increased proteinuria, extracellular matrix accumulation, podocyte foot process effacement, and hypertension with renin-angiotensin system activation. However, excessive miR-25 did not cause kidney dysfunction in wild-type mice. RNA sequencing showed the alteration of miR-25 target genes in antagomir-treated mice, including the Ras-related gene CDC42. In vitro,cotrans- fection with the miR-25 antagomir repressed luciferase activity from a reporter construct containing the CDC42 39 untranslated region.
    [Show full text]