Chromosome Territory Reorganization in a Human Disease with Altered DNA Methylation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exceptional Conservation of Horse–Human Gene Order on X Chromosome Revealed by High-Resolution Radiation Hybrid Mapping
Exceptional conservation of horse–human gene order on X chromosome revealed by high-resolution radiation hybrid mapping Terje Raudsepp*†, Eun-Joon Lee*†, Srinivas R. Kata‡, Candice Brinkmeyer*, James R. Mickelson§, Loren C. Skow*, James E. Womack‡, and Bhanu P. Chowdhary*¶ʈ *Department of Veterinary Anatomy and Public Health, ‡Department of Veterinary Pathobiology, College of Veterinary Medicine, and ¶Department of Animal Science, College of Agriculture and Life Science, Texas A&M University, College Station, TX 77843; and §Department of Veterinary Pathobiology, University of Minnesota, 295f AS͞VM, St. Paul, MN 55108 Contributed by James E. Womack, December 30, 2003 Development of a dense map of the horse genome is key to efforts ciated with the traits, once they are mapped by genetic linkage aimed at identifying genes controlling health, reproduction, and analyses with highly polymorphic markers. performance. We herein report a high-resolution gene map of the The X chromosome is the most conserved mammalian chro- horse (Equus caballus) X chromosome (ECAX) generated by devel- mosome (18, 19). Extensive comparisons of structure, organi- oping and typing 116 gene-specific and 12 short tandem repeat zation, and gene content of this chromosome in evolutionarily -markers on the 5,000-rad horse ؋ hamster whole-genome radia- diverse mammals have revealed a remarkable degree of conser tion hybrid panel and mapping 29 gene loci by fluorescence in situ vation (20–22). Until now, the chromosome has been best hybridization. The human X chromosome sequence was used as a studied in humans and mice, where the focus of research has template to select genes at 1-Mb intervals to develop equine been the intriguing patterns of X inactivation and the involve- orthologs. -
Immune Cells Lacking Y Chromosome Have Widespread Dysregulation of Autosomal Genes
Supplementary Information Immune cells lacking Y chromosome have widespread dysregulation of autosomal genes Dumanski, Halvardson, Davies, Rychlicka-Buniowska, Mattisson, Torabi Moghadam, Nagy, Węglarczyk, Bukowska-Strakova, Danielsson, Olszewski, Piotrowski, Oerton, Ambicka, Przewoźnik, Bełch, Grodzicki, Chłosta, Imreh, Giedraitis, Kilander, Nordlund, Ameur, Gyllensten, Johansson, Józkowicz, Siedlar, Klich-Rączka, Jaszczyński, Enroth, Baran, Ingelsson, Perry, Ryś, and Forsberg Item Page(s) Fig. S1…………………... 2 Fig. S2…………………... 3 Fig. S3…………………... 4 Fig. S4…………………... 5-6 Fig. S5……………...….... 7 Fig. S6…………………... 8-9 Fig. S7…………………... 10 Fig. S8……………...….... 11-12 Fig. S9……………...….... 13-15 Tables S1-S4 are available online. 1 Supplementary Fig. 1. Summary of genes from chromosome Y that are expressed in leukocytes. Normal functions of the 64 protein coding genes on chromosome Y, 19 located in the pseudo-autosomal regions (PAR, underlined) and 45 in the male specific region of chromosome Y (MSY). Red color indicates 20 genes expressed in leukocytes studied here using RNAseq, 13 in PARs and 7 in MSY regions. Gene ontology (GO) analyses were performed for each chromosome Y gene to identify known biological functions and the identified GO terms were annotated into four functional categories. The categories were: “Transcription, translation epigenetic and post-translational modifications (PTM) functions” (orange area), “Cell differentiation, migration proliferation and apoptosis” (grey area), “Sex determination, fertility and other functions” (blue area) and “Immune response and immune cell signaling. 2 Supplementary Fig. 2. Distribution and level of loss of chromosome Y (LOY) in leukocytes from aging men using two RNA-sequencing platforms. Panels a and b show results from single cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) collected from 29 men, 26 diagnosed with Alzheimer’s disease. -
BMC Biology Biomed Central
BMC Biology BioMed Central Research article Open Access Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins Stanley M Gartler*1,2, Kartik R Varadarajan2, Ping Luo2, Theresa K Canfield2, Jeff Traynor3, Uta Francke3 and R Scott Hansen2 Address: 1Department of Medicine, University of Washington, Seattle, WA, USA, 2Department of Genome Sciences, University of Washington, Seattle, WA, USA and 3Department of Genetics, Stanford University, Stanford, CA, USA Email: Stanley M Gartler* - [email protected]; Kartik R Varadarajan - [email protected]; Ping Luo - [email protected]; Theresa K Canfield - [email protected]; Jeff Traynor - [email protected]; Uta Francke - [email protected]; R Scott Hansen - [email protected] * Corresponding author Published: 20 September 2004 Received: 23 June 2004 Accepted: 20 September 2004 BMC Biology 2004, 2:21 doi:10.1186/1741-7007-2-21 This article is available from: http://www.biomedcentral.com/1741-7007/2/21 © 2004 Gartler et al; licensee BioMed Central Ltd. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). -
Anti-VAMP7 Monoclonal Antibody, Clone 25G579 (CABT-37960MH) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Anti-VAMP7 monoclonal antibody, clone 25G579 (CABT-37960MH) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse Monoclonall antibody to Human VAMP7. Antigen Description This gene encodes a transmembrane protein that is a member of the soluble N-ethylmaleimide- sensitive factor attachment protein receptor (SNARE) family. The encoded protein localizes to late endosomes and lysosomes and is involved in the fusion of transport vesicles to their target membranes. Alternate splicing results in multiple transcript variants. Specificity Detected in all tissues tested. Immunogen Recombinant full SYBL1 protein (Human) Isotype IgG1 Source/Host Mouse Species Reactivity Rat, Human Clone 25G579 Purification Affinity purified Conjugate Unconjugated Applications IP, ICC, WB Sequence Similarities Belongs to the synaptobrevin family.Contains 1 longin domain.Contains 1 v-SNARE coiled-coil homology domain. Reconstitution For reconstitution add 100 ul H2O to get a 1mg/ml solution in PBS. Format Lyophilized Size 100 ug Buffer Preservative: None. Constituents: Ascites Preservative None Storage Store at +4°C short term (1-2 weeks). Aliquot and store at -20°C long term. Avoid repeated freeze / thaw cycles. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved GENE INFORMATION Gene Name VAMP7 vesicle-associated membrane protein 7 [ Homo sapiens ] Official Symbol VAMP7 Synonyms VAMP7; vesicle-associated -
Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome
DISCOVERY OF CANDIDATE GENES FOR STALLION FERTILITY FROM THE HORSE Y CHROMOSOME A Dissertation by NANDINA PARIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2009 Major Subject: Biomedical Sciences DISCOVERY OF CANDIDATE GENES FOR STALLION FERTILITY FROM THE HORSE Y CHROMOSOME A Dissertation by NANDINA PARIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Terje Raudsepp Committee Members, Bhanu P. Chowdhary William J. Murphy Paul B. Samollow Dickson D. Varner Head of Department, Evelyn Tiffany-Castiglioni August 2009 Major Subject: Biomedical Sciences iii ABSTRACT Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome. (August 2009) Nandina Paria, B.S., University of Calcutta; M.S., University of Calcutta Chair of Advisory Committee: Dr. Terje Raudsepp The genetic component of mammalian male fertility is complex and involves thousands of genes. The majority of these genes are distributed on autosomes and the X chromosome, while a small number are located on the Y chromosome. Human and mouse studies demonstrate that the most critical Y-linked male fertility genes are present in multiple copies, show testis-specific expression and are different between species. In the equine industry, where stallions are selected according to pedigrees and athletic abilities but not for reproductive performance, reduced fertility of many breeding stallions is a recognized problem. Therefore, the aim of the present research was to acquire comprehensive information about the organization of the horse Y chromosome (ECAY), identify Y-linked genes and investigate potential candidate genes regulating stallion fertility. -
Chromatin Structure of the Inactive X Chromosome
CHROMATIN STRUCTURE OF THE INACTIVE X CHROMOSOME by Sandra L. Gilbert B.A. Biology and B.A. Economics University of Pennsylvania, 1990 Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology at the Massachusetts Institute of Technology September, 1999 © 1999 Massachusetts Institute of Technology All rights reserved Signature of Author ................................................................................ ..... .... .. .... .. .. ... HUS Department of Biology August 19,1999 MASSACHUSETTS INSTITU 1OFTECHNOLOGY '7 Ce rtifie d by ................. .................... ............ ......................................................... Phillip A. Sharp Salvador E. Luria Professor of Biology Thesis Supervisor A cce pte d by ........................................................................................ ...-- .* ... Terry Orr-Weaver Professor of Biology Chairman, Committee for Graduate Students 2 ABSTRACT X-inactivation is the unusual mode of gene regulation by which most genes on one of the two X chromosomes in female mammalian cells are transcriptionally silenced. The underlying mechanism for this widespread transcriptional repression is unknown. This thesis investigates two key aspects of the X-inactivation process. The first aspect is the correlation between chromatin structure and gene expression from the inactive X (Xi). Two features of the Xi chromatin - DNA methylation and late replication timing - have been shown to correlate with silencing -
(P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds. -
Evidence of Y Chromosome Long Non-Coding Rnas Involved in the Radiation Response of Male Non-Small Cell Lung Cancer Cells
Graduate Theses, Dissertations, and Problem Reports 2020 Evidence of Y Chromosome Long Non-Coding RNAs involved in the Radiation Response of Male Non-Small Cell Lung Cancer Cells Tayvia Brownmiller West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Cancer Biology Commons, Cell Biology Commons, Genetics Commons, Molecular Genetics Commons, and the Radiation Medicine Commons Recommended Citation Brownmiller, Tayvia, "Evidence of Y Chromosome Long Non-Coding RNAs involved in the Radiation Response of Male Non-Small Cell Lung Cancer Cells" (2020). Graduate Theses, Dissertations, and Problem Reports. 7784. https://researchrepository.wvu.edu/etd/7784 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Evidence of Y Chromosome Long Non-Coding RNAs involved in the -
DNA Methylation in Transcriptional Repression of Two Differentially Expressed X-Linked Genes, GPC3 and SYBL1
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 616–621, January 1999 Genetics DNA methylation in transcriptional repression of two differentially expressed X-linked genes, GPC3 and SYBL1 i REID HUBER*†‡,R.SCOTT HANSEN§,MARIA STRAZZULLO¶,GINA PENGUE ,RICHARD MAZZARELLA**, MICHELE D’URSO¶,DAVID SCHLESSINGER*, GIUSEPPE PILIA††,STANLEY M. GARTLER§,§§, AND MAURIZIO D’ESPOSITO¶ *Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; Departments of §Medicine and §§Genetics, University of Washington, Seattle, WA 98195; ¶International Institute of Genetics and Biophysics, 80125 Naples, Italy; iDepartment of Internal Medicine and **Institute for Biomedical Computing, Washington University, St. Louis, MO 63110; and ††Instituto di Ricerca, Talassemie e Anemie Mediterranee, 09100 Cagliari, Italy Contributed by Stanley M. Gartler, November 9, 1998 ABSTRACT Methylation of CpG islands is an established 5-azacytidine results in the transcriptional activation of many transcriptional repressive mechanism and is a feature of repressed genes (7). silencing in X chromosome inactivation. Housekeeping genes Although the way in which methylation may influence that are subject to X inactivation exhibit differential methyl- transcription is beginning to be understood (8), the degree to ation of their CpG islands such that the inactive alleles are which it is necessary andyor sufficient for repression in various hypermethylated. In this report, we examine two contrasting cases remains unknown. To analyze the influence of methyl- X-linked genes with CpG islands for regulation by DNA ation on transcription further, we have compared the extent methylation: SYBL1, a housekeeping gene in the Xq pseudo- and effects of methylation on two genes, each of which is autosomal region, and GPC3, a tissue-specific gene in Xq26 repressed strongly by two distinct mechanisms. -
UCC Library and UCC Researchers Have Made This Item Openly Available. Please Let Us Know How This Has Helped You. Thanks! Downlo
UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title Opposite expression patterns of Spry3 and p75NTR in cerebellar vermis suggest a male-specific mechanism of autism pathogenesis Spry3 and p75NTR in autism Author(s) Ning, Zhenfei; Williams, John M.; Kumari, Romika; Baranov, Pavel V.; Moore, Tom Publication date 2019-06-18 Original citation Ning, Z., Williams, J.M., Kumari, R., Baranov, P.V. and Moore, T., 2019. Opposite expression patterns of Spry3 and p75NTR in cerebellar vermis suggest a male-specific mechanism of autism pathogenesis. Frontiers in Psychiatry, 10, (416). DOI:10.3389/fpsyt.2019.00416 Type of publication Article (peer-reviewed) Link to publisher's https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00416 version http://dx.doi.org/10.3389/fpsyt.2019.00416 Access to the full text of the published version may require a subscription. Rights © 2019 Ning, Williams, Kumari, Baranov and Moore https://creativecommons.org/licenses/by/4.0/ Item downloaded http://hdl.handle.net/10468/9135 from Downloaded on 2020-06-06T01:13:11Z ORIGINAL RESEARCH published: 18 June 2019 doi: 10.3389/fpsyt.2019.00416 Opposite Expression Patterns of Spry3 and p75NTR in Cerebellar Vermis Suggest a Male-Specific Mechanism of Autism Pathogenesis Zhenfei Ning, John M. Williams, Romika Kumari †, Pavel V. Baranov and Tom Moore * School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Edited by: Autism is a genetically complex neurobehavioral disorder with a population prevalence Yu-Qiang Ding, of more than 1%. Cerebellar abnormalities, including Purkinje cell deficits in the vermis, Tongji University, China are consistently reported, and rodent models of cerebellar dysfunction exhibit features Reviewed by: analogous to human autism. -
Meta-Analysis of Gene Expression in Individuals with Autism Spectrum Disorders
Meta-analysis of Gene Expression in Individuals with Autism Spectrum Disorders by Carolyn Lin Wei Ch’ng BSc., University of Michigan Ann Arbor, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Bioinformatics) The University of British Columbia (Vancouver) August 2013 c Carolyn Lin Wei Ch’ng, 2013 Abstract Autism spectrum disorders (ASD) are clinically heterogeneous and biologically complex. State of the art genetics research has unveiled a large number of variants linked to ASD. But in general it remains unclear, what biological factors lead to changes in the brains of autistic individuals. We build on the premise that these heterogeneous genetic or genomic aberra- tions will converge towards a common impact downstream, which might be reflected in the transcriptomes of individuals with ASD. Similarly, a considerable number of transcriptome analyses have been performed in attempts to address this question, but their findings lack a clear consensus. As a result, each of these individual studies has not led to any significant advance in understanding the autistic phenotype as a whole. The goal of this research is to comprehensively re-evaluate these expression profiling studies by conducting a systematic meta-analysis. Here, we report a meta-analysis of over 1000 microarrays across twelve independent studies on expression changes in ASD compared to unaffected individuals, in blood and brain. We identified a number of genes that are consistently differentially expressed across studies of the brain, suggestive of effects on mitochondrial function. In blood, consistent changes were more difficult to identify, despite individual studies tending to exhibit larger effects than the brain studies. -
As a Model for Lysosomal Storage Disorders Gert De Voer, Dorien Peters, Peter E.M
as a model for lysosomal storage disorders Gert de Voer, Dorien Peters, Peter E.M. Taschner To cite this version: Gert de Voer, Dorien Peters, Peter E.M. Taschner. as a model for lysosomal storage disorders. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2008, 1782 (7-8), pp.433. 10.1016/j.bbadis.2008.04.003. hal-00501575 HAL Id: hal-00501575 https://hal.archives-ouvertes.fr/hal-00501575 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Caenorhabditis elegans as a model for lysosomal storage disorders Gert de Voer, Dorien Peters, Peter E.M. Taschner PII: S0925-4439(08)00093-8 DOI: doi: 10.1016/j.bbadis.2008.04.003 Reference: BBADIS 62810 To appear in: BBA - Molecular Basis of Disease Received date: 13 May 2007 Revised date: 23 April 2008 Accepted date: 24 April 2008 Please cite this article as: Gert de Voer, Dorien Peters, Peter E.M. Taschner, Caenorhab- ditis elegans as a model for lysosomal storage disorders, BBA - Molecular Basis of Disease (2008), doi: 10.1016/j.bbadis.2008.04.003 This is a PDF file of an unedited manuscript that has been accepted for publication.