IDEA Gene List for Web.Xlsx

Total Page:16

File Type:pdf, Size:1020Kb

IDEA Gene List for Web.Xlsx Intellectual Disability, Epilepsy, and Autism (IDEA) Sequencing Panel Gene List Genes: A2M - ASPM A2M ADAMTS2 ALDH7A1 AP1S2 A2ML1 ADAR ALDOA AP2M1 AAAS ADARB1 ALDOB AP2S1 AARS1 ADAT3 ALG1 AP3B1 AARS2 ADCY1 ALG11 AP3B2 AASS ADCY3 ALG12 AP3D1 ABAT ADCY5 ALG13 AP4B1 ABCA1 ADD3 ALG14 AP4E1 ABCA12 ADGRG1 ALG2 AP4M1 ABCA2 ADGRV1 ALG3 AP4S1 ABCB6 ADK ALG6 APBB1 ABCB7 ADNP ALG8 APC2 ABCC8 ADPRS ALG9 APH1A ABCC9 ADRA2B ALK APOC3 ABCD1 ADSL ALKBH8 APP ABCD3 AFF2 ALMS1 APTX ABCD4 AFF3 ALOX12B AQP2 ABHD12 AFF4 ALOXE3 ARCN1 ABHD5 AFG3L2 ALPL ARFGEF2 ABI2 AGA ALS2 ARG1 ACADM AGAP2 ALX1 ARHGAP31 ACADS AGK ALX3 ARHGEF15 ACADSB AGMO ALX4 ARHGEF4 ACAT1 AGO1 AMACR ARHGEF6 ACBD6 AGO2 AMER1 ARHGEF9 ACD AGO4 AMMECR1 ARID1A ACHE AGPAT2 AMPD1 ARID1B ACO2 AGRN AMPD2 ARID2 ACOX1 AGTR2 AMT ARL13B ACP5 AHCY AMZ2 ARL6 ACSF3 AHDC1 ANG ARMC5 ACSL4 AHI1 ANK1 ARMC9 ACTA1 AHNAK ANK2 ARNT2 ACTB AIFM1 ANK3 ARSA ACTG1 AIMP1 ANKH ARSL ACTL6A AIMP2 ANKLE2 ARV1 ACTL6B AKAP9 ANKRD11 ARX ACTN1 AKT1 ANKRD26 ASAH1 ACVR1 AKT3 ANKS1B ASAP2 ACY1 ALAD ANO10 ASCL1 ADA ALDH18A1 ANO3 ASH1L ADA2 ALDH1A3 ANOS1 ASL ADAM17 ALDH3A2 ANTXR1 ASNS ADAM22 ALDH4A1 ANXA1 ASPA ADAMTS10 ALDH5A1 AP1B1 ASPH ADAMTS17 ALDH6A1 AP1S1 ASPM Updated: 8/3/2021; v.2021Q1 1 Intellectual Disability, Epilepsy, and Autism (IDEA) Sequencing Panel Gene List Genes: ASS1 - CEP41 ASS1 B9D2 BTK CCAR2 ASTN2 BAG3 BTN2A2 CCBE1 ASXL1 BAZ2B BTRC CCDC22 ASXL2 BBIP1 BUB1B CCDC32 ASXL3 BBS1 C12orf4 CCDC47 ATAD1 BBS10 C12orf57 CCDC88A ATCAY BBS12 C19orf12 CCDC88C ATIC BBS2 C2CD3 CCND2 ATL1 BBS4 C3 CCNG1 ATM BBS5 CA2 CCNK ATN1 BBS7 CA8 CCT4 ATP10A BBS9 CABP2 CCT5 ATP13A2 BCAP31 CACNA1A CD81 ATP1A1 BCKDHA CACNA1B CD96 ATP1A2 BCKDHB CACNA1C CDC42 ATP1A3 BCKDK CACNA1D CDC42BPB ATP2A2 BCL11A CACNA1E CDC6 ATP2B2 BCL11B CACNA1G CDCA7 ATP2B3 BCOR CACNA1H CDH11 ATP2B4 BCORL1 CACNA1I CDH13 ATP2C2 BCS1L CACNA2D1 CDH15 ATP5F1A BDH1 CACNA2D2 CDH2 ATP5F1E BDNF CACNA2D3 CDK10 ATP6AP1 BICRA CACNB2 CDK13 ATP6AP2 BIN1 CACNB4 CDK16 ATP6V0A2 BLM CACNG2 CDK19 ATP6V1A BLNK CAD CDK5 ATP6V1B2 BMP1 CAMK2A CDK5R1 ATP7A BMP4 CAMK2B CDK5RAP2 ATP8A2 BMPER CAMK2G CDK6 ATPAF2 BOD1 CAMTA1 CDK8 ATR BOLA3 CANT1 CDKL5 ATRN BPNT2 CAPN10 CDKN1C ATRX BPTF CAPRIN1 CDON AUH BRAF CAPS CDT1 AUTS2 BRAT1 CARD14 CELF4 AVPR1A BRF1 CARS1 CENPE AVPR2 BRIP1 CARS2 CENPJ B3GALNT2 BRPF1 CASK CEP104 B3GALT6 BRSK2 CASR CEP120 B3GLCT BRWD3 CASZ1 CEP135 B4GALNT1 BSCL2 CAV1 CEP152 B4GALT1 BSN CBL CEP164 B4GALT7 BSND CBS CEP19 B4GAT1 BTAF1 CC2D1A CEP290 B9D1 BTD CC2D2A CEP41 Updated: 8/3/2021; v.2021Q1 2 Intellectual Disability, Epilepsy, and Autism (IDEA) Sequencing Panel Gene List Genes: CEP57 - DDX59 CEP57 CLN3 COL7A1 CTDP1 CEP63 CLN5 COLEC11 CTNNA2 CEP76 CLN6 COMT CTNNB1 CEP83 CLN8 COQ2 CTNND2 CEP85L CLP1 COQ4 CTSA CERS1 CLPB COQ5 CTSD CERS3 CLPP COQ8A CTSF CERT1 CLPTM1 COQ9 CTTNBP2 CFAP418 CLTC CORO1A CTU2 CGNL1 CMIP COX10 CUL3 CHAMP1 CNKSR2 COX14 CUL4B CHAT CNNM2 COX15 CUL7 CHCHD10 CNOT1 COX20 CUX1 CHD1 CNOT2 COX4I2 CUX2 CHD1L CNOT3 COX6B1 CWC27 CHD2 CNPY3 COX7B CWF19L1 CHD3 CNR1 CP CYB5R3 CHD4 CNTN2 CPA6 CYC1 CHD7 CNTN3 CPE CYFIP1 CHD8 CNTN4 CPEB4 CYFIP2 CHKB CNTN5 CPLANE1 CYP24A1 CHL1 CNTN6 CPLX1 CYP27A1 CHMP1A CNTNAP1 CPS1 CYP27B1 CHMP2B CNTNAP2 CPT1A D2HGDH CHP1 CNTNAP4 CPT1B DAG1 CHRNA2 CNTNAP5 CPT2 DAPP1 CHRNA4 COA3 CR2 DARS1 CHRNB2 COA5 CRADD DARS2 CHRND COA6 CRB2 DBT CHRNG COA8 CRBN DCAF17 CHST14 COASY CREB3L1 DCC CHSY1 COG1 CREBBP DCDC2 CIB2 COG4 CRIPT DCHS1 CIBAR2 COG5 CRLF1 DCPS CIC COG6 CRPPA DCTN1 CIT COG7 CRTAP DCX CKAP2L COG8 CSDE1 DDB1 CLASP1 COL11A1 CSF1R DDC CLASP2 COL11A2 CSMD1 DDHD2 CLCF1 COL18A1 CSNK2A1 DDOST CLCN1 COL1A1 CSNK2B DDR2 CLCN2 COL1A2 CSPP1 DDX10 CLCN4 COL25A1 CSTB DDX11 CLCN6 COL27A1 CTBP1 DDX3X CLIC5 COL4A1 CTC1 DDX53 CLIP1 COL4A2 CTCF DDX59 Updated: 8/3/2021; v.2021Q1 3 Intellectual Disability, Epilepsy, and Autism (IDEA) Sequencing Panel Gene List Genes: DDX6 - FANCA DDX6 DNAJC5 EDA EP300 DEAF1 DNAJC6 EDC3 EP400 DEGS1 DNM1 EDN1 EPB41L1 DENND5A DNM1L EDN3 EPG5 DEPDC5 DNM2 EDNRB EPHA2 DGAT2L6 DNMT1 EED EPM2A DHCR24 DNMT3A EEF1A2 EPRS1 DHCR7 DNMT3B EEF1D ERBIN DHDDS DOCK3 EFHC1 ERCC1 DHFR DOCK6 EFNB1 ERCC2 DHPS DOCK7 EFNB2 ERCC3 DHTKD1 DOCK8 EFR3A ERCC4 DHX16 DOLK EFTUD2 ERCC5 DHX30 DONSON EGF ERCC6 DHX37 DPAGT1 EGR2 ERCC8 DIAPH1 DPF2 EHHADH ERF DICER1 DPH1 EHMT1 ERI1 DIP2A DPM1 EIF2AK1 ERLIN2 DIP2B DPM2 EIF2AK2 ERMARD DIP2C DPM3 EIF2AK3 ESCO2 DIS3L2 DPP10 EIF2B1 ESPN DISC1 DPP6 EIF2B2 ETFA DISP1 DPYD EIF2B3 ETFB DISP3 DPYS EIF2B4 ETFDH DKC1 DPYSL2 EIF2B5 ETHE1 DLAT DRP2 EIF2S3 EVC DLD DSCAM EIF3F EVC2 DLG1 DSE EIF3G EXOC2 DLG2 DSG4 EIF4A2 EXOC6B DLG3 DTNBP1 ELAC2 EXOC7 DLG4 DUOX2 ELAVL3 EXOSC2 DLGAP1 DUOXA2 ELMO2 EXOSC3 DLGAP2 DUSP6 ELN EXOSC8 DLL1 DVL1 ELOVL4 EXT2 DLL4 DYM ELP1 EXTL3 DLX3 DYNC1H1 ELP2 EYA1 DLX5 DYNC1I2 ELP4 EZH2 DMD DYNC2H1 EMC1 EZR DMXL2 DYNC2I1 EMG1 FA2H DNA2 DYNC2I2 EML1 FAAH2 DNAH1 DYRK1A EMSY FAM111A DNAH10 EARS2 EMX2 FAM111B DNAH5 EBF3 ENO2 FAM126A DNAH7 EBP ENPP1 FAM234B DNAJC12 ECHS1 ENTPD1 FAM50A DNAJC19 ECM1 EOGT FANCA Updated: 8/3/2021; v.2021Q1 4 Intellectual Disability, Epilepsy, and Autism (IDEA) Sequencing Panel Gene List Genes: FANCB - GRIK2 FANCB FLNA GALE GLS FANCC FLNB GALNT2 GLUD1 FANCD2 FLRT3 GALNT8 GLUL FANCE FLVCR1 GALNTL5 GLYCTK FANCF FLVCR2 GALT GM2A FANCG FMN1 GAMT GMNN FANCI FMN2 GAN GMPPA FANCL FMR1 GARS1 GMPPB FAR1 FN1 GAS1 GNA11 FARS2 FNDC3A GATA1 GNAI1 FARSB FOLR1 GATA2 GNAI3 FASN FOXG1 GATA3 GNAL FASTKD2 FOXH1 GATA6 GNAO1 FAT1 FOXI1 GATAD2B GNAQ FAT4 FOXP1 GATM GNAS FBLN1 FOXP2 GBA GNB1 FBLN5 FOXRED1 GBA2 GNB5 FBN1 FRAS1 GBE1 GNE FBXL3 FREM2 GCC2 GNPAT FBXL4 FRMD4A GCDH GNPTAB FBXO11 FRMD7 GCH1 GNPTG FBXO28 FRMPD4 GCK GNRH1 FBXO31 FRRS1L GCSH GNRHR FBXW11 FTCD GDF3 GNS FBXW4 FTL GDF5 GORAB FCSK FTO GDI1 GOSR2 FDFT1 FTSJ1 GEMIN4 GOT2 FEZF1 FUCA1 GFAP GP1BB FEZF2 FUS GFER GPAA1 FGD1 FUT8 GFM1 GPC3 FGF12 G6PC3 GFM2 GPC4 FGF14 GAA GGNBP2 GPD2 FGF17 GABBR2 GIGYF1 GPHN FGF3 GABRA1 GIGYF2 GPI FGF8 GABRA2 GJA1 GPKOW FGFR1 GABRA3 GJB1 GPR101 FGFR2 GABRA5 GJC2 GPSM2 FGFR3 GABRA6 GK GPT2 FH GABRB1 GLA GRAMD1B FIBP GABRB2 GLB1 GRIA1 FIG4 GABRB3 GLDC GRIA2 FKBP10 GABRD GLI2 GRIA3 FKRP GABRG2 GLI3 GRIA4 FKTN GABRG3 GLRA1 GRID1 FLCN GAD1 GLRA2 GRID2 FLI1 GALC GLRB GRIK2 Updated: 8/3/2021; v.2021Q1 5 Intellectual Disability, Epilepsy, and Autism (IDEA) Sequencing Panel Gene List Genes: GRIK5 - KCNS3 GRIK5 HECW2 HUWE1 ITGB3 GRIN1 HELLS IARS1 ITK GRIN2A HEPACAM IBA57 ITPA GRIN2B HERC1 ICA1 ITPR1 GRIN2D HERC2 ICE2 ITSN1 GRIP1 HESX1 ICOS IVD GRM1 HEXA IDH2 IYD GRM7 HEXB IDS JAG1 GRN HFM1 IDUA JAM3 GRXCR2 HGSNAT IER3IP1 JARID2 GSDME HHAT IFIH1 JMJD1C GSS HIBCH IFNAR2 JMJD7 GSX2 HIVEP2 IFT140 KANK1 GTF2E2 HIVEP3 IFT172 KANSL1 GTF2H5 HK1 IFT27 KARS1 GTF2IRD1 HLCS IFT80 KAT2B GTF3C3 HMG20A IGBP1 KAT5 GTPBP2 HMGB1 IGF1 KAT6A GTPBP3 HMGB3 IGF1R KAT6B GUF1 HMGCL IGF2 KAT8 GUSB HMGN1 IKBKG KATNAL2 H1-4 HNF1B IL12B KATNB1 H2BW1 HNMT IL17RD KCNA1 H3-3A HNRNPA1 IL1RAPL1 KCNA2 H3-3B HNRNPA2B1 IMMP2L KCNB1 HACE1 HNRNPD IMPA1 KCNC1 HACL1 HNRNPH2 INO80 KCNC3 HADH HNRNPK INPP5E KCND2 HADHA HNRNPU INPP5K KCND3 HADHB HNRNPUL2 INPPL1 KCNE5 HAL HOMER2 INS KCNH1 HAP1 HOXA1 INSR KCNH2 HARS2 HOXA2 INTS1 KCNJ1 HAX1 HPCA INTS2 KCNJ10 HBA1 HPD INTS6 KCNJ11 HCCS HPDL IQGAP3 KCNJ2 HCFC1 HPRT1 IQSEC1 KCNJ6 HCN1 HPS3 IQSEC2 KCNJ8 HCN2 HRAS IREB2 KCNK4 HCRT HS2ST1 IRF2BPL KCNK9 HDAC4 HS6ST1 IRX5 KCNMA1 HDAC6 HSD17B10 ISCA2 KCNN3 HDAC8 HSD17B4 ITCH KCNQ2 HDC HSPD1 ITGA3 KCNQ3 HDLBP HSPG2 ITGA7 KCNQ5 HECTD4 HTRA2 ITGA9 KCNS3 Updated: 8/3/2021; v.2021Q1 6 Intellectual Disability, Epilepsy, and Autism (IDEA) Sequencing Panel Gene List Genes: KCNT1 - MKX KCNT1 KRAS LRCH3 MAST1 KCNT2 KRT25 LRMDA MAT1A KCTD13 KRT81 LRP1 MATR3 KCTD18 KRT83 LRP2 MBD5 KCTD7 KRT86 LRP4 MBD6 KDM1A KY LRP5 MBNL3 KDM2B KYNU LRPPRC MBOAT7 KDM3B L1CAM LRRC4C MBTPS2 KDM4B L2HGDH LRRIQ3 MC2R KDM4C LAMA1 LRRTM4 MCCC1 KDM5A LAMA2 LSS MCCC2 KDM5B LAMB1 LTBP2 MCM3AP KDM5C LAMC1 LTBP4 MCOLN1 KDM6A LAMC3 LYRM4 MCPH1 KDM6B LAMP2 LYRM7 MDH2 KIAA0232 LARGE1 LYST MECP2 KIAA0586 LARP7 LZTFL1 MED12 KIAA1109 LARS1 LZTR1 MED12L KIAA1586 LARS2 MAB21L1 MED13 KIDINS220 LAS1L MAB21L2 MED13L KIF11 LBR MACF1 MED17 KIF14 LDB1 MACROD2 MED23 KIF1A LEMD3 MADD MED25 KIF21A LENG8 MAF MEF2C KIF2A LEO1 MAGEL2 MEGF10 KIF4A LEPR MAGI2 MEGF8 KIF5A LGI1 MAGT1 MEIS2 KIF5C LGI3 MAN1B1 MET KIF7 LHX3 MAN2B1 METTL23 KIFBP LHX4 MANBA METTL5 KIRREL3 LIAS MAOA MFF KISS1 LIFR MAP1A MFN2 KISS1R LIG4 MAP1B MFRP KLF7 LIN7B MAP2K1 MFSD2A KLF8 LINGO1 MAP2K2 MFSD8 KLHL15 LINS1 MAP3K1 MGAT2 KLHL7 LIPT1 MAP3K15 MGME1 KMT2A LIPT2 MAP3K7 MGP KMT2B LMAN2L MAPK1 MIB1 KMT2C LMBRD1 MAPK10 MICU1 KMT2D LMNB1 MAPK8 MID1 KMT2E LMNB2 MAPK8IP3 MID2 KMT5B LMX1B MAPRE2 MITF KNL1 LNPK MAPT MKKS KPNA7 LONP1 MARS2 MKS1 KPTN LPIN1 MASP1 MKX Updated: 8/3/2021; v.2021Q1 7 Intellectual Disability, Epilepsy, and Autism (IDEA) Sequencing Panel Gene List Genes: MLC1 - NUDCD2 MLC1 MYH9 NDUFAF4 NKX6-2 MLYCD MYO18B NDUFAF5 NLGN1 MMAA MYO5A NDUFAF6 NLGN2 MMAB MYO7A NDUFB11 NLGN3 MMACHC MYO9B NDUFB3 NLGN4X MMADHC MYOT NDUFB9 NLRP1 MMP19 MYT1L NDUFS1 NLRP3 MMUT NAA10 NDUFS2 NME8 MN1 NAA15 NDUFS3 NODAL MNX1 NACC1 NDUFS4 NOG MOCS1 NADK2 NDUFS6 NONO MOCS2 NAGA NDUFS7 NOP10 MOGS NAGLU NDUFS8 NOTCH1 MORC2 NAGPA NDUFV1 NOTCH2 MPC1 NAGS NDUFV2 NOTCH3 MPDU1 NALCN NEB NOVA2 MPDZ NANS NECAP1 NPC1 MPL NAPB NEDD4L NPC2 MPLKIP NARS1 NEFH NPHP1 MPV17 NARS2 NEFL NPHP3 MRE11 NAT8L NEMF NPRL2 MRPL10 NAV2 NEU1 NPRL3 MRPL3 NAXE NEUROD2 NR0B1 MRPS22 NBEA NEXMIF NR0B2 MRPS34 NBN NF1 NR2F1 MS4A1 NCAPD2 NFASC NR3C2 MSL3 NCAPG2 NFE2L3 NR4A2 MSMO1 NCDN NFIA NR5A1 MTFMT NCKAP1 NFIB NRAS MTHFR NCKAP1L NFIX NRROS MTHFS NCOA1 NFKB1 NRXN1 MTM1 NCOR1 NFKB2 NRXN2 MTMR2 NDE1 NFU1 NRXN3 MTO1 NDN NGF NSD1 MTOR NDP NGLY1 NSD2 MTPAP NDST1 NHLRC1 NSDHL MTR NDUFA1 NHP2 NSMF MTRFR
Recommended publications
  • Constitutive Scaffolding of Multiple Wnt Enhanceosome Components By
    RESEARCH ARTICLE Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/ BCL9 Laurens M van Tienen, Juliusz Mieszczanek, Marc Fiedler, Trevor J Rutherford, Mariann Bienz* MRC Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract Wnt/b-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF- responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing b-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of b-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these b-catenin co-factors may coordinate Wnt and nuclear hormone responses. DOI: 10.7554/eLife.20882.001 *For correspondence: mb2@mrc- Introduction lmb.cam.ac.uk The Wnt/b-catenin signaling cascade is an ancient cell communication pathway that operates con- Competing interests: The text-dependent transcriptional switches to control animal development and tissue homeostasis authors declare that no (Cadigan and Nusse, 1997).
    [Show full text]
  • 3.2 Brain White Matter Oedema Due to Clc-2 Chloride Channel Deficiency
    3.2 Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study M Bugiani*, C Depienne*, C Dupuits, D Galanaud, V Touitou, N Postma, C van Berkel, E Polder, E Tollard, F Darios, A Brice, CE de Die-Smulders, JS Vles, A Vanderver, G Uziel, C Yalcinkaya, SG Frints, VM Kalscheuer, J Klooster, M Kamermans, TEM Abbink, NI Wolf, F Sedel** and MS van der Knaap** (*shared first authors; **shared last authors) Lancet Neurol 2013;12:659-668 Summary Background. Mutant mouse models suggest that the chloride channel ClC-2 has functions in ion and water homoeostasis, but this has not been confirmed in human beings. We aimed to define novel disorders characterised by distinct patterns of MRI abnormalities in patients with leukoencephalopathies of unknown origin, and to identify the genes mutated in these disorders. We were specifically interested in leukoencephalopathies characterised by white matter oedema, suggesting a defect in ion and water homoeostasis. Methods. In this observational analytical study, we recruited patients with leukoencephalopathies characterised by MRI signal abnormalities in the posterior limbs of the internal capsules, midbrain cerebral peduncles, and middle cerebellar peduncles from our databases of patients with leukoencephalopathies of unknown origin. We used exome sequencing to identify the gene involved. We screened the candidate gene in additional patients by Sanger sequencing and mRNA analysis, and investigated the functional effects of the mutations. We assessed the localisation of ClC-2 with immunohistochemistry and electron microscopy in post- mortem human brains of individuals without neurological disorders. Findings. Seven patients met our inclusion criteria, three with adult-onset disease and four with childhood-onset disease.
    [Show full text]
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • An Interactive Web Application to Explore Regeneration-Associated Gene Expression and Chromatin Accessibility
    Supplementary Materials Regeneration Rosetta: An interactive web application to explore regeneration-associated gene expression and chromatin accessibility Andrea Rau, Sumona P. Dhara, Ava J. Udvadia, Paul L. Auer 1. Table S1. List of cholesterol metabolic genes from MGI database 2. Table S2. List of differentially expressed transcripts during optic nerve regeneration in zebrafish using the MGI cholesterol metabolic gene queries in the Regeneration Rosetta app 3. Table S3. List of transcription factor encoding genes from brain cell bodies following spinal cord injury in lamprey over a course of 12 weeKs 4. Table S4. List of transcription factor encoding genes from spinal cell bodies following spinal cord injury in lamprey over a course of 12 weeks Ensembl ID MGI Gene ID Symbol Name ENSMUSG00000015243 MGI:99607 Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 ENSMUSG00000026944 MGI:99606 Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 ENSMUSG00000024030 MGI:107704 Abcg1 ATP binding cassette subfamily G member 1 ENSMUSG00000026003 MGI:87866 Acadl acyl-Coenzyme A dehydrogenase, long-chain ENSMUSG00000018574 MGI:895149 Acadvl acyl-Coenzyme A dehydrogenase, very long chain ENSMUSG00000038641 MGI:2384785 Akr1d1 aldo-keto reductase family 1, member D1 ENSMUSG00000028553 MGI:1353627 Angptl3 angiopoietin-like 3 ENSMUSG00000031996 MGI:88047 Aplp2 amyloid beta (A4) precursor-like protein 2 ENSMUSG00000032083 MGI:88049 Apoa1 apolipoprotein A-I ENSMUSG00000005681 MGI:88050 Apoa2 apolipoprotein A-II ENSMUSG00000032080 MGI:88051 Apoa4
    [Show full text]
  • Mouse Cep104 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Cep104 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Cep104 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cep104 gene (NCBI Reference Sequence: NM_177673 ; Ensembl: ENSMUSG00000039523 ) is located on Mouse chromosome 4. 22 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 22 (Transcript: ENSMUST00000047497). Exon 5~6 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Cep104 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-101G23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 5 starts from about 15.41% of the coding region. The knockout of Exon 5~6 will result in frameshift of the gene. The size of intron 4 for 5'-loxP site insertion: 1291 bp, and the size of intron 6 for 3'-loxP site insertion: 1224 bp. The size of effective cKO region: ~1111 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 4 5 6 7 8 22 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Cep104 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Genetic Dissection of Mitochondrial Respiratory Chain Biogenesis
    A GENETIC DISSECTION OF MITOCHONDRIAL RESPIRATORY CHAIN BIOGENESIS An Undergraduate Research Scholars Thesis by AARON GRIFFIN, SARAH THERIAULT, SHRISHIV TIMBALIA Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment of the requirements for the designation as an UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Advisor: Dr. Vishal Gohil May 2014 Major: Biochemistry, Genetics Biochemistry Biochemistry TABLE OF CONTENTS Page ABSTRACT .....................................................................................................................................1 CHAPTER I INTRODUCTION ...............................................................................................................3 II MATERIALS AND METHODS .........................................................................................7 Yeast strains, plasmids, and culture conditions .......................................................7 Yeast growth measurements ..................................................................................10 Yeast oxygen consumption and mitochondrial isolation .......................................11 SDS-PAGE and Western blotting ..........................................................................11 Sporulation, tetrad dissection, and genotyping ......................................................12 High-throughput phenotypic analysis of yeast strains ...........................................15 III RESULTS ..........................................................................................................................16
    [Show full text]
  • Clinical Vignette Novel Bi-Allelic Variants in GJC2 Associated
    Clinical Vignette Novel Bi-allelic Variants in GJC2 Associated Pelizaeus- Merzbacher-like Disease 1: Clinical Clues and Differential Diagnosis Veronica Arora, Sapna Sandal, Ishwar Verma Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi Correspondence to: Dr Ishwar C Verma Email: [email protected] Abstract the environment and did not follow objects. Head titubation was present. There was no facial dys- Hypomyelinating Leukodystrophy-2 (HLD2) or morphism. Anthropometric measurements were Pelizaeus-Merzbacher-like disease 1 (PMLD1) is a as follows: length 82cm (+1.2SD), weight 10.6Kg slowly progressive leukodystrophy characterized (+1.1SD) and head circumference 47.7cm (+1.2SD). by nystagmus, hypotonia, and developmental Central nervous system examination showed bilat- delay. It is a close differential diagnosis for eral pendular nystagmus, axial hypotonia, dystonic Pelizaeus- Merzbacher disease (PMD) and should posturing, and choreo-athetoid movements (Figure be suspected in patients with features of PMD but 1). Deep tendon reflexes were brisk with extensor who are negative on testing for duplication of the plantar responses. The rest of the systemic PLP1 gene. We describe a case of a 16-month-old examination was non-contributory. MRI of the boy with a novel homozygous mutation in the GJC2 brain (axial view) showed diffuse hypo-myelination gene resulting in hypomyelinating leukodystrophy- in the peri-ventricular and sub-cortical area and 2. The clinical clues as well as features of other cerebellar white matter changes (Figure 2). disorders presenting similarly are discussed. Given the presence of hypotonia, brisk reflexes, nystagmus and hypomyelination on MRI, a deletion Clinical description duplication analysis for the PLP1 gene was done which was negative.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • De Novo SCN1A, SCN8A, and CLCN2 Mutations in Childhood Absence Epilepsy T
    Epilepsy Research 154 (2019) 55–61 Contents lists available at ScienceDirect Epilepsy Research journal homepage: www.elsevier.com/locate/epilepsyres De novo SCN1A, SCN8A, and CLCN2 mutations in childhood absence epilepsy T Han Xie, Wenting Su, Jinrui Pei, Yujia Zhang, Kai Gao, Jinliang Li, Xiuwei Ma, Yuehua Zhang, ⁎ Xiru Wu, Yuwu Jiang Department of Pediatrics, Peking University First Hospital, Beijing, China ARTICLE INFO ABSTRACT Keywords: This study aimed to identify monogenic mutations from Chinese patients with childhood absence epilepsy (CAE) Childhood absence epilepsy and summarize their characteristics. A total of 100 patients with CAE were recruited in Peking University First SCN1A Hospital from 2005 to 2016 and underwent telephone and outpatient follow-up review. We used targeted dis- SCN8A ease-specific gene capture sequencing (involving 300 genes) to identify pathogenic variations for these patients. CLCN2 We identified three de novo epilepsy-related gene mutations, including missense mutations of SCN1A (c. 5399 T > A; p. Val1800Asp), SCN8A (c. 2371 G > T; p. Val791Phe), and CLCN2 (c. 481 G > A; p. Gly161Ser), from three patients, separately. All recruited patients presented typical CAE features and good prognosis. To date, CAE has been considered a complex disease caused by multiple susceptibility genes. In this study, we observed that 3% of typical CAE patients had a de novo mutation of a known monogenic epilepsy-related gene. Our study suggests that a significant proportion of typical CAE cases may be monogenic forms of epilepsy. For genetic generalized epilepsies, such as CAE, further studies are needed to clarify the contributions of de novo or inherited rare monogenic coding, noncoding and copy number variants.
    [Show full text]
  • (Pnss) En Genes Candidatos Para Las Características De La Fibra En Alpacas
    Revista peruana de biología 26(1): 087 - 094 (2019) Identificación bioinformática de Polimorfismos de doi: http://dx.doi.org/10.15381/rpb.v26i1.15911 ISSN-L 1561-0837; eISSN: 1727-9933 Nucleótido Simple (PNSs) en genes candidatos para Universidad Nacional Mayor de San Marcos las características de la fibra en alpacas (Vicugna pacos) Bioinformatic identification of Single Nucleotide Polymor- Trabajos originales phisms (SNPs) in candidate genes for fiber characteristics in Presentado: 31/07/2018 alpacas (Vicugna pacos) Aceptado: 03/02/2019 Publicado online: 30/03/2019 Correspondencia: 1 *Autor para correspondencia Alvaro Gonzalo Fernández Suárez* , Gustavo Augusto Gutiérrez 1 Universidad Nacional Agraria La Molina. Av. La Reynoso 1, Federico Abel Ponce de León Bravo 2 Molina S/N, Lima 12. 2 University of Minnesota, St. Paul, MN 55108, 1 Universidad Nacional Agraria La Molina, Perú. United States. 2 University of Minnesota, United States. Email AGFS: [email protected] Email GAGR: [email protected] Email FAPLB: [email protected] ORCID FAPdLB: 0000-0001-8645-553X ORCID GAGR: 0000-0002-1896-0048 Citación: Resumen Fernández Suárez A.G., G.A. Gutiérrez Reynoso, El objetivo fue identificar y predecir la ubicación de polimorfismos de nucleótido F.A. Ponce de León Bravo. 2019. Bioinformatic simple (PNSs) en genes relacionados al crecimiento de la fibra. Se realizó el estudio identification of Single Nucleotide Polymorphisms con un total de 31 genes de queratina (KRT9, KRT12, KRT13, KRT14, KRT16, KRT18, (SNPs) in candidate genes for fiber characteristics KRT20, KRT25, KRT1, KRT3, KRT5, KRT6a, KRT6b, KRT6c, KRT7, KRT8, KRT71, KRT80, in alpacas (Vicugna pacos). Revista peruana de KRT31, KRT32, KIRT40, KRT81, KRT82, KRT10, KRT15, KRT17 KRT19, KRT2, KRT4, biología 26(1): 087 - 094 (Febrero 2019).
    [Show full text]