Recent Developments in the Application of Live Feeds in the Freshwater Ornamental Fish Culture

Total Page:16

File Type:pdf, Size:1020Kb

Recent Developments in the Application of Live Feeds in the Freshwater Ornamental Fish Culture Available online atwww.sciencedirect.com s c i e n c e ^ d i r e c t . Aquaculture ELSEVIER Aquaculture 227 (2003) 319-331 www. elsevier. com/locate/aqua-online Recent developments in the application of live feeds in the freshwater ornamental fish culture Lian Chuan Lima’*, Philippe Dhertb, Patrick Sorgeloos0 a Freshwater Fisheries Centre, Agri-food and Veterinary Authority o f Singapore, Sembawang Research Station, Lorong Chencharu 769194, Singapore hINVE Technologies NV, Oeverstraat 7, B-9200 Baasrode, Belgium c Laboratory o f Aquaculture and Artemia Reference Centre, University o f Ghent, Rozier 44, B-9000 Ghent, Belgium Accepted 30 May 2003 Abstract The industrial development of freshwater ornamental fish culture has been hampered by the lack of suitable live feeds for feeding the fish at the various production stages. This paper reports the recent developments in the applications of the freshwater rotifers {Brachionus calyciflorus), Artemia nauplii, decapsulatedArtemia cysts and on-grown Artemia in the freshwater ornamental fish culture. Results demonstrate that the rotifers are an ideal starter feed for dwarf gourami {Colisa lalia), a typical freshwater ornamental fish species with larvae that are too small to ingest Artemia nauplii or Moina at its first feeding. Compared with the conventional yolk food, the use of rotifers as a starter feed significantly improves the growth and survival of the gourami larvae (Days 2-12), and the beneficial effects are extended to the subsequent Artemia-feeding phase (Days 13-32). The freshwater rotifers and Artemia nauplii are also useful in raising Discus larvae in the absence of their parents, which would eliminate the risk of larvae being eaten by the parent fish. Work on decapsulatedArtemia cysts indicates that the cysts could be used as a substitute forArtemia nauplii or Moina in freshwater ornamental fish culture. The fry of all the five common ornamental fish species tested (guppyPoecilia reticulata, m olly Poecilia sphenops, platyXiphophorus maculatus, swordtail Xiphophorus helleri and neon tetra Hyphessobrycon herbertaxelrodi) could readily feed on the decapsulated cysts, and their performances in terms of stress resistance, growth and survival are comparable to or better than those fed on Artemia nauplii or Moina. A culture system for production o f on-grow n Artemia has also been developed specifically for the use in freshwater ornamental fish farms. The system, using diluted artificial seawater of 20 %o for culture, has a mean production rate of 3 kg/m3 of water in a 12-day cycle and a production capacity of 8 metric tons of on-grown Artemia a year. With the system, farmers could produce any specific size of on-grownArtemia o f up * Corresponding author. Tel.: +65-7519852; fax: +65-7523242. E-mail address: [email protected] (L.C. Lim). 0044-8486/$ - see front matter © 2003 Elsevier B.V. All rights reserved, doi: 10.1016/S0044-8486(03)00512-X 320 L.C. Lim et al. / Aquaculture 227 (2003) 319-331 to 5 mm to suit the age and size of their fish, by varying the time of harvesting. This characteristic, coupled with the use of bioencapsulation technique to enhance the quality of the on-grown Artem ia, would make the organism an ideal nursery diet for freshwater ornamental fish. All these results show that the live feeds used in marine foodfish hatchery could be applied to freshwater ornamental fish culture to improve their performance. © 2003 Elsevier B.V. All rights reserved. Keywords: Ornamental fish; Live feeds; Rotifer; Decapsulated Artemia cysts; On-grown Artemia 1. Introduction The success in the hatchery production of fish fingerlings for stocking in the grow-out production system is largely dependent on the availability of suitable live food organisms for feeding fish larvae, fry and fingerlings. The availability of large quantities of live food organisms such as marine rotifer ( Brachionus plicatilis and Brachionus rotundiformis) and Artemia nauplii to meet the different stages of fry production has contributed to the successful fry production of at least 60 marine finfish species and 18 species of crustaceans (Dhert, 1996). In contrast, the industrial development of freshwater ornamen­ tal fish culture has been hampered by the lack of suitable live feeds for feeding the fish at the various production stages. Currently, inert food items such as egg yolk suspension, milk powder or powdered feeds and natural plankton bloom induced by artificial fertilisation of water are used in larval feeding, and Moina and Tubifex that are cultured in water enriched with organic manure are fed to bigger fish or brooders. There is also no suitable live feed for feeding early fish larvae with small mouth. These traditional practices not only limit the fish stocking density, but also adversely affect fish quality. Many freshwater ornamental fish farmers have shifted from Moina to the cleaner Artemia nauplii for feeding their young fish. As the nauplii (length of instar-1 Artemia <0.55 mm) are only half the size of Moina (length < 1.20 mm), it is necessary to look for bigger organisms, both to fill in the size gap, and as a substitute of Tubifex for feeding larger fish such as brooders. Furthermore, the high price of Artemia cysts has increased the fish production cost, and cheaper alternative diets with comparable nutritional quality are needed to maintain the cost competitiveness of ornamental fish in the global market. Many of the modem larviculture technologies used in marine foodfish hatcheries could be adapted for application in the freshwater ornamental fish production. Some of the possible applications have been reported in Dhert et al. (1997). This paper reports the recent developments and discusses the applications of the freshwater rotifers Brachionus( calyciflorus). Artemia nauplii, decapsulatedArtemia cysts and on-grown Artemia in the freshwater ornamental fish culture, based on the studies conducted in Singapore. 2. Rotifers The marine rotifers B. plicatilis is the most important live food organism for use in larviculture of marine foodfish. Their small size and slow swimming velocity make them an L.C. Lim et al. / Aquaculture 227 (2003) 319-331 321 ideal live food organism for fish larvae that cannot ingest the larger Artemia nauplii. Marine rotifers can survive in freshwater for at least 2 h, and have been used for feeding larvae of tilapia Oreochromis spiluus (Cruz and James, 1989), gudgeonGobio gobio L. (Kestemont and Awaiss, 1989) and Japanese ornamental carpCyprinus carpio and baitfish Carassius sp. (Lubzens et al., 1987). However, marine rotifers sink quickly to the bottom and are therefore not suitable for feeding freshwater fish species with pelagic larvae, unless they are supplied continuously with a peristaltic pump. In this respect, freshwater rotifer such asB. calyciflorus is likely to have better potential for application in the larviculture of freshwater ornamental fish. To date, the use of freshwater rotifers is restricted to only a few freshwater foodfish species such as sunshine bass Morone chysops x Morone saxatilis (Ludwig, 1994 ) and gudgeon and Eurasian perch Perca fluviatilis (Awaiss, 1991; Awaiss et al., 1992). The use of the freshwater rotifers B. calyciflorus in the larviculture of freshwater ornamental fish was demonstrated in a recent study using dwarf goiuami (Colisa lalia) in Singapore (Lim and Wong, 1997). The B. calyciflorus used in these experiments were produced by batch culture usingChlorella spp. as feed. Dwarf goiuami was selected for the experiment because of its small larvae, which measiue 2.74 mm total length and cannot ingest macrozooplankton such as Moina and Artemia nauplii at first feeding. Traditionally, larvae of dwarf goiuami are raised in fertilised concrete ponds with earthen bottom (Femando and Phang, 1994). Due to the difficulties in controlling water quality and the fluctuation in the quality and quantity of live food organisms, the stocking density is low (0.5 larvae/1) and the larvae are fed with egg yolk particles for the first 10 days. The study conducted in indoor tanks (10- and 200-1 tanks, stocking densities 10 larvae/1 from Day 2 and 30 larvae/1 from Day 13) demonstrated that compared with egg yolk particles, the use of the freshwater rotifers as a starter feed significantly improved the growth and survival of dwarf goiuami larvae during the rotifer-feeding phase (Days 2 — 12). These beneficial effects also extended to the subsequent Artemia nauplii feeding phase (Days 13-32). At the Artemia feeding phase, although all the larvae in the egg yolk group and the rotifer group were similarly fed withArtemia nauplii, the growth and survival of the rotifer group continued to be significantly better than those of the egg yolk group in that stage. Since the quantity of feed in the experiments was not limiting, these findings suggested that the quality of a starter feed was crucial to the later stages of development. Fish that were fed sub-optimally in the early stage would continue to suffer from poor performance later. At metamorphosis on Day 32, the overall survival rates of larvae fed rotifers in indoor tanks were 65.1-74.5%, which were about foiu times those fed egg yolk particles in the outdoor, 100-m3 ponds (17.5%). The mean total lengths at metamorphosis in the indoor tanks (10.5-11.8 mm) were also significantly higher than in 100-m3 ponds (8.55 mm, P< 0.05). Based on the stocking density, overall survival rates and the volume of rearing water, the yields of fry derived from larvae fed rotifers were estimated to be 6500 and 7500 fry/m3 in the indoor tanks, which were much higher than 90 fry/m3 obtained by farmers in 100-m3 ponds, with larvae fed with natural plankton supplemented with egg yolk particles. The use of freshwater rotifers is likely to have an important impact to the freshwater ornamental fish industry.
Recommended publications
  • Ornamental Fish and Marine Invertebrates Draft for Consultation [Document Date]
    Ornamental Fish and Marine Invertebrates ORNAMARI.ALL [Document Date] Health Standard Import Import Issued under the Biosecurity Act 1993 Import Health Standard: Ornamental Fish and Marine Invertebrates Draft for Consultation [Document Date] TITLE Import Health Standard: Ornamental Fish and Marine Invertebrates COMMENCEMENT This Import Health Standard comes into force on [Effective Date] REVOCATION This Import Health Standard revokes and replaces: Import Health Standard for Ornamental Fish and Marine Invertebrates from all countries, 20 April 2011. ISSUING AUTHORITY This Import Health Standard is issued on Dated at Wellington this ... day of ......... Howard Pharo Manager, Import and Export Animals Ministry for Primary Industries (acting under delegated authority of the Director-General) Contact for further information Ministry for Primary Industries (MPI) Regulation & Assurance Branch Animal Imports PO Box 2526 Wellington 6140 Email: [email protected] Ministry for Primary Industries Page 1 of 75 Import Health Standard: Ornamental Fish and Marine Invertebrates Draft for Consultation [Document Date] Contents Page Introduction 4 Part 1: Requirements 6 1.1 Application 6 1.2 Outcome 6 1.3 Incorporation by reference 7 1.4 Definitions 7 1.5 Harmonised system (HS) codes 7 1.6 Exporting country systems and certification 8 1.7 Diagnostic testing and treatment 8 1.8 Packaging 9 1.9 Import permit 9 1.10 The documentation that must accompany goods 9 1.11 Inspection and verification 10 1.12 Transitional facility 11 1.13 Pre-export isolation
    [Show full text]
  • Freshwater Aquarium Model Designs
    01_04425x ffirs.qxp 10/9/06 11:10 AM Page i FRESHWATER AQUARIUM MODELS Recipes for Creating Beautiful Aquariums That Thrive JOHN TULLOCK 01_04425x ffirs.qxp 10/9/06 11:10 AM Page ii Copyright © 2007 by Wiley Publishing, Inc., Hoboken, New Jersey. All rights reserved. Photography © Aaron Norman Howell Book House Published by Wiley Publishing, Inc., Hoboken, New Jersey No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through pay- ment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions. Wiley, the Wiley Publishing logo, Howell Book House, and related trademarks are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose.
    [Show full text]
  • Literature Review the Benefits of Wild Caught Ornamental Aquatic Organisms
    LITERATURE REVIEW THE BENEFITS OF WILD CAUGHT ORNAMENTAL AQUATIC ORGANISMS 1 Submitted to the ORNAMENTAL AQUATIC TRADE ASSOCIATION October 2015 by Ian Watson and Dr David Roberts Durrell Institute of Conservation and Ecology [email protected] School of Anthropology and Conservation http://www.kent.ac.uk/sac/index.html University of Kent Canterbury Kent CT2 7NR United Kingdom Disclaimer: the views expressed in this report are those of the authors and do not necessarily represent the views of DICE, UoK or OATA. 2 Table of Contents Acronyms Used In This Report ................................................................................................................ 8 Executive Summary ............................................................................................................................... 10 Background to the Project .................................................................................................................... 13 Approach and Methodology ................................................................................................................. 13 Approach ........................................................................................................................................... 13 Literature Review Annex A ............................................................................................................ 13 Industry statistics Annex B .................................................................................................................... 15 Legislation
    [Show full text]
  • Pea Puffer - Carinotetraodon Travancoricus HAPPYHAPPY NEWNEW YEARYEAR 1 105 Y EARS of E DUCATING a QUARISTS AQUATICA VOL
    QUATICAQU AT H E O N - L I N E J O U R N A L O F T H E B R O O K L Y N A Q U A R I U M S O C I E T Y VOL. 30 JANUARY - FEBRUARY 2016 N o. 3 Pea Puffer - Carinotetraodon travancoricus HAPPYHAPPY NEWNEW YEARYEAR 1 105 Y EARS OF E DUCATING A QUARISTS AQUATICA VOL. 30 JANUARY - FEBRUARY 2016 NO. 3 C ONTENT S PAGE 2 THE AQUATICA STAFF PAGE 21 TERRIFIC TETRAS. Part 1 of a series on easy to find tetras that PAGE 3 CALENDAR OF EVENTS. are excellent community fish. This BAS Events for the years 2016 - 2017 one is on the Von Rio tetra. ANTHONY P. KROEGER - BAS PAGE 4 NOTABLE NATIVES. The Pumpkinseed, Sunfish is a native fish and PAGE 23 LESSER KNOWN LIVE- one of the prettiest. BEARERS. An underappreciated ANTHONY P. KROEGER - BAS livebearer, Perugia’s Limia, an easy to care for and breed fish from the PAGE 5 SPECIES PROFILE. Lepomis Dominican Republic. gibbosus, the Pumpkinseed, also known ANTHONY P. KROEGER - BAS as the Sunfish or Sunny. JOHN TODARO - BAS PAGE 24 SPECIES PROFILE. Perugia’s Limia, Limia perugiae, an easy to care PAGE 6 REFLECTIONS: THE BIO- for livebearer. GEOGRAPHY OF CICHLIDS. Why are certain JOHN TODARO - BAS cichlids located where the y are and not located elsewhere? PAGE 25 SO YOU WANT TO GROW AQUATIC PLANTS. RON COLEMAN - MCAS A quick primer on growing aquatic plants. OLGA BETTS - VAHC PAGE 9 MALABAR PUFFERFISH. The breeding and PAGE 26 PLUMBING A SUMP.
    [Show full text]
  • D 3017 Supplement
    The following supplement accompanies the article Ichthyophonus parasite phylogeny based on ITS rDNA structure prediction and alignment identifies six clades, with a single dominant marine type Jacob L. Gregg*, Rachel L. Powers, Maureen K. Purcell, Carolyn S. Friedman, Paul K. Hershberger *Corresponding author: [email protected] Diseases of Aquatic Organisms 120: 125–141 (2016) Table S1. Fish species reported as hosts of parasites in the genus Ichthyophonus. List includes infections reported under pseudonyms. DIA = diadromous, SW = salt water (marine), FW = freshwater. Dash indicates provenance of infected host not available from publication. Family Region Habitat Citation Species (common name) Anguillidae Anguilla japonica (Japanese eel) Taiwan DIA 1 Clupeidae Alosa pseudoharengus (alewife) NW Atlantic DIA 2,3,4 A. sapidissima (American shad) NE Pacific, NW DIA 5, 6, 7 Atlantic Clupea harengus (Atlantic herring) N Atlantic SW 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 C. pallasii (Pacific herring) NE Pacific SW 6, 7, 24, 25, 26, 27, 28, 29, 30, 31, 32 Sprattus sprattus (sprat) NE Atlantic SW 8, 19, 21 Tenualosa ilisha (hilsa shad) Iraq FW 33 Cyprinidae Acanthobrama centisquama Iraq FW 33 A. marmid (kalashpa) Iraq FW 33 Alburnus caeruleus Iraq FW 33 Aspius vorax (shelej) Iraq FW 33 Barbus barbulus (abu-barattum) Iraq FW 33 B. grypus (shabbout) Iraq FW 33 Capoeta damascina (gel khorok) Iraq FW 33 C. trutta (barg bidy) Iraq FW 33 Carasobarbus luteus (himri) Iraq FW 33 Carassius auratus (goldfish) Africa, France, Iraq FW 33, 34, 35, 36 C. carassius (crucian carp) India, Iraq FW 33, 35, 37 Cyprinion macrostomum Iraq FW 33 Cyprinus carpio (common carp) Iraq,Utah FW 33, 35, 38 Danio rerio (zebra danio) – FW 35 Hypophthalmichthys nobilis (bighead Africa FW 36 carp) Luciobarbus esocinus (mangar) Iraq FW 33 L.
    [Show full text]
  • Experimental Transmission of Enteromyxum Leei to Freshwater Fish
    DISEASES OF AQUATIC ORGANISMS Vol. 72: 171–178, 2006 Published October 17 Dis Aquat Org Experimental transmission of Enteromyxum leei to freshwater fish A. Diamant1,*, S. Ram1, 2, I. Paperna2 1Israel Oceanographic and Limnological Research, National Center for Mariculture, PO Box 1212, North Beach, Eilat 88112, Israel 2Department of Animal Sciences, Faculty of Agriculture, Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel 76100 ABSTRACT: The myxosporean Enteromyxum leei is known to infect a wide range of marine fish hosts. The objective of the present study was to determine whether freshwater fish species are also receptive hosts to this parasite. Seventeen species of freshwater fish were experimentally fed E. leei- infected gut tissue from donor gilthead sea bream Sparus aurata obtained from a commercial sea bream cage farm. Four of the tested species, tiger barb Puntius tetrazona, zebra danio Danio rerio, oscar Astronotus ocellatus and Mozambique tilapia Oreochromis mossambicus, were found to be sus- ceptible with prevalences ranging from 53 to 90%. The course of infection and pathology was limited to the gut mucosa epithelium and was similar to that observed in marine hosts. Little is known of the differences in physiological conditions encountered by a parasite in the alimentary tract of freshwater vs. marine teleost hosts, but we assume that a similar osmotic environment is maintained in both. Parasite infectivity may be influenced by differences in the presence or absence of a true stomach, acidic gastric pH and digestive enzyme activity both in the stomach and intestine. Variability in susceptibility among species may also stem from differences in innate immunity.
    [Show full text]
  • Aquatics Livestock List
    irhHollybush Nurseries Ltd Warstone Road Shareshill Wolverhampton WV10 7LX Tel: 01922 418050 Fax: 01922 701028 Email: [email protected] Website: www.hollybush-garden.com Follow us on our Facebook Page: Hollybush Pets & Aquatics AQUATICS LIVESTOCK LIST Species Scientific Name / Size Price POND FISH Goldfish 3-4” £2.99 each or 2 for £5.50 Goldfish 4-5” £5.99 each or 2 for £10.00 Shubunkin 3-4” £3.99 each or 2 for £7.00 Shubunkin 4-5” £6.99 each or 2 for £13.00 Shubunkin 5-6” £12.99 each or 2 for £22.00 Green / Golden Tench 5-6” £5.99 each English Koi (Mixed) 8-10” £69.99 each Japanese Koi 3-5” (Hirasawa Mix) £15.00 each Japanese Koi 3-5” (Longfin) £40.00 each Japanese Koi 12-15” (Yamazaki Mix) £300.00 each Japanese Koi 12-15” (Kase Mix) £300.00 each Japanese Koi 15-24” (Show Pool Mix) From £595.00 Long Nose Sturgeon 8-10” £39.99 each White Tip Sturgeon 5-6” £24.99 each Diamond Sturgeon 8-10” £49.99 each Golden Sterlets 10-12” £89.99 each True Albino Sterlets 20-25” £249.00 each COLDWATER & TEMPERATE FISH Assorted Fantails Carassius auratus From £3.99 each Pearlscales Carassius auratus £8.99 each Black Moors Carassius auratus £4.95 each Ryukin Carassius auratus From £8.99 each Weather Loach Misgurnus angullicaudatus £5.95 each White Cloud Mountain Minnows Tanichithys albonubes £2.50 each or 4 for £9.00 Assorted Danio Danio sp. £1.95 each or 4 for £7.00 LIVEBEARERS Assorted Male Guppy Poecilia reticulata £2.50 each or 4 for £9.00 Assorted Female Guppy Poecilia reticulata £2.50 each or 4 for £9.00 Assorted Endler Guppy Poecilia wingei £2.50 each or 4 for £9.00 “Black Fire” Endler Guppy Poecilia wingei £5.95 each or 4 for £20.00 “Yellow Tiger” Endler Guppy Poecilia wingei £5.95 each or 4 for £20.00 “Santa Maria” Endler Guppy Poecilia wingei £5.95 each or 4 for £20.00 “Japan Blue Double-Sword” Endlers Poecilia wingei £4.99 each or 4 for £18.00 Assorted Swordtail Xiphophorus hellerii £2.95 each or 2 for £5.50 “Kohaku” Swordtail Xiphophorus helleri £12.95 each or 2 for £22.00 Assorted Platy Xiphophorus sp.
    [Show full text]
  • Informational Issue of Eurasian Regional Association of Zoos and Aquariums
    GOVERNMENT OF MOSCOW DEPARTMENT FOR CULTURE EURASIAN REGIONAL ASSOCIATION OF ZOOS & AQUARIUMS MOSCOW ZOO INFORMATIONAL ISSUE OF EURASIAN REGIONAL ASSOCIATION OF ZOOS AND AQUARIUMS VOLUME № 28 MOSCOW 2009 GOVERNMENT OF MOSCOW DEPARTMENT FOR CULTURE EURASIAN REGIONAL ASSOCIATION OF ZOOS & AQUARIUMS MOSCOW ZOO INFORMATIONAL ISSUE OF EURASIAN REGIONAL ASSOCIATION OF ZOOS AND AQUARIUMS VOLUME № 28 _________________ MOSCOW - 2009 - Information Issue of Eurasian Regional Association of Zoos and Aquariums. Issue 28. – 2009. - 424 p. ISBN 978-5-904012-10-6 The current issue comprises information on EARAZA member zoos and other zoological institutions. The first part of the publication includes collection inventories and data on breeding in all zoological collections. The second part of the issue contains information on the meetings, workshops, trips and conferences which were held both in our country and abroad, as well as reports on the EARAZA activities. Chief executive editor Vladimir Spitsin General Director of Moscow Zoo Compiling Editors: Т. Andreeva M. Goretskaya N. Karpov V. Ostapenko V. Sheveleva T. Vershinina Translators: T. Arzhanova M. Proutkina A. Simonova УДК [597.6/599:639.1.04]:59.006 ISBN 978-5-904012-10-6 © 2009 Moscow Zoo Eurasian Regional Association of Zoos and Aquariums Dear Colleagues, (EARAZA) We offer you the 28th volume of the “Informational Issue of the Eurasian Regional Association of Zoos and Aquariums”. It has been prepared by the EARAZA Zoo 123242 Russia, Moscow, Bolshaya Gruzinskaya 1. Informational Center (ZIC), based on the results of the analysis of the data provided by Telephone/fax: (499) 255-63-64 the zoological institutions of the region. E-mail: [email protected], [email protected], [email protected].
    [Show full text]
  • Regional Biosecurity Plan for Micronesia and Hawaii Volume II
    Regional Biosecurity Plan for Micronesia and Hawaii Volume II Prepared by: University of Guam and the Secretariat of the Pacific Community 2014 This plan was prepared in conjunction with representatives from various countries at various levels including federal/national, state/territory/commonwealth, industry, and non-governmental organizations and was generously funded and supported by the Commander, Navy Installations Command (CNIC) and Headquarters, Marine Corps. MBP PHASE 1 EXECUTIVE SUMMARY NISC Executive Summary Prepared by the National Invasive Species Council On March 7th, 2007 the U.S. Department of Navy (DoN) issued a Notice of Intent to prepare an “Environmental Impact Statement (EIS)/Overseas Environmental Impact Statement (OEIS)” for the “Relocation of U.S. Marine Corps Forces to Guam, Enhancement of Infrastructure and Logistic Capabilities, Improvement of Pier/Waterfront Infrastructure for Transient U.S. Navy Nuclear Aircraft Carrier (CVN) at Naval Base Guam, and Placement of a U.S. Army Ballistic Missile Defense (BMD) Task Force in Guam”. This relocation effort has become known as the “build-up”. In considering some of the environmental consequences of such an undertaking, it quickly became apparent that one of the primary regional concerns of such a move was the potential for unintentional movement of invasive species to new locations in the region. Guam has already suffered the eradication of many of its native species due to the introduction of brown treesnakes and many other invasive plants, animals and pathogens cause tremendous damage to its economy and marine, freshwater and terrestrial ecosystems. DoN, in consultation and concurrence with relevant federal and territorial regulatory entities, determined that there was a need to develop a biosecurity plan to address these concerns.
    [Show full text]
  • MARCH 2015 Newsletter the Raleigh Aquarium Society (RAS) Meets on the First Thursday of Every Month at 7:30 Pm
    Raleigh Aquarium Society (RAS) Volume 34, Issue 3 March 2015 MARCH 2015 Newsletter The Raleigh Aquarium Society (RAS) meets on the first Thursday of every month at 7:30 pm. All meetings are held in the South Theater of the NCSU CVM campus library (North Carolina State University - College of Veterinary Medicine) located at 4700 Hillsborough Street in Raleigh, North Carolina 27607 (USA). Agendas begin with introductions, followed by a discussion of assorted business topics, then by a program of interest to the membership, and conclude with a ticket raffle and silent auction of fish, plants, and equipment/supplies. Complimentary light refreshments are provided and guests are always welcome. For more information, visit us at http://www.raleighaquariumsociety.org/ or e-mail [email protected]. You can also find us on YAHOO (www.groups.yahoo.com/raleighaquariumsociety), MEETUP (www.meetup.com/raleigh-aquarium- society), and FACEBOOK (www.facebook.com/raleighaquariumsociety). RAS is a member in good standing of FAAS (the Federation of American Aquarium Societies) with a mission to increase the knowledge, enjoyment, and conservation of home ponds & aquariums for aquarist hobbyists/professionals at all levels of experience. NOTE: RAS club meetings are held in the South Theater of the NCSU Veterinary School Library, downstairs level. Park across the street and enter via the main library lobby no later than 8:00 pm. © 2015 RAS (All Rights Reserved) www.raleighaquariumsociety.org Page 1 of 28 Raleigh Aquarium Society (RAS) Volume 34,
    [Show full text]
  • Unrestricted Species
    UNRESTRICTED SPECIES Actinopterygii (Ray-finned Fishes) Atheriniformes (Silversides) Scientific Name Common Name Bedotia geayi Madagascar Rainbowfish Melanotaenia boesemani Boeseman's Rainbowfish Melanotaenia maylandi Maryland's Rainbowfish Melanotaenia splendida Eastern Rainbow Fish Beloniformes (Needlefishes) Scientific Name Common Name Dermogenys pusilla Wrestling Halfbeak Characiformes (Piranhas, Leporins, Piranhas) Scientific Name Common Name Abramites hypselonotus Highbacked Headstander Acestrorhynchus falcatus Red Tail Freshwater Barracuda Acestrorhynchus falcirostris Yellow Tail Freshwater Barracuda Anostomus anostomus Striped Headstander Anostomus spiloclistron False Three Spotted Anostomus Anostomus ternetzi Ternetz's Anostomus Anostomus varius Checkerboard Anostomus Astyanax mexicanus Blind Cave Tetra Boulengerella maculata Spotted Pike Characin Carnegiella strigata Marbled Hatchetfish Chalceus macrolepidotus Pink-Tailed Chalceus Charax condei Small-scaled Glass Tetra Charax gibbosus Glass Headstander Chilodus punctatus Spotted Headstander Distichodus notospilus Red-finned Distichodus Distichodus sexfasciatus Six-banded Distichodus Exodon paradoxus Bucktoothed Tetra Gasteropelecus sternicla Common Hatchetfish Gymnocorymbus ternetzi Black Skirt Tetra Hasemania nana Silver-tipped Tetra Hemigrammus erythrozonus Glowlight Tetra Hemigrammus ocellifer Head and Tail Light Tetra Hemigrammus pulcher Pretty Tetra Hemigrammus rhodostomus Rummy Nose Tetra *Except if listed on: IUCN Red List (Endangered, Critically Endangered, or Extinct
    [Show full text]
  • Global Amphibian Questionnaire
    MINISTÉRIO DO MEIO AMBIENTE INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE CENTRO NACIONAL DE PESQUISA E CONSERVAÇÃO DE PEIXES CONTINENTAIS PROGRAMA DE INICIAÇÃO CIENTIFICA-PIBIC/ICMBIO Relatório Final AVALIAÇÃO DO STATUS DE CONSERVAÇÃO DE ESPÉCIES DO GÊNERO HYPHESSOBRYCON OCORRENTES NO BIOMA MATA ATLÂNTICA E NA BACIA DO RIO SÃO FRANCISCO. Voluntário: Jean Carlo Baldin Orientador: Francisco de Assis Neo PIRASSUNUNGA-SP AGOSTO/2012 RESUMO Compete ao Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio, autarquia federal vinculada ao Ministério do Meio Ambiente - MMA, o fomento e a execução de programas de pesquisa, proteção, preservação e conservação da biodiversidade brasileira. Para o cumprimento dessa missão, o ICMBio assumiu como prioridades: I) a revisão da Lista Vermelha de Espécies Ameaçadas da Fauna e II) a elaboração de Planos de Ação para as espécies já listadas. O Centro Nacional de Pesquisa e Conservação de Peixes Continentais – CEPTA, Centro Especializado do ICMBio sediado em Pirassununga/SP, possui atuação em todo território nacional e dentre sua nova missão está a de gerar e difundir conhecimentos técnicos e científicos para a conservação da biodiversidade de peixes continentais. Assim, o CEPTA, rebatendo a missão institucional do ICMBio, assumiu a coordenação da revisão da lista de peixes continentais ameaçados, bem como a elaboração de Planos de Ação - PAN para tais espécies. Como o número de espécies é muito grande, priorizou-se iniciar a avaliação do estado de conservação dessas espécies por aquelas de ocorrência no bioma Atlântico, uma vez que a Mata Atlântica apresenta os ecossistemas mais degradados e altos níveis de endemismo. Nesse contexto, foram revisados no presente trabalho dados sobre 24 espécies do Gênero Hyphessobrycon da Ordem Characiformes, pertencentes ao Bioma Mata Atlântica e à bacia do Rio São Francisco, como subsídio à revisão da lista de espécies ameaçadas e implementação do Plano de Ação Nacional para recuperação das espécies de peixes, por meio do levantamento bibliográfico nas bases científicas.
    [Show full text]