1598.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

1598.Full.Pdf IFN Regulatory Factor 4 Regulates the Expression of a Subset of Th2 Cytokines Ayele-Nati N. Ahyi, Hua-Chen Chang, Alexander L. Dent, Stephen L. Nutt and Mark H. Kaplan This information is current as of October 1, 2021. J Immunol 2009; 183:1598-1606; Prepublished online 10 July 2009; doi: 10.4049/jimmunol.0803302 http://www.jimmunol.org/content/183/3/1598 Downloaded from References This article cites 45 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/183/3/1598.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IFN Regulatory Factor 4 Regulates the Expression of a Subset of Th2 Cytokines1 Ayele-Nati N. Ahyi,*† Hua-Chen Chang,* Alexander L. Dent,† Stephen L. Nutt,‡ and Mark H. Kaplan2*† Th2 cells can be subdivided into subpopulations depending on the level of a cytokine and the subsets of cytokines they produce. We have recently identified the ETS family transcription factor PU.1 as regulating heterogeneity in Th2 popula- tions. To define additional factors that might contribute to Th2 heterogeneity, we examined the PU.1 interacting protein IFN-regulatory factor (IRF)4. When Th2 cells are separated based on levels of IL-10 secretion, IRF4 expression segregates into the subset of Th2 cells expressing high levels of IL-10. Infection of total Th2 cells, and IL-10 nonsecreting cells, with retrovirus-expressing IRF4, resulted in increased IL-4 and IL-10 expression, no change in IL-5 or IL-13 production and decreased Il9 transcription. Transfection of an IRF4-specific small interfering RNA into Th2 cells decreases IL-10 produc- Downloaded from tion. IRF4 directly binds the Il10 gene as evidenced by chromatin immunoprecipitation assay, and regulates Il10 control elements in a reporter assay. IRF4 interacts with PU.1, and in PU.1-deficient T cells there was an increase in IRF4 binding to the Il10 gene, and in the ability of IRF4 to induce IL-10 production compared with wild-type cells and Il10 promoter activity in a reporter assay. Further heterogeneity of IRF4 expression was observed in Th2 cells analyzed for expression of multiple Th2 cytokines. Thus, IRF4 promotes the expression of a subset of Th2 cytokines and contributes to Th2 heterogeneity. The Journal of Immunology, 2009, 183: 1598–1606. http://www.jimmunol.org/ D4ϩ Th cells play a critical role in modulating both in- IFN-regulatory factor (IRF)3-4 was first identified as a protein nate and adaptive immune responses. Cytokines direct recruited by the transcription factor PU.1 to an Ig ␬ 3Ј enhancer in C the differentiation of precursor CD4ϩ Th cells into com- a cooperative manner (9–12) and contributes to the differentiation mitted Th phenotypes, Th1, Th17, and Th2 cells, which are defined of Th2, Th17, and some functions of Treg cells (13–15). IRF4 also by their function and the array of secreted cytokines (1–3). Th2 has distinct effects on cytokine production in naive vs memory T cells mediate humoral immune responses by secreting IL-4, IL-5, cell populations (16). In Th2 cells, IRF4 binds to a site adjacent to IL-9, IL-13, and other cytokines including the anti-inflammatory a NFAT binding element and cooperates with NFATc1, NFATc2, cytokine IL-10. The differentiation of Th2 cells in vivo upon in- and c-maf in the transcription of IL-4 (17, 18). These interactions by guest on October 1, 2021 fection or in vitro generates a heterogenous population of Th2 cells are likely important as the activation of T cells triggers a rapid that express and secrete various combinations of Th2-type cyto- induction of IRF4 (19, 20) and IRF4-deficient T cells secrete de- kines at different levels (4–6). Although Th2 heterogeneity is well creased levels of Th2 cytokines (13). Ectopic IRF4 has been shown documented, the origins are still unclear. Guo et al. (7) reported to increase the level of IL-10 secreted by Jurkat cells, but the that the Il4 gene in IL-4-producing and nonproducing cells has mechanism by which IRF4 controls the expression of Th2-cyto- differential levels of CpG methylation and histone acetylation. kines in differentiated Th2 cells has not been examined. In this These modifications translate in an open DNA conformation and report, we determine that IRF4 is a regulator of a subset of Th2 gene activation in IL-4-producing cells. We reported that PU.1 cytokines, and contributes to Th2 heterogeneity. plays a critical role in establishing these phenotypes by preventing GATA-3 binding to the IL-4 locus resulting in an IL-4 low Th2 Materials and Methods population (8). Knock-down of PU.1 expression resulted in in- Mice creased homogeneity of Th2 cells (8). In addition to PU.1, it is Wild-type (WT) C57BL/6 and BALB/c mice (Harlan Bioscience) were likely that additional factors are involved in the establishment of used for Th1 and Th2 differentiation. Conditional mutant Sfpi1 mice on the Th2 subpopulations. C57BL/6 background were previously described (21) and were mated to lck-Cre expressing mice (noted as Sfpi1lckϪ/Ϫ). Mice were maintained in pathogen-free conditions and all studies were approved by the Indiana University School of Medicine Animal Care and Use Committee. *Department of Pediatrics, Herman B. Wells Center for Pediatric Research, †Depart- ment of Microbiology and Immunology, and the Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202; and ‡The Walter and Eliza Th1 and Th2 cell differentiation Hall Institute of Medical Research, Victoria, Australia CD4ϩ T cells were purified from spleen and lymph nodes by positive Received for publication October 2, 2008. Accepted for publication May 31, 2009. selection using magnetic beads (Miltenyi Biotec) with purity Ͼ97% by ␮ The costs of publication of this article were defrayed in part by the payment of page FACS analysis. Cells were activated with 2 g/ml plate-bound anti-CD3 charges. This article must therefore be hereby marked advertisement in accordance (145–2C11) plus 1 ␮g/ml anti-CD28, in addition to 10 ng/ml IL-4 and 10 with 18 U.S.C. Section 1734 solely to indicate this fact. 1 This work was supported by U.S. Public Health Service Award AI057459 (to 3 Abbreviations used in this paper: IRF, IFN-regulatory factor; WT, wild type; ChIP, M.H.K.) from the National Institutes of Health. chromatin immunoprecipitation assay; siRNA, small interfering RNA; qPCR, quan- 2 Address correspondence and reprint requests to Dr. Mark H. Kaplan, Department of titative PCR; DAPA, DNA affinity purification assay; GATA-3, GATA binding Pediatrics, and Microbiology and Immunology, Wells Center for Pediatric Research, protein-3. Indiana University School of Medicine, 702 Barnhill Drive, RI 2600, Indianapolis, IN 46202. E-mail address: [email protected] Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00 www.jimmunol.org/cgi/doi/10.4049/jimmunol.0803302 The Journal of Immunology 1599 ␮g/ml anti-IFN-␥ (R4/6A2 or XMG) for Th2 differentiation, or 10 ng/ml were labeled using the mouse IL-10 Secretion Assay (Miltenyi Biotec) IL-12 plus 10 ␮g/ml anti-IL-4 (11B11) for Th1 differentiation. After 3 days before sorting with FACSVantage SE or FACSAria from Becton Dick- of incubation, cells were expanded for a total of 5 or 6 days. Differentiated inson. The cells were rested for 1 or 2 days before restimulation, anal- cells were restimulated with 2 ␮g/ml anti-CD3 at a concentration of 106 ysis, or transduction. cells/ml for real-time PCR and ELISA as previously described (8, 22). Statistics were performed using a t test with SPSS software (v. 16.0; SPSS). IL-10 high and low Th2 cocultures ϫ 6 Immunoprecipitation and Western blot analysis IL-10 high and low Th2 (1 10 ) cells were sorted as described above and cocultured with either 0.5 ϫ 106 splenic CD11cϩ cells purified by positive Total cell extracts were prepared by lysing Th2 cells with lysis buffer (10% selection using magnetic beads (Miltenyi Biotech) or 1 ϫ 106 total spleno- glycerol,1% Igepal, 50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA cytes from BALB/c mice. Cells supplemented with RPMI 1640 medium (pH 8)) for 15 min on ice before centrifugation at 14,000 rpm for 15 min were activated with 5 ␮g/ml anti-CD3 and 4 ␮g/ml LPS. dendritic cell at 4°C. Nuclear and cytoplasmic proteins were prepared from differentiated coculture was harvested after 3 days for IFN-␥ and IL-6 ELISA and total Th2 cells using Nuclear and Cytoplasmic Extraction Reagents from Pierce splenocyte coculture was harvested after 5 days for IgG1 ELISA. Biotechnology. Protein extracts (25 ␮g) from naive T, Th1, Th2, and Phoe- nix cells were separated on 4–12% SDS-PAGE and transferred onto Ny- Chromatin immunoprecipitation assay (ChIP) tran membranes (Schleicher and Schuell Bioscience).
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • DCIR2 Cdc2 Dcs and Zbtb32 Restore CD4 T-Cell Tolerance
    Diabetes Volume 64, October 2015 3521 Jeffrey D. Price, Chie Hotta-Iwamura, Yongge Zhao, Nicole M. Beauchamp, and Kristin V. Tarbell DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes Diabetes 2015;64:3521–3531 | DOI: 10.2337/db14-1880 During autoimmunity, the normal ability of dendritic cells clinical efficacy has been observed for this approach (1,2). (DCs) to induce T-cell tolerance is disrupted; therefore, Autoimmune individuals elicit immune responses in an autoimmune disease therapies based on cell types and inflammatory context and are therefore refractory to tol- IMMUNOLOGY AND TRANSPLANTATION molecular pathways that elicit tolerance in the steady erance induction, yet most studies of T-cell tolerance have state may not be effective. To determine which DC been performed in either a steady-state context or in subsets induce tolerance in the context of chronic models of autoimmunity requiring immunization with fi autoimmunity, we used chimeric antibodies speci cfor autoantigen that best model the effector phase (3). There- DC inhibitory receptor 2 (DCIR2) or DEC-205 to target fi + + fore, to move beyond therapies that nonspeci cally block self-antigen to CD11b (cDC2) DCs and CD8 (cDC1) DCs, effector functions, it is important to learn what condi- respectively, in autoimmune-prone nonobese diabetic tions are needed to enable antigen-specific T-cell tolerance (NOD) mice. Antigen presentation by DCIR2+ DCs but induction in a chronic inflammatory autoimmune envi- not DEC-205+ DCs elicited tolerogenic CD4+ T-cell ronment, which can be modeled using autoimmune-prone responses in NOD mice. b-Cell antigen delivered to DCIR2+ DCs delayed diabetes induction and induced in- nonobese diabetic (NOD) mice that show spontaneous creased T-cell apoptosis without interferon-g (IFN-g)or loss of self-tolerance due to genetic and environmental sustained expansion of autoreactive CD4+ T cells.
    [Show full text]
  • Potential Genotoxicity from Integration Sites in CLAD Dogs Treated Successfully with Gammaretroviral Vector-Mediated Gene Therapy
    Gene Therapy (2008) 15, 1067–1071 & 2008 Nature Publishing Group All rights reserved 0969-7128/08 $30.00 www.nature.com/gt SHORT COMMUNICATION Potential genotoxicity from integration sites in CLAD dogs treated successfully with gammaretroviral vector-mediated gene therapy M Hai1,3, RL Adler1,3, TR Bauer Jr1,3, LM Tuschong1, Y-C Gu1,XWu2 and DD Hickstein1 1Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA and 2Laboratory of Molecular Technology, Scientific Applications International Corporation-Frederick, National Cancer Institute-Frederick, Frederick, Maryland, USA Integration site analysis was performed on six dogs with in hematopoietic stem cells. Integrations clustered around canine leukocyte adhesion deficiency (CLAD) that survived common insertion sites more frequently than random. greater than 1 year after infusion of autologous CD34+ bone Despite potential genotoxicity from RIS, to date there has marrow cells transduced with a gammaretroviral vector been no progression to oligoclonal hematopoiesis and no expressing canine CD18. A total of 387 retroviral insertion evidence that vector integration sites influenced cell survival sites (RIS) were identified in the peripheral blood leukocytes or proliferation. Continued follow-up in disease-specific from the six dogs at 1 year postinfusion. A total of 129 RIS animal models such as CLAD will be required to provide an were identified in CD3+ T-lymphocytes and 102 RIS in accurate estimate
    [Show full text]
  • Figure S17 Figure S16
    immune responseregulatingcellsurfacereceptorsignalingpathway ventricular cardiacmuscletissuedevelopment t cellactivationinvolvedinimmuneresponse intrinsic apoptoticsignalingpathway single organismalcelladhesion cholesterol biosyntheticprocess myeloid leukocytedifferentiation determination ofadultlifespan response tointerferongamma muscle organmorphogenesis endothelial celldifferentiation brown fatcelldifferentiation mitochondrion organization myoblast differentiation response toprotozoan amino acidtransport leukocyte migration cytokine production t celldifferentiation protein secretion response tovirus angiogenesis Scrt1 Tcf25 Dpf1 Sap30 Ing2 Zfp654 Sp9 Zfp263 Mxi1 Hes6 Zfp395 Rlf Ppp1r13l Snapc1 C030039L03Rik Hif1a Arrb1 Glis3 Rcor2 Hif3a Fbxo21 Dnajc21 Rest Sirt6 Foxj1 Kdm5b Ankzf1 Sos2 Plscr1 Jdp2 Rbbp8 Etv4 Msh5 Mafg Tsc22d3 Nupr1 Ddit3 Cebpg Zfp790 Atf5 Cebpb Atf3 Trim21 Irf9 Irf2 Tbx21 Stat2 Stat1 Zbp1 Irf1 aGOslimPos Ikzf3 Oasl1 Irf7 Trim30a Dhx58 Txk Rorc Rora Nr1d2 Setdb2 Vdr Vax2 Nr1d1 Foxs1 Eno1 Thap3 Nfkbil1 Edf1 Srebf1 Lbr Tead1 Zfp608 Pcx Ift57 Ssbp4 Stat3 Mxd1 Pml Ssh2 Chd7 Maf Cic Bcl3 Prkdc Mbd5 Ppfibp2 Foxp2 Tal2 Mlf1 Bcl6b Zfp827 Ikzf2 Phtf2 Bmyc Plagl2 Nfkb2 Nfkb1 Tox Nrip1 Utf1 Klf3 Plagl1 Nfkbib Spib Nfkbie Akna Rbpj Ncoa3 Id1 Tnp2 Gata3 Gata1 Pparg Id2 Epas1 Zfp280b Commons Pathway Erg GO MSigDB KEGG Hhex WikiPathways SetGene Databases Batf Aff3 Zfp266 gene modules other (hypergeometric TF, from Figure Trim24 Zbtb5 Foxo3 Aebp2 XPodNet -protein-proteininteractionsinthepodocyteexpandedbySTRING Ppp1r10 Dffb Trp53 Enrichment
    [Show full text]
  • Subtype-Specific Addiction of the Activated B-Cell Subset of Diffuse
    Subtype-specific addiction of the activated B-cell PNAS PLUS subset of diffuse large B-cell lymphoma to FOXP1 Joseph D. Dekkera, Daechan Parka,b, Arthur L. Shaffer IIIc, Holger Kohlhammerc, Wei Denga, Bum-Kyu Leea, Gregory C. Ippolitoa,b, George Georgioua,b, Vishwanath R. Iyera, Louis M. Staudtc,1, and Haley O. Tuckera,1 aDepartment of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712; bDepartment of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712; and cLymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Contributed by Louis M. Staudt, December 21, 2015 (sent for review October 8, 2015; reviewed by George Q. Daley and Edward E. Morrisey) High expression of the forkhead box P1 (FOXP1) transcription fac- (FOXP1) (9). Implicated in development, proliferation, and differ- tor distinguishes the aggressive activated B cell (ABC) diffuse large entiation in multiple contexts (12–16), FOXP1 is highly expressed in B-cell lymphoma (DLBCL) subtype from the better prognosis ger- ABC-DLBCL relative to its levels in normal PB or in GCB-DLBCL minal center B-cell (GCB)-DLBCL subtype and is highly correlated (2, 3, 9, 17). Chromosomal loss, gain, or fusion of FOXP1 is associ- with poor outcomes. A genetic or functional role for FOXP1 in ated with several B-cell malignancies, including a modest frequency lymphomagenesis, however, remains unknown. Here, we report in ABC-DLBCL (18–20). However, ABC-DLBCL tumors without that sustained FOXP1 expression is vital for ABC-DLBCL cell-line such aberrations still show increased FOXP1 levels relative to GCB- survival.
    [Show full text]
  • Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Ubaid Ullah, Ullah; Andrabi, Syed Bilal Ahmad; Tripathi, Subhash Kumar; Dirasantha, Obaiah; Kanduri, Kartiek; Rautio, Sini; Gross, Catharina C.; Lehtimäki, Sari; Bala, Kanchan; Tuomisto, Johanna; Bhatia, Urvashi; Chakroborty, Deepankar; Elo, Laura L.; Lähdesmäki, Harri; Wiendl, Heinz; Rasool, Omid; Lahesmaa, Riitta Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells Published in: Cell Reports DOI: 10.1016/j.celrep.2018.01.070 Published: 20/02/2018 Document Version Publisher's PDF, also known as Version of record Published under the following license: CC BY-NC-ND Please cite the original version: Ubaid Ullah, U., Andrabi, S. B. A., Tripathi, S. K., Dirasantha, O., Kanduri, K., Rautio, S., Gross, C. C., Lehtimäki, S., Bala, K., Tuomisto, J., Bhatia, U., Chakroborty, D., Elo, L. L., Lähdesmäki, H., Wiendl, H., Rasool, O., & Lahesmaa, R. (2018). Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells. Cell Reports, 22(8), 2094-2106. https://doi.org/10.1016/j.celrep.2018.01.070 This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
    [Show full text]
  • Interpretation of T Cell States from Single-Cell Transcriptomics Data Using Reference Atlases
    ARTICLE https://doi.org/10.1038/s41467-021-23324-4 OPEN Interpretation of T cell states from single-cell transcriptomics data using reference atlases Massimo Andreatta 1,2, Jesus Corria-Osorio1, Sören Müller 3, Rafael Cubas4, George Coukos 1 & ✉ Santiago J. Carmona 1,2 Single-cell RNA sequencing (scRNA-seq) has revealed an unprecedented degree of immune cell diversity. However, consistent definition of cell subtypes and cell states across studies 1234567890():,; and diseases remains a major challenge. Here we generate reference T cell atlases for cancer and viral infection by multi-study integration, and develop ProjecTILs, an algorithm for reference atlas projection. In contrast to other methods, ProjecTILs allows not only accurate embedding of new scRNA-seq data into a reference without altering its structure, but also characterizing previously unknown cell states that “deviate” from the reference. ProjecTILs accurately predicts the effects of cell perturbations and identifies gene programs that are altered in different conditions and tissues. A meta-analysis of tumor-infiltrating T cells from several cohorts reveals a strong conservation of T cell subtypes between human and mouse, providing a consistent basis to describe T cell heterogeneity across studies, diseases, and species. 1 Department of Oncology, Lausanne Branch, Ludwig Institute for Cancer Research, CHUV and University of Lausanne, Lausanne, Epalinges, Switzerland. 2 Swiss Institute of Bioinformatics, Lausanne, Switzerland. 3 Department of Bioinformatics and Computational Biology,
    [Show full text]
  • Keep Your Fingers Off My DNA: Protein-Protein Interactions
    1 2 Keep your fingers off my DNA: 3 protein-protein interactions mediated by C2H2 zinc finger domains 4 5 6 a scholarly review 7 8 9 10 11 Kathryn J. Brayer1 and David J. Segal2* 12 13 14 15 16 17 1Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 18 Tucson, AZ, 85721. 19 2Genome Center and Department of Pharmacology, University of California, Davis, CA, 95616. 20 21 22 23 24 *To whom correspondence should be addressed: 25 David J. Segal, Ph.D. 26 University of California, Davis 27 Genome Center/Pharmacology 28 4513 GBSF 29 451 E. Health Sciences Dr. 30 Davis, CA 95616 31 Tel: 530-754-9134 32 Fax: 530-754-9658 33 Email: [email protected] 34 35 36 Running header: C2H2 ZF interactions with proteins 37 38 Keywords: transcription factors, protein-DNA interactions, protein chemistry, structural biology, 39 functional annotations 40 41 Abstract: 154 words 42 Body Text: 5863 words 43 Figures: 9 44 Tables: 5 45 References: 165 46 C2H2 ZF interactions with proteins Brayer and Segal - review 46 ABSTRACT 47 Cys2-His2 (C2H2) zinc finger domains were originally identified as DNA binding 48 domains, and uncharacterized domains are typically assumed to function in DNA binding. 49 However, a growing body of evidence suggests an important and widespread role for these 50 domains in protein binding. There are even examples of zinc fingers that support both DNA and 51 protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, 52 Zif268, and YY1. C2H2 protein-protein interactions are proving to be more abundant than 53 previously appreciated, more plastic than their DNA-binding counterparts, and more variable and 54 complex in their interactions surfaces.
    [Show full text]
  • Overexpression of an Activated REL Mutant Enhances the Transformed State of the Human B-Lymphoma BJAB Cell Line and Alters Its Gene Expression Profile
    Oncogene (2009) 28, 2100–2111 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc ORIGINAL ARTICLE Overexpression of an activated REL mutant enhances the transformed state of the human B-lymphoma BJAB cell line and alters its gene expression profile M Chin1, M Herscovitch1, N Zhang, DJ Waxman and TD Gilmore Department of Biology, Boston University, Boston, MA, USA The human REL proto-oncogene encodes a transcription factor. Misregulated REL is associated with B-cell factor in the nuclear factor (NF)-kB family. Overexpres- malignancies in several ways (Gilmore et al., sion of REL is acutely transforming in chicken lymphoid 2004). Overexpression of REL protein can transform cells, but has not been shown to transform any mammalian chicken lymphoid cells in vitro. Additionally, the lymphoid cell type. In this report, we show that over- REL locus is amplified in several types of human expression of a highly transforming mutant of REL B-cell lymphoma, including diffuse large B-cell lympho- (RELDTAD1) increases the oncogenic properties of the ma (DLBCL), follicular and primary mediastinal human B-cell lymphoma BJAB cell line, as shown by lymphomas. Moreover, REL mRNA is highly expressed increased colony formation in soft agar, tumor formation in de novo DLBCLs, and this elevated expression in SCID (severe combined immunodeficient) mice, and correlates with increased expression of many adhesion. BJAB-RELDTAD1 cells also show decreased putative REL target genes (Rhodes et al., 2005). activation of caspase in response to doxorubicin. BJAB- Nevertheless, REL has not been shown to be oncogenic RELDTAD1 cells have increased levels of active nuclear in any mammalian B-cell system, either in vitro REL protein as determined by immunofluorescence, or in vivo.
    [Show full text]