Impaired Mitochondrial Translation in Human Disease

Total Page:16

File Type:pdf, Size:1020Kb

Impaired Mitochondrial Translation in Human Disease Newcastle University ePrints Boczonadi V, Horvath R. Mitochondria: Impaired mitochondrial translation in human disease. International Journal of Biochemistry & Cell Biology 2014, 48, 77-84. Copyright: Copyright © 2014 The Authors. Published by Elsevier Ltd. This is an open-access article distributed under the terms of the Creative Commons Attribution- NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. DOI link to article: http://dx.doi.org/10.1016/j.biocel.2013.12.011 Date deposited: 11th February 2014 This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works License ePrints – Newcastle University ePrints http://eprint.ncl.ac.uk The International Journal of Biochemistry & Cell Biology 48 (2014) 77–84 Contents lists available at ScienceDirect The International Journal of Biochemistry & Cell Biology journal homepage: www.elsevier.com/locate/biocel Organelles in focus ଝ Mitochondria: Impaired mitochondrial translation in human disease ∗ Veronika Boczonadi, Rita Horvath Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK a r t i c l e i n f o a b s t r a c t Article history: Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are Received 28 September 2013 usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical pre- Received in revised form sentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal 13 November 2013 muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is Accepted 26 December 2013 at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particu- Available online 8 January 2014 larly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing Keywords: rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing Mitochondrial respiratory chain the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein Mitochondrial translation Human mitochondrial disease synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing Tissue specific presentation novel therapies. Cytosolic translation © 2014 The Authors. Published by Elsevier Ltd. All rights reserved. 1. Introduction Organelle facts • Mitochondrial diseases affect at least 1 in 5000 of the popu- Mitochondrial protein synthesis requires several mitochon- lation and produce diverse clinical phenotypes often presented drial and nuclear-encoded factors for optimal translation. • as multi-systemic disorders (DiMauro et al., 2013; Ylikallio and The clinical presentation of diseases due to defective mito- Suomalainen, 2012; Vafai and Mootha, 2012). In addition to chondrial protein synthesis is very variable and tissue the nucleus, human cells also harbour DNA in the mitochon- specific presentations are common. • The reasons behind the tissue specificity are largely dria (mtDNA), which is essential for cell viability (Tuppen et al., unknown. 2010). This small (16.5 kb) genome is found in multiple copies in • Besides mitochondrial tRNA mutations and mtDNA dele- mitochondria, the subcellular organelles that often constitute more tions or depletion, autosomal recessive mutations have than 20% of the total cell volume. OXPHOS (oxidative phosphor- been reported in genes encoding ribosomal proteins, ribo- ylation) is responsible for the production of ATP by generating some assembly proteins, mitochondrial aminoacyl-tRNA a proton gradient across the inner membrane of the mitochon- synthetases, tRNA modifying enzymes and initiation, elon- dria which is used by the mammalian cells (Greaves et al., 2012). gation and termination factors of translation. • The mitochondrial OXPHOS system comprises around 150 different Frequent and clinically recognisable genetic causes of proteins out of which only 13 polypeptide subunits are encoded by human diseases due to impaired mitochondrial translation the mtDNA. In addition, the mtDNA encodes the small and large are caused by mutations in mitochondrial tRNA synthetase and tRNA modifying genes. rRNAs, and 22 distinct mitochondrial tRNAs that are necessary for • The potential interaction between cytosolic and mitochon- the translation of only the mitochondrial-encoded proteins (Smits drial translation requires further investigations. et al., 2010; Rötig, 2011; Chrzanowska-Lightowlers et al., 2011). The nuclear-encoded subunits of the respiratory chain (RC) complexes as well as proteins that are inevitable for normal mitochondrial protein synthesis (such as OXPHOS assembly, mtDNA metabolism ଝ and maintenance, mitochondrial cofactor biosynthesis, mitoribo- This is an open-access article distributed under the terms of the Creative Com- somal subunits and assembly factors, regulators of mitochondrial mons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the expression and translation, etc.) are encoded by the nuclear genome original author and source are credited. (nDNA) and synthetised in the cytosol before transported into the ∗ Corresponding author at: Institute of Genetic Medicine, Newcastle University, organelle (Vafai and Mootha, 2012). The mitochondrial ribosomal Central Parkway, Newcastle upon Tyne NE1 3BZ, UK. Tel.: +44 191 2418855; proteins assemble with mitochondrial ribosomes 12S rRNA and 16S fax: +44 191 2418666. rRNA to form the mitochondrial ribosome (Pietromonaco et al., E-mail address: [email protected] (R. Horvath). 1357-2725/$ – see front matter © 2014 The Authors. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biocel.2013.12.011 78 V. Boczonadi, R. Horvath / The International Journal of Biochemistry & Cell Biology 48 (2014) 77–84 V. Boczonadi, R. Horvath / The International Journal of Biochemistry & Cell Biology 48 (2014) 77–84 79 1991). Lately it was also reported that import of 5S rRNA is also the affected children die early (Valente et al., 2007; Smeitink et al., transported to the mitochondria being an essential component of 2006; Coenen et al., 2004; Smits et al., 2011a,b). the mitochondrial ribosomes (Smirnov et al., 2011). 2.3. Termination 2. Organelle function The mitochondrial release factor (mtRF1a) recognises the stop codon and binds to the mitoribosome, induces hydrolysis of the The components responsible for the proper mitochondrial peptidyl-tRNA bond in the A-site releasing the mature protein from translation are different from their cytosolic counterparts and they the site. Other termination release factors such as mtRF1, C12orf65 are more related to those of bacteria however the mechanisms of and ICT1 are also thought to play an essential role in the termination the translation follows the same major steps: initiation, elongation, (Richter et al., 2010). As a last step mitochondrial recycling factors termination and recycling of the ribosome (Christian and Spremulli, (mtRRF1 and mtRRF2) translocate to the A-site to induce the release 2012) (Fig. 1). of the mRNA (Chrzanowska-Lightowlers et al., 2011). Up to date only the C12orf65 has been identified as a disease causing gene. 2.1. Initiation Affected patients develop optic atrophy and ophthalmoplegia with Leigh syndrome (Antonicka et al., 2010). The process of mitochondrial translation starts with the for- mation of the initiation complex. The separation of the two 2.4. Regulatory mechanisms mitochondrial ribosomal subunits (28S and 39S) (Kuzmenko et al., 2013) allow this complex to be formed which consists of the 28S The expression of mitochondrial proteins is regulated by their subunit, mRNA and fMET-tRNA and IF2/3mt (Koc and Spremulli, own translational activators that bind mitochondrial mRNAs usu- 2002; Christian and Spremulli, 2009). This is followed by the ally to their 5‘-untranslated regions, and each mitochondrial mRNA entrance of the mRNA into the IF3mt:28S subunit complex. IF3mt has its own translational activator(s), which has been first shown is thought to support the correct position of mRNA to bind the in yeast (Herrmann et al., 2013). Recent studies showed that these small subunit at the peptidyl (P) site of the mitoribosome. When the translational activators can be part of a feedback control loops appropriate start codon is present, the formylmethionin-tRNA can which only permit translation if the downstream assembly of bind to the first codon with the help of IF2mt. The association of the nascent translation products can occur (Herrmann et al., 2013). mitoribosome stimulates the release of the initiation factors and Recently mutations in nuclear-encoded translational activators of the elongation on the 55S ribosome commence. MTFMT is critical mitochondrial proteins such as TACO1 were also implicated in for efficient human mitochondrial translation and reveal a human human disease (Weraarpachai et al., 2009). A regulatory role of disorder of Met-tRNA(Met) formylation (Tucker et al., 2011; Neeve aminoacyl-tRNA synthetases has been suggested in both cytosolic et al., 2013). and mitochondrial translation
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 1 AGING Supplementary Table 2
    SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21.
    [Show full text]
  • Supplementary Dataset S2
    mitochondrial translational termination MRPL28 MRPS26 6 MRPS21 PTCD3 MTRF1L 4 MRPL50 MRPS18A MRPS17 2 MRPL20 MRPL52 0 MRPL17 MRPS33 MRPS15 −2 MRPL45 MRPL30 MRPS27 AURKAIP1 MRPL18 MRPL3 MRPS6 MRPS18B MRPL41 MRPS2 MRPL34 GADD45GIP1 ERAL1 MRPL37 MRPS10 MRPL42 MRPL19 MRPS35 MRPL9 MRPL24 MRPS5 MRPL44 MRPS23 MRPS25 ITB ITB ITB ITB ICa ICr ITL original ICr ICa ITL ICa ITL original ICr ITL ICr ICa mitochondrial translational elongation MRPL28 MRPS26 6 MRPS21 PTCD3 MRPS18A 4 MRPS17 MRPL20 2 MRPS15 MRPL45 MRPL52 0 MRPS33 MRPL30 −2 MRPS27 AURKAIP1 MRPS10 MRPL42 MRPL19 MRPL18 MRPL3 MRPS6 MRPL24 MRPS35 MRPL9 MRPS18B MRPL41 MRPS2 MRPL34 MRPS5 MRPL44 MRPS23 MRPS25 MRPL50 MRPL17 GADD45GIP1 ERAL1 MRPL37 ITB ITB ITB ITB ICa ICr original ICr ITL ICa ITL ICa ITL original ICr ITL ICr ICa translational termination MRPL28 MRPS26 6 MRPS21 PTCD3 C12orf65 4 MTRF1L MRPL50 MRPS18A 2 MRPS17 MRPL20 0 MRPL52 MRPL17 MRPS33 −2 MRPS15 MRPL45 MRPL30 MRPS27 AURKAIP1 MRPL18 MRPL3 MRPS6 MRPS18B MRPL41 MRPS2 MRPL34 GADD45GIP1 ERAL1 MRPL37 MRPS10 MRPL42 MRPL19 MRPS35 MRPL9 MRPL24 MRPS5 MRPL44 MRPS23 MRPS25 ITB ITB ITB ITB ICa ICr original ICr ITL ICa ITL ICa ITL original ICr ITL ICr ICa translational elongation DIO2 MRPS18B MRPL41 6 MRPS2 MRPL34 GADD45GIP1 4 ERAL1 MRPL37 2 MRPS10 MRPL42 MRPL19 0 MRPL30 MRPS27 AURKAIP1 −2 MRPL18 MRPL3 MRPS6 MRPS35 MRPL9 EEF2K MRPL50 MRPS5 MRPL44 MRPS23 MRPS25 MRPL24 MRPS33 MRPL52 EIF5A2 MRPL17 SECISBP2 MRPS15 MRPL45 MRPS18A MRPS17 MRPL20 MRPL28 MRPS26 MRPS21 PTCD3 ITB ITB ITB ITB ICa ICr ICr ITL original ITL ICa ICa ITL ICr ICr ICa original
    [Show full text]
  • Induces Adult-Onset Neurodegeneration with Memory Impairment in the Mouse
    4576 • The Journal of Neuroscience, June 3, 2020 • 40(23):4576–4585 Neurobiology of Disease Structural Variant in Mitochondrial-Associated Gene (MRPL3) Induces Adult-Onset Neurodegeneration with Memory Impairment in the Mouse Lindsay S. Cahill,1 Jessie M. Cameron,2 Julie Winterburn,1 Patrick Macos,1 Johnathan Hoggarth,1 Misko Dzamba,3 Michael Brudno,3,4 Lauryl M. J. Nutter,5,6 Thomas J. Sproule,7 Robert W. Burgess,7 R. Mark Henkelman,1,8,9 and John G. Sled1,8,9 1Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada, 2Metabolism Research Programme, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, 3Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada, 4Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, 5The Centre for Phenogenomics, Toronto, Ontario M5T 3H7, Canada, 6Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, 7The Jackson Laboratory, Bar Harbor, Maine 04609, 8Translational Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, and 9Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada An impediment to the development of effective therapies for neurodegenerative disease is that available animal models do not reproduce important clinical features such as adult-onset and stereotypical patterns of progression. Using in vivo mag- netic resonance imaging and behavioral testing to study male and female decrepit mice, we found a stereotypical neuroana- tomical pattern of progression of the lesion along the limbic system network and an associated memory impairment. Using structural variant analysis, we identified an intronic mutation in a mitochondrial-associated gene (Mrpl3) that is responsible for the decrepit phenotype.
    [Show full text]
  • Transcriptomic and Proteomic Landscape of Mitochondrial
    TOOLS AND RESOURCES Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals Inge Ku¨ hl1,2†*, Maria Miranda1†, Ilian Atanassov3, Irina Kuznetsova4,5, Yvonne Hinze3, Arnaud Mourier6, Aleksandra Filipovska4,5, Nils-Go¨ ran Larsson1,7* 1Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany; 2Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC) UMR9198, CEA, CNRS, Univ. Paris-Sud, Universite´ Paris-Saclay, Gif- sur-Yvette, France; 3Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany; 4Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia; 5School of Molecular Sciences, The University of Western Australia, Crawley, Australia; 6The Centre National de la Recherche Scientifique, Institut de Biochimie et Ge´ne´tique Cellulaires, Universite´ de Bordeaux, Bordeaux, France; 7Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden Abstract Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative *For correspondence: analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five [email protected] knockout mouse strains deficient in essential factors required for mitochondrial DNA gene (IKu¨ ); expression, leading to OXPHOS dysfunction. Moreover,
    [Show full text]
  • THE MITOSPECIFIC REGION of MRP20 and ITS IMPORTANCE for the ASSEMBLY of MITOCHONDRIAL RIBOSOMES in Saccharomyces Cerevisiae
    Marquette University e-Publications@Marquette Dissertations (2009 -) Dissertations, Theses, and Professional Projects The itM ospecific Region of Mrp20 and its Importance for the Assembly of Mitochondrial Ribosomes in Saccharomyces cerevisiae Jasvinder Kaur Marquette University Recommended Citation Kaur, Jasvinder, "The itM ospecific Region of Mrp20 and its Importance for the Assembly of Mitochondrial Ribosomes in Saccharomyces cerevisiae" (2011). Dissertations (2009 -). Paper 133. http://epublications.marquette.edu/dissertations_mu/133 THE MITOSPECIFIC REGION OF MRP20 AND ITS IMPORTANCE FOR THE ASSEMBLY OF MITOCHONDRIAL RIBOSOMES IN Saccharomyces cerevisiae by Jasvinder Kaur, B.Sc., M.Sc. A Dissertation submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Milwaukee, Wisconsin August 2011 ABSTRACT THE MITOSPECIFIC REGION OF MRP20 AND ITS IMPORTANCE FOR THE ASSEMBLY OF MITOCHONDRIAL RIBOSOMES IN Saccharomyces cerevisiae Jasvinder Kaur, B.Sc. M.Sc. Marquette University, 2011 Yeast mitochondrial ribosomes are composed of an rRNA scaffold, encoded by the mitochondrial genome and many different proteins, which, with the exception of one, are encoded by nuclear genes. These ribosomal proteins are imported into the mitochondrial matrix following their synthesis in the cytosol, however, little is known about the subsequent events which result in an assembled, translationally-competent ribosome. Many of the mitochondrial ribosomal proteins bear homology to bacterial ancestors. In addition to the acquisition of mitochondrial targeting signals, a number of these nuclearly-encoded ribosomal proteins have acquired additional domains, often at their C-termini, which are termed “mitochondrial-specific domains”. The function(s) of these domains is currently unknown and it is postulated that they may be involved in the process of ribosomal assembly or for ensuring the targeting of the ribosome to the mitochondrial inner membrane where they are translationally-active.
    [Show full text]
  • Comprehensive Mitochondrial Nuclear Gene Panel
    Comprehensive Mitochondrial Nuclear Gene Panel Test Code D4606 Test Summary This panel analyzes 254 genes that have been associated with mitochondrial disorders in nuclear genes. Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing This test may be appropriate for individuals who have a clinical suspicion of a mitochondrial disorder and/or family history of a mitochondrial disorder. Test Description This panel analyzes 254 genes that have been associated with mitochondrial disorders in nuclear genes. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect deletions and duplications of three exons or greater in size. All variants are classified according to ACMG guidelines. Condition Description Mitochondrial disease is a varied group of disorders characterized by impaired energy production. Hallmarks of mitochondrial disease include neurological, cardiovascular, ophthalmologic and gastroenterological features. It is estimated that 1/5,000 individuals has a genetic mitochondrial disease. Genes AARS, AARS2, ABCB11, ABCB4, ABCB7, ABCD4, ACAD9, ACADM, ACADVL, ACO2, ACSF3, ADCK3, ADCK4, AFG3L2, AGK, AGL, AIFM1, ALAS2, ALDOA, ALDOB, ALG1,
    [Show full text]
  • Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs
    Published OnlineFirst February 21, 2020; DOI: 10.1158/2159-8290.CD-19-1059 RESEARCH ARTICLE Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs Stephanie M. Dobson1,2, Laura García-Prat2, Robert J. Vanner1,2, Jeffrey Wintersinger3, Esmé Waanders4,5,6, Zhaohui Gu6, Jessica McLeod2, Olga I. Gan2, Ildiko Grandal7, Debbie Payne-Turner6, Michael N. Edmonson8, Xiaotu Ma8, Yiping Fan8, Veronique Voisin1,9, Michelle Chan-Seng-Yue2,10, Stephanie Z. Xie2, Mohsen Hosseini2, Sagi Abelson2, Pankaj Gupta8, Michael Rusch8, Ying Shao11, Scott R. Olsen12, Geoffrey Neale12, Steven M. Chan2, Gary Bader1,9, John Easton11, Cynthia J. Guidos13,14, Jayne S. Danska7,13,14, Jinghui Zhang8, Mark D. Minden2,15, Quaid Morris1,3,9,16, Charles G. Mullighan6, and John E. Dick1,2 ABSTRACT Disease recurrence causes significant mortality in B-progenitor acute lymphoblas- tic leukemia (B-ALL). Genomic analysis of matched diagnosis and relapse samples shows relapse often arising from minor diagnosis subclones. However, why therapy eradicates some subclones while others survive and progress to relapse remains obscure. Elucidation of mechanisms underlying these differing fates requires functional analysis of isolated subclones. Here, large-scale limiting dilution xenografting of diagnosis and relapse samples, combined with targeted sequenc- ing, identified and isolated minor diagnosis subclones that initiate an evolutionary trajectory toward relapse [termed diagnosis Relapse Initiating clones (dRI)]. Compared with other diagnosis subclones, dRIs were drug-tolerant with distinct engraftment and metabolic properties. Transcriptionally, dRIs displayed enrichment for chromatin remodeling, mitochondrial metabolism, proteostasis programs, and an increase in stemness pathways. The isolation and characterization of dRI subclones reveals new avenues for eradicating dRI cells by targeting their distinct metabolic and transcriptional pathways before further evolution renders them fully therapy-resistant.
    [Show full text]
  • Mitochondrial Ribosomal Proteins: Candidate Genes for Mitochondrial Disease James E
    March/April 2004 ⅐ Vol. 6 ⅐ No. 2 review Mitochondrial ribosomal proteins: Candidate genes for mitochondrial disease James E. Sylvester, PhD1, Nathan Fischel-Ghodsian, MD2, Edward B. Mougey, PhD1, and Thomas W. O’Brien, PhD3 Most of the energy requirement for cell growth, differentiation, and development is met by the mitochondria in the form of ATP produced by the process of oxidative phosphorylation. Human mitochondrial DNA encodes a total of 13 proteins, all of which are essential for oxidative phosphorylation. The mRNAs for these proteins are translated on mitochondrial ribosomes. Recently, the genes for human mitochondrial ribosomal proteins (MRPs) have been identified. In this review, we summarize their refined chromosomal location. It is well known that mutations in the mitochondrial translation system, i.e., ribosomal RNA and transfer RNA cause various pathologies. In this review, we suggest possible associations between clinical conditions and MRPs based on coincidence of genetic map data and chromosomal location. These MRPs may be candidate genes for the clinical condition or may act as modifiers of existing known gene mutations (mt-tRNA, mt-rRNA, etc.). Genet Med 2004:6(2):73–80. Key Words: mitochondrial, ribosomal proteins, oxidative phosphorylation, candidate genes, translation Most of the energy requirements for cell growth, differenti- THE MITORIBOSOME ation, and development are met by the mitochondrial ATP Human cells contain two genomes and two protein synthe- produced by the process of oxidative phosphorylation. Mito- sizing (translation) systems. The first is the nuclear genome of chondrial DNA encodes 13 essential proteins of this oxidative 3 ϫ 109 bp that has 30,000 to 40,000 genes coding a much phosphorylation system.
    [Show full text]
  • Regulation of Gene Expression with Thyroid Hormone in Rats with Myocardial Infarction
    Regulation of Gene Expression with Thyroid Hormone in Rats with Myocardial Infarction Yue-Feng Chen1*, James V. Pottala2, Nathan Y. Weltman2, Xijin Ge3, Olga V. Savinova2, A. Martin Gerdes1 1 Department of Biomedical Sciences, New York College of Osteopathic Medicine of New York Institute of Technology, Old Westbury, New York, United States of America, 2 Sanford Research/University of South Dakota, Sioux Falls, South Dakota, United States of America, 3 Department of Mathematics and Statistics, South Dakota State University, Brookings, South Dakota, United States of America Abstract Introduction: The expression of hundreds of genes is altered in response to left ventricular (LV) remodeling following large transmural myocardial infarction (MI). Thyroid hormone (TH) improves LV remodeling and cardiac performance after MI. However, the molecular basis is unknown. Methods: MI was produced by ligation of the left anterior descending coronary artery in female SD rats. Rats were divided into the following groups: (1) Sham MI, (2) MI, and (3) MI+T4 treatment (T4 pellet 3.3 mg, 60 days release, implanted subcutaneously immediately following MI). Four weeks after surgery, total RNA was isolated from LV non-infarcted areas for microarray analysis using the Illumina RatRef-12 Expression BeadChip Platform. Results: Signals were detected in 13,188 genes (out of 22,523), of which the expression of 154 genes were decreased and the expression of 200 genes were increased in MI rats compared with Sham MI rats (false discovery rate (FDR) ,0.05). Compared to MI rats, T4 treatment decreased expression of 27 genes and increased expression of 28 genes. In particular, 6 genes down-regulated by MI and 12 genes up-regulated by MI were reversed by T4.
    [Show full text]
  • Mitochondrial Functionality in Male Fertility: from Spermatogenesis to Fertilization
    antioxidants Review Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization Yoo-Jin Park and Myung-Geol Pang * Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; [email protected] * Correspondence: [email protected] Abstract: Mitochondria are structurally and functionally distinct organelles that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), to provide energy to spermatozoa. They can also produce reactive oxidation species (ROS). While a moderate concentration of ROS is critical for tyrosine phosphorylation in cholesterol efflux, sperm–egg interaction, and fertilization, excessive ROS generation is associated with male infertility. Moreover, mitochondria participate in diverse processes ranging from spermatogenesis to fertilization to regulate male fertility. This review aimed to summarize the roles of mitochondria in male fertility depending on the sperm developmen- tal stage (from male reproductive tract to female reproductive tract). Moreover, mitochondria are also involved in testosterone production, regulation of proton secretion into the lumen to maintain an acidic condition in the epididymis, and sperm DNA condensation during epididymal maturation. We also established the new signaling pathway using previous proteomic data associated with male fertility, to understand the overall role of mitochondria in male fertility. The pathway revealed that male infertility is associated with a loss of mitochondrial proteins in spermatozoa, which induces low sperm motility, reduces OXPHOS activity, and results in male infertility. Keywords: mitochondria; oxidative phosphorylation; spermatozoa; male infertility; testis; epididymis; capacitation; fertilization Citation: Park, Y.-J.; Pang, M.-G. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to 1. Introduction Fertilization. Antioxidants 2021, 10, 98.
    [Show full text]
  • Table 5. the List of 202 Derived Functional Modules
    Table 5. The list of 202 derived functional modules MRP4 and MRPS5 are structural constituents of mitochondrial small ribosomal subunit involved in protein biosynthesis. Therefore, yet un- MRP4 annotated YDR036C (MRP5) is strongly suspected to have similar MRPS5 function. Their functional link can be checked by double or triple deletion experiments. YDR036C Parts of RNA polymerase II transcription mediator complex involved GAL11 in transcription from polymerase (Pol) II promoter. ROX3 SRB6 MED2 MED7 Parts of nuclear ubiquitin ligase complex involved in ubiquitin-protein ligase during G1/S and G2/M transitions of mitotic cell cycle. CDC53 SKP1 Parts of TRAPP complex involved in targeting and fusion of BET3 endoplasmic reticulum to Golgi vesicles. TRS20 CKA2 Alpha and beta subunits of casein kinase II complex involved in regulation of several cellular processes. CKB1 CKA1 CKB2 PRP45 and CEF1 are involved in pre-mRNA splicing with the PRP45 spliceosome. Therefore, yet unannotated YJU2 is strongly suspected to CEF1 have similar function. YJU2 GDI1 is a RAB GDP-dissociation inhibitor involved in vesicle- mediate transport, whereas YIF1 is part of COPII-coated vesicle YGL198W involved in ER to Golgi transport. Therefore, yet unannotated YGL161C YGL161C (YIP5) and YGL198W (YIP4) are strongly suspected to be involved in similar cellular functions. YGL161C and YGL198W are YIF1 not homologous to remaining two proteins. GDI1 Parts of chaperone ring complex located in the cytoplasm and assisting CCT5 in protein folding. CCT3 CCT2 TCP1 CCT6 Both mitogen-activated protein (MAP) kinase proteins involved in DIG1 down-regulation of invasive growth. It is known that each of them is viable, but double deletion results in loss of function.
    [Show full text]