Comparative Gene Expression Analysis Reveals a Characteristic Molecular Profile of the Superior Olivary Complex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Voltage-Gated Sodium Channel Β1/Β1b Subunits Regulate Cardiac Physiology and Pathophysiology
MINI REVIEW published: 23 April 2018 doi: 10.3389/fphys.2018.00351 Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology Nnamdi Edokobi and Lori L. Isom* Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs). Voltage-gated sodium channels (NaVs) are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Na -β1/β1B subunit dysfunction generates substrates Edited by: v Hugues Abriel, for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac Universität Bern, Switzerland physiology and pathophysiology. Reviewed by: Thomas Jespersen, Keywords: sodium channel, B subunit, arrhythmia, epilepsy, cell adhesion, electrophysiology University of Copenhagen, Denmark Steve Poelzing, Virginia Tech, United States INTRODUCTION *Correspondence: Lori L. Isom The heart contracts to pump blood throughout the body. -
The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype. -
Structural Comparison of GLUT1 to GLUT3 Reveal Transport Regulation Mechanism in Sugar Porter Family
Published Online: 3 February, 2021 | Supp Info: http://doi.org/10.26508/lsa.202000858 Downloaded from life-science-alliance.org on 24 September, 2021 Research Article Structural comparison of GLUT1 to GLUT3 reveal transport regulation mechanism in sugar porter family Taniaˆ Filipa Custódio1,*, Peter Aasted Paulsen1,*, Kelly May Frain1, Bjørn Panyella Pedersen1,2 The human glucose transporters GLUT1 and GLUT3 have a central (M7-12). They are also defined by a signature motif, the “Amotif,” with a role in glucose uptake as canonical members of the Sugar Porter consensus sequence of Gx3[D/E][R/K]xGx[R/K][K/R] (Nishimura et al, (SP) family. GLUT1 and GLUT3 share a fully conserved substrate- 1993). Due to the pseudo-symmetry, the A motif is found twice, located binding site with identical substrate coordination, but differ in the cytosolic loop connecting M2 and M3 of the N-domain and in significantly in transport affinity in line with their physiological the cytosolic loop connecting M8 and M9 of the C-domain. In GLUT1 the ˚ function. Here, we present a 2.4 A crystal structure of GLUT1 in an AmotiftakestheformG84LFVNRFGRR93 and L325FVVERAGRR334.The inward open conformation and compare it with GLUT3 using both A motif is believed to be a key determinant of transport kinetics (Cain structural and functional data. Our work shows that interactions et al, 2000; Jiang et al, 2013; Nomura et al, 2015; Zhang et al, 2015), and it between a cytosolic “SP motif” and a conserved “A motif” sta- may also modulate transport by direct lipid interactions (Martens et al, bilize the outward conformational state and increases substrate 2018).WithintheMFSsuperfamily,theSPfamilyhaveafamily-defining apparent affinity. -
Phosphate Transporters of the SLC20 and SLC34 Families
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Phosphate transporters of the SLC20 and SLC34 families Forster, Ian C ; Hernando, Nati ; Biber, Jürg ; Murer, Heini Abstract: Transport of inorganic phosphate (Pi) across the plasma membrane is essential for normal cellular function. Members of two families of SLC proteins (SLC20 and SLC34) act as Na(+)-dependent, secondary-active cotransporters to transport Pi across cell membranes. The SLC34 proteins are ex- pressed in specific organs important for Pi homeostasis: NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) fulfill essential roles in Pi reabsorption in the kidney proximal tubule and NaPi-IIb (SLC34A2) medi- ates Pi absorption in the gut. The SLC20 proteins, PiT-1 (SLC20A1), PiT-2 (SLC20A2) are expressed ubiquitously in all tissues and although generally considered as ”housekeeping” transport proteins, the discovery of tissue-specific activity, regulatory pathways and gene-related pathophysiologies, is redefining their importance. This review summarizes our current knowledge of SLC20 and SLC34 proteins in terms of their basic molecular characteristics, physiological roles, known pathophysiology and pharmacology. DOI: https://doi.org/10.1016/j.mam.2012.07.007 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-79439 Journal Article Accepted Version Originally published at: Forster, Ian C; Hernando, Nati; Biber, Jürg; Murer, Heini (2013). Phosphate transporters of the SLC20 and SLC34 families. Molecular Aspects of Medicine, 34(2-3):386-395. DOI: https://doi.org/10.1016/j.mam.2012.07.007 1 Mini-reviews Series-Molecular Aspects of Medicine (JMAM) Phosphate transporters of the SLC20 and SLC34 families Ian C. -
Seq2pathway Vignette
seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway. -
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training
nutrients Review Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training Parker L. Evans 1,2,3, Shawna L. McMillin 1,2,3 , Luke A. Weyrauch 1,2,3 and Carol A. Witczak 1,2,3,4,* 1 Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; [email protected] (P.L.E.); [email protected] (S.L.M.); [email protected] (L.A.W.) 2 Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA 3 East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA 4 Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA * Correspondence: [email protected]; Tel.: +1-252-744-1224 Received: 8 September 2019; Accepted: 8 October 2019; Published: 12 October 2019 Abstract: Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism. Keywords: aerobic exercise; blood glucose; functional overload; GLUT; hexokinase; insulin resistance; resistance exercise; SGLT; type 2 diabetes; weightlifting 1. Introduction Exercise training is defined as planned bouts of physical activity which repeatedly occur over a duration of time lasting from weeks to years. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Ageing-Associated Changes in DNA Methylation in X and Y Chromosomes
Kananen and Marttila Epigenetics & Chromatin (2021) 14:33 Epigenetics & Chromatin https://doi.org/10.1186/s13072-021-00407-6 RESEARCH Open Access Ageing-associated changes in DNA methylation in X and Y chromosomes Laura Kananen1,2,3,4* and Saara Marttila4,5* Abstract Background: Ageing displays clear sexual dimorphism, evident in both morbidity and mortality. Ageing is also asso- ciated with changes in DNA methylation, but very little focus has been on the sex chromosomes, potential biological contributors to the observed sexual dimorphism. Here, we sought to identify DNA methylation changes associated with ageing in the Y and X chromosomes, by utilizing datasets available in data repositories, comprising in total of 1240 males and 1191 females, aged 14–92 years. Results: In total, we identifed 46 age-associated CpG sites in the male Y, 1327 age-associated CpG sites in the male X, and 325 age-associated CpG sites in the female X. The X chromosomal age-associated CpGs showed signifcant overlap between females and males, with 122 CpGs identifed as age-associated in both sexes. Age-associated X chro- mosomal CpGs in both sexes were enriched in CpG islands and depleted from gene bodies and showed no strong trend towards hypermethylation nor hypomethylation. In contrast, the Y chromosomal age-associated CpGs were enriched in gene bodies, and showed a clear trend towards hypermethylation with age. Conclusions: Signifcant overlap in X chromosomal age-associated CpGs identifed in males and females and their shared features suggest that despite the uneven chromosomal dosage, diferences in ageing-associated DNA methylation changes in the X chromosome are unlikely to be a major contributor of sex dimorphism in ageing. -
Expression of SLC2A9 Isoforms in the Kidney and Their Localization in Polarized Epithelial Cells
Expression of SLC2A9 Isoforms in the Kidney and Their Localization in Polarized Epithelial Cells Toru Kimura1, Michi Takahashi1, Kunimasa Yan2, Hiroyuki Sakurai1* 1 Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan, 2 Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan Abstract Background: Many genome-wide association studies pointed out that SLC2A9 gene, which encodes a voltage-driven urate transporter, SLC2A9/GLUT9 (a.k.a. URATv1), as one of the most influential genes for serum urate levels. SLC2A9 is reported to encode two splice variants: SLC2A9-S (512 amino acids) and SLC2A9-L (540 amino acids), only difference being at their N- termini. We investigated isoform-specific localization of SLC2A9 in the human kidney and role of N-terminal amino acids in differential sorting in vitro. Methodology/Principal Findings: Isoform specific antibodies against SLC2A9 were developed and human kidney sections were stained. SLC2A9-S was expressed in the apical side of the collecting duct while SLC2A9-L was expressed in the basolateral side of the proximal tubule. GFP fused SLC2A9s were expressed in MDCK cells and intracellular localization was observed. SLC2A9-S was expressed at both apical and basolateral membranes, whereas SLC2A9-L was expressed only at the basolateral membrane. Although SLC2A9-L has a putative di-leucine motif at 33th and 34th leucine, deletion of the motif or replacement of leucine did not affect its subcellular localization. When up to 16 amino acids were removed from the N- terminal of SLC2A9-S or when up to 25 amino acids were removed from the N-terminal of SLC2A9-L, there was no change in their sorting. -
Transcriptome Sequencing and Genome-Wide Association Analyses Reveal Lysosomal Function and Actin Cytoskeleton Remodeling in Schizophrenia and Bipolar Disorder
Molecular Psychiatry (2015) 20, 563–572 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp ORIGINAL ARTICLE Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder Z Zhao1,6,JXu2,6, J Chen3,6, S Kim4, M Reimers3, S-A Bacanu3,HYu1, C Liu5, J Sun1, Q Wang1, P Jia1,FXu2, Y Zhang2, KS Kendler3, Z Peng2 and X Chen3 Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of post-mortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q ⩽ 0.01, 53 genes; q ⩽ 0.05, 213 genes; q ⩽ 0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (Po10 − 7) and BPD (P = 0.029). To our knowledge, this is the first time that a substantially large number of genes show concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor-mediated phagocytosis, regulation of actin cytoskeleton pathways, along with several cancer pathways. -
HER Inhibitor Promotes BRAF/MEK Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Harboring BRAFV600E
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 12), pp: 19843-19854 Research Paper HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E Lingxiao Cheng1,*, Yuchen Jin1,*, Min Liu1, Maomei Ruan2, Libo Chen1 1Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China 2Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China *Co-first authors Correspondence to: Libo Chen, email: [email protected] Keywords: papillary thyroid cancer, redifferentiation, iodine, glucose, dabrafenib Received: October 20, 2016 Accepted: January 24, 2017 Published: February 28, 2017 ABSTRACT Redifferentiation therapy with BRAF/MEK inhibitors to facilitate treatment with radioiodine represents a good choice for radioiodine-refractory differentiated thyroid carcinoma, but recent initial clinical outcomes were modest. MAPK rebound caused by BRAF/MEK inhibitors-induced activation of HER2/HER3 is a resistance mechanism, and combination with HER inhibitor to prevent MAPK rebound may sensitize BRAFV600E- mutant thyroid cancer cells to redifferentiation therapy. To evaluate if inhibiting both BRAF/MEK and HER can produce stronger redifferetiation effect, we tested the effects of BRAF/MEK inhibitor dabrafenib/selumetinib alone or in combination with HER inhibitor lapatinib on the expression and function of iodine- and glucose-handling genes in BRAFV600E-positive BCPAP and K1 cells, using BHP 2-7 cells harboring RET/ PTC1 rearrangement as control. Herein, we showed that lapatinib prevented MAPK rebound and sensitized BRAFV600E-positive papillary thyroid cancer cells to BRAF/ MEK inhibitors. Dabrafenib/selumetinib alone increased iodine-uptake and toxicity and suppressed glucose-metablism in BRAFV600E-positive papillary thyroid cancer cells. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.