Design of Multiple Waveform Generator & Frequency Counter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 4 States QRP Group HF Test Set Construction Manual
Copyright 2006, NB6M - Unauthorized Copying or Publication Prohibited The 4 States QRP Group HF Test Set Construction Manual Containing several key pieces of simple Test Equipment that are used to either test or troubleshoot radio circuitry By Wayne McFee, NB6M Revision 0.2 October 21, 2007 Copyright 2006, NB6M - Unauthorized Copying or Publication Prohibited 1 THE HF TEST SET .....................................................................................................................................3 INTRODUCTION............................................................................................................................................3 HF TEST SET SCHEMATIC ...........................................................................................................................5 BOARD LAYOUT..........................................................................................................................................6 PARTS LIST .................................................................................................................................................7 TOOLS AND EQUIPMENT NEEDED................................................................................................................9 PC BOARD, PARTS SIDE ...........................................................................................................................10 PC BOARD, TRACE SIDE...........................................................................................................................11 STARTING -
Keysight 53147A/148A/149A Microwave Frequency Counter/Power Meter/DVM
Keysight 53147A/148A/149A Microwave Frequency Counter/Power Meter/DVM Assembly Level Service Guide Notices U.S. Government Rights Warranty The Software is “commercial computer THE MATERIAL CONTAINED IN THIS Copyright Notice software,” as defined by Federal Acqui- DOCUMENT IS PROVIDED “AS IS,” sition Regulation (“FAR”) 2.101. Pursu- AND IS SUBJECT TO BEING © Keysight Technologies 2001 - 2017 ant to FAR 12.212 and 27.405-3 and CHANGED, WITHOUT NOTICE, IN No part of this manual may be repro- Department of Defense FAR Supple- FUTURE EDITIONS. FURTHER, TO THE duced in any form or by any means ment (“DFARS”) 227.7202, the U.S. MAXIMUM EXTENT PERMITTED BY (including electronic storage and government acquires commercial com- APPLICABLE LAW, KEYSIGHT DIS- retrieval or translation into a foreign puter software under the same terms CLAIMS ALL WARRANTIES, EITHER language) without prior agreement and by which the software is customarily EXPRESS OR IMPLIED, WITH REGARD written consent from Keysight Technol- provided to the public. Accordingly, TO THIS MANUAL AND ANY INFORMA- ogies as governed by United States and Keysight provides the Software to U.S. TION CONTAINED HEREIN, INCLUD- international copyright laws. government customers under its stan- ING BUT NOT LIMITED TO THE dard commercial license, which is IMPLIED WARRANTIES OF MER- Manual Part Number embodied in its End User License CHANTABILITY AND FITNESS FOR A 53147-90010 Agreement (EULA), a copy of which can PARTICULAR PURPOSE. KEYSIGHT be found at http://www.keysight.com/ SHALL NOT BE LIABLE FOR ERRORS Edition find/sweula. The license set forth in the OR FOR INCIDENTAL OR CONSE- Edition 3, November 1, 2017 EULA represents the exclusive authority QUENTIAL DAMAGES IN CONNECTION by which the U.S. -
Keysight U1251B and U1252B Handheld Digital Multimeter
Keysight U1251B and U1252B Handheld Digital Multimeter User’s and Service Guide Notices U.S. Government Rights Warranty The Software is “commercial computer THE MATERIAL CONTAINED IN THIS Copyright Notice software,” as defined by Federal DOCUMENT IS PROVIDED “AS IS,” AND Acquisition Regulation (“FAR”) 2.101. IS SUBJECT TO BEING CHANGED, © Keysight Technologies 2009 – 2019 Pursuant to FAR 12.212 and 27.405-3 WITHOUT NOTICE, IN FUTURE No part of this manual may be and Department of Defense FAR EDITIONS. FURTHER, TO THE reproduced in any form or by any Supplement (“DFARS”) 227.7202, the MAXIMUM EXTENT PERMITTED BY means (including electronic storage U.S. government acquires commercial APPLICABLE LAW, KEYSIGHT and retrieval or translation into a computer software under the same DISCLAIMS ALL WARRANTIES, EITHER foreign language) without prior terms by which the software is EXPRESS OR IMPLIED, WITH REGARD agreement and written consent from customarily provided to the public. TO THIS MANUAL AND ANY Keysight Technologies as governed by Accordingly, Keysight provides the INFORMATION CONTAINED HEREIN, United States and international Software to U.S. government INCLUDING BUT NOT LIMITED TO THE copyright laws. customers under its standard IMPLIED WARRANTIES OF commercial license, which is embodied MERCHANTABILITY AND FITNESS FOR Manual Part Number in its End User License Agreement A PARTICULAR PURPOSE. KEYSIGHT U1251-90036 (EULA), a copy of which can be found at SHALL NOT BE LIABLE FOR ERRORS http://www.keysight.com/find/sweula. OR FOR INCIDENTAL OR Edition The license set forth in the EULA CONSEQUENTIAL DAMAGES IN Edition 24, July 26, 2019 represents the exclusive authority by CONNECTION WITH THE FURNISHING, which the U.S. -
53200A Series RF/Universal Frequency Counter/Timers
Keysight Technologies 53200A Series RF/Universal Frequency Counter/Timers Data Sheet Imagine Your Counter Doing More! Introduction Frequency counters are depended on in R&D and in manufacturing for the fastest, most accurate frequency and time interval measurements. The 53200 Series of RF and universal frequency counter/timers expands on this expectation to provide you with the most information, connectivity and new measurement capabilities, while building on the speed and accuracy you’ve depended on with Keysight Technologies, Inc. time and frequency measurement expertise. Three available models offer resolution capabilities up to 12 digits/sec frequency resolution on a one second gate. Single- shot time interval measurements can be resolved down to 20 psec. All models offer new built-in analysis and graphing capabilities to maximize the insight and information you receive. More bandwidth Measurement by model Measurements Model Standard Opt MW Inputs – 350 MHz baseband frequency 350 MHz Input (53210A: Ch 2, – 6 or 15 GHz optional microwave Channel(s) 53220A/30A: Ch 3) channels Frequency 53210A, ● ● More resolution & speed 53220A, – 12 digits/sec 53230A – 20 ps single-shot time resolution Frequency ratio 53210A, ● ● – Up to 75,000 and 90,000 53220A, readings/sec (frequency and 53230A time interval) Period 53210A, ● ● More insight 53220A, 53230A – Datalog trend plot Minimum/maximum/ 53210A, ● – Cumulative histogram peak-to-peak input 53220A, – Built-in math analysis and voltage 53230A statistics – 1M reading memory and RF signal strength -
Chapter 26 Oscillator Is Sufficient for Most of Our Needs and Most Amateur Equipment Relies on This Technique
Test Procedures and Projects 26 his chapter, written by ARRL Technical Advisor Doug Millar, K6JEY, covers the test equipment and measurement techniques common to Amateur Radio. With the increasing complexity of T amateur equipment and the availability of sophisticated test equipment, measurement and test procedures have also become more complex. There was a time when a simple bakelite cased volt-ohm meter (VOM) could solve most problems. With the advent of modern circuits that use advanced digital techniques, precise readouts and higher frequencies, test requirements and equipment have changed. In addition to the test procedures in this chapter, other test procedures appear in Chapters 14 and 15. TEST AND MEASUREMENT BASICS The process of testing requires a knowledge of what must be measured and what accuracy is required. If battery voltage is measured and the meter reads 1.52 V, what does this number mean? Does the meter always read accurately or do its readings change over time? What influences a meter reading? What accuracy do we need for a meaningful test of the battery voltage? A Short History of Standards and Traceability Since early times, people who measured things have worked to establish a system of consistency between measurements and measurers. Such consistency ensures that a measurement taken by one person could be duplicated by others — that measurements are reproducible. This allows discussion where everyone can be assured that their measurements of the same quantity would have the same result. In most cases, and until recently, consistent measurements involved an artifact: a physical object. If a merchant or scientist wanted to know what his pound weighed, he sent it to a laboratory where it was compared to the official pound. -
Agilent Digital Multimeters
Agilent Digital Multimeters Designed to handle your toughest assignments in various applications Index Measurement Digits of speed (reading/s Basic 1-yr DCV Connectivity & Model Description resolution at 42 digits) accuracy Basic measurements software Page: Benchtop DMM, 42 (U3401A) N/A 0.0120% DCV, ACV, DCI, ACI, N/A 4 dual display 52 (U3402A) 2-wire resistance (4-wire Elegantly simple on U3402A), frequency, and affordable continuity, and diode DMMs with basic and good capabilities U3401A/U3402A 5.5-digit DMM 52 26 0.0250% DCV, ACV, DCI, ACI, USB 2.0, GPIB 5 with built-in 30 W 2- and 4-wire resistance, power supply frequency, continuity, Halves bench/ diode, and capacitance rackspace need 30-W with four output for two instruments ranges, OVP/OCP, auto scan/ramp and square U3606A/U3606B wave generator 5.5 digit bench 52 190 0.0150% DCV, ACV, DCI, ACI, USB 2.0, 6 digital multimeter 2- and 4-wire resistance, Serial Interface OLED dual display frequency, continuity, (RS-232), GPIB diode, capacitance, and DMM Connectivity temperature Utility software (page 24) 34450A Bench/System 62 300/1000 0.0075/0.0035% DCV, ACV, DCI, ACI, USB, LAN/LXI 7 DMM 2- and 4-wire resistance, Core, GPIB, 34401A frequency, period, DMM Connectivity Replacement for continuity, diode, Utility (page 24) accuracy, speed, temperature measurement ease 34460A/34461A and versatility Bench/System 62 1000 0.0035% DCV, ACV, DCI, ACI, GPIB, RS-232, 8 DMM 2- and 4-wire resistance, DMM Connectivity Industry standard frequency, period, Utility software for accuracy, speed, continuity, -
Oscilloscope Selection Guide Oscilloscope Selection Guide
OSCILLOSCOPE SELECTION GUIDE OSCILLOSCOPE SELECTION GUIDE OSCILLOSCOPE SELECTOR GUIDE Tektronix offers oscilloscopes for many different applications and uses. To help you choose the right scope for your needs, the most common criteria for selecting a scope are listed below, along with helpful tips for determining your requirements. 1 Bandwidth All oscilloscopes have a low-pass frequency response that rolls CONTENTS off at higher frequencies. Oscilloscope bandwidth is specified as CHOOSING YOUR OSCILLOSCOPE 1-3 being the frequency at which a sinusoidal input signal is MIXED SIGNAL AND MIXED DOMAIN OSCILLOSCOPES 4-5 attenuated to 70.7% of the signal’s true amplitude – the -3 dB point. Your oscilloscope must have sufficient bandwidth to MSO/DPO2000B 4 capture all relevant frequency components of your signal. If you MDO3000 4 regularly work with digital signals, it may be easier to consider MDO4000C 5 bandwidth by comparing signal and oscilloscope rise time specifications. Use an oscilloscope with a rise time ADVANCED SIGNAL ANALYSIS OSCILLOSCOPES 6-7 specification five times faster than your signal rise time to MSO/DPO5000B 6 keep error below 2%. 5 Series MSO 6 Rule: Bandwidth > 5 x Highest Signal Frequency DPO7000C Series 7 MSO/DPO70000 Series 7 2 Sample Rate DPO70000SX Series 8 The faster an oscilloscope samples, the greater the resolution SAMPLING OSCILLOSCOPES 8 and detail of the displayed waveform, and the less likely that DSA8300 8 critical information or events will be lost. Tektronix recommends at least 5X oversampling to ensure signal details are captured BASIC OSCILLOSCOPES 9 and to avoid aliasing. TBS1000 9 Rule: Sample Rate > 5 x (Highest Frequency Component) TBS1000B/TBS1000B-EDU 9 TBS2000 9 BATTERY POWERED OSCILLOSCOPES 3 Record Length WITH ISOLATED CHANNELS 10 Record length is the number of samples the oscilloscope can THS3000 10 digitize and store in a single acquisition. -
Modern Architecture Advances Vector Network Analyzer Performance Vector Network Analyzers (Vnas) Are Based on the Use of Either Mixers Or Samplers
White Paper Modern Architecture Advances Vector Network Analyzer Performance Vector Network Analyzers (VNAs) are based on the use of either mixers or samplers. In traditional sampling VNAs, samplers are gated by pulses generated with a Step-Recovery Diode (SRD) circuit, with the Local Oscillator (LO) and RF source phase locked to a common frequency reference. An alternative architecture is a VNA based on Nonlinear Transmission Line (NLTL) samplers and distributed harmonic generators. NLTL-based samplers configured to provide scalable operation characteristics now offer a more beneficial alternative. Not only do they allow for a simplified VNA architecture, but they also enable VNAs that are much more cost effective than those employing fundamental mixing. This paper provides an overview of the high-frequency technology deployed in Anritsu’s VNA families. It is shown that NLTL technology results in miniature VNA reflectometers that provide enhanced performance over broad frequency ranges, and reduced measurement complexity when compared with existing solutions. These capabilities, combined with the frequency-scalable nature of the reflectometers provide VNA users with a unique and compelling solution for their current and future high-frequency measurement needs. Limitations of Prior VNA Architectures VNAs make use of samplers, harmonic mixers, or combinations thereof to down-convert measurement signals to intermediate frequencies (IF) before digitizing them. Such down-conversion components play a critical role in VNAs because they set bounds on important parameters like conversion efficiency, receiver compression, isolation between measurement channels, and spurious generation at the ports of a device under test (DUT). Mixers tend to be the down converters of choice at RF frequencies, due mainly to their simpler local oscillator (LO) drive system and enhanced spur-management advantages. -
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 - Circuits and Electronics Fall 2004 Lab Equipment Handout (Handout F04-009) Prepared by Iahn Cajigas González (EECS '02) Updated by Ben Walker (EECS ’03) in September, 2003 This handout is intended to provide a brief technical overview of the lab instruments which we will be using in 6.002: the oscilloscope, multimeter, function generator, and the protoboard. It incorporates much of the material found in the individual instrument manuals, while including some background information as to how each of the instruments work. The goal of this handout is to serve as a reference of common lab procedures and terminology, while trying to build technical intuition about each instrument's functionality and familiarizing students with their use. Students with previous lab experience might find it helpful to simply skim over the handout and focus only on unfamiliar sections and terminology. THE OSCILLOSCOPE The oscilloscope is an electronic instrument based on the cathode ray tube (CRT) – not unlike the picture tube of a television set – which is capable of generating a graph of an input signal versus a second variable. In most applications the vertical (Y) axis represents voltage and the horizontal (X) axis represents time (although other configurations are possible). Essentially, the oscilloscope consists of four main parts: an electron gun, a time-base generator (that serves as a clock), two sets of deflection plates used to steer the electron beam, and a phosphorescent screen which lights up when struck by electrons. The electron gun, deflection plates, and the phosphorescent screen are all enclosed by a glass envelope which has been sealed and evacuated. -
Build an Rf Frequency Counter Buffer for Hf
BUILD IT YOURSELF By Dwayne Kincaid WD8OYG BUILD AN RF FREQUENCY COUNTER BUFFER FOR HF Most frequency counters can tolerate only low levels of RF at their input, but here’s a way to safely measure the frequency of an RF signal of up to 200 watts with your existing frequency counter. 36 January/February 2019 ■ FIGURE 1. Block diagram of frequency counter buffer. ■ FIGURE 2. Schematic of frequency counter buffer. his buffer allows you to connect your transceivers. It performs well, is easy to reproduce, counter to any RF source from 20 mW to is low cost, and has a minimal parts count. 200 watts, from 200 kHz to 60 MHz. The Most amateur HF transceivers are in the 5 to circuit has a protection limiter that keeps 200 watt range. This buffer (Figure 2) will allow Tthe RF signal strength in a safe range for the TTL you to connect your standard desktop frequency input of the counter, as well as providing gain for counter directly to the RF line, even with higher weaker signals (Figure 1). signal levels that most frequency counters can You can think of the buffer as a dam safely handle. For Citizens Band, most transceivers are in keeping high water out of Frequency Counter- the 4 to 12 watt range and will work fine with the ville. If the water/signal is too high upstream, buffer. you can limit how much of it gets through. Or, The low end of the buffer’s power range if its strength is too low, you can add some. -
Tektronix Signal Generator
Signal Generator Fundamentals Signal Generator Fundamentals Table of Contents The Complete Measurement System · · · · · · · · · · · · · · · 5 Complex Waves · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 The Signal Generator · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 Signal Modulation · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 Analog or Digital? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 Analog Modulation · · · · · · · · · · · · · · · · · · · · · · · · · 15 Basic Signal Generator Applications· · · · · · · · · · · · · · · · 8 Digital Modulation · · · · · · · · · · · · · · · · · · · · · · · · · · 15 Verification · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8 Frequency Sweep · · · · · · · · · · · · · · · · · · · · · · · · · · · 16 Testing Digital Modulator Transmitters and Receivers · · 8 Quadrature Modulation · · · · · · · · · · · · · · · · · · · · · 16 Characterization · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8 Digital Patterns and Formats · · · · · · · · · · · · · · · · · · · 16 Testing D/A and A/D Converters · · · · · · · · · · · · · · · · · 8 Bit Streams · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17 Stress/Margin Testing · · · · · · · · · · · · · · · · · · · · · · · · · · · 9 Types of Signal Generators · · · · · · · · · · · · · · · · · · · · · · 17 Stressing Communication Receivers · · · · · · · · · · · · · · 9 Analog and Mixed Signal Generators · · · · · · · · · · · · · · 18 Signal Generation Techniques -
How to Measure the Loop Transfer Function of Power Supplies (Rev. A)
Application Report SNVA364A–October 2008–Revised April 2013 AN-1889 How to Measure the Loop Transfer Function of Power Supplies ..................................................................................................................................................... ABSTRACT This application report shows how to measure the critical points of a bode plot with only an audio generator (or simple signal generator) and an oscilloscope. The method is explained in an easy to follow step-by-step manner so that a power supply designer can start performing these measurements in a short amount of time. Contents 1 Introduction .................................................................................................................. 2 2 Step 1: Setting up the Circuit .............................................................................................. 2 3 Step 2: The Injection Transformer ........................................................................................ 4 4 Step 3: Preparing the Signal Generator .................................................................................. 4 5 Step 4: Hooking up the Oscilloscope ..................................................................................... 4 6 Step 5: Preparing the Power Supply ..................................................................................... 4 7 Step 6: Taking the Measurement ......................................................................................... 5 8 Step 7: Analyzing a Bode Plot ...........................................................................................